当前位置:文档之家› 概率问题中的递推数列

概率问题中的递推数列

概率问题中的递推数列
概率问题中的递推数列

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:1()n n a a f n +=+(()f n 可以求和) ????→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。 解析:121(2)n n a a n n --=-≥Q ∴21324311 3 521 n n a a a a a a a a n --=??-=?? -=???-=-??M 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 【类型一专项练习题】 1、已知11a =,1n n a a n -=+(2≥n ),求n a 。 2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。 3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。 5、已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 6、 已知数列{}n a 满足11,a =()1 132,n n n a a n --=+≥求通项公式n a ? 7、若数列的递推公式为1* 113,23()n n n a a a n N ++==-?∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 9、已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式. 11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且* 1()n n a S n N +=∈,求{}n a 的通项 公式 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-* ()n N ∈,求数列{}n a 通项公式. n a n =.

反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=. 4.构造新数列: 类型1 )(1 n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++ =+2 11 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1 =+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n } 的通项1 ___n a ?=? ? 12 n n =≥ 2 ! n a n = )2(≥n

高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版 类型1 ) (1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解:Θk k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得1)1(21321112--+?=++k k k a , 1)1(2 1 321)1(122--+?=-+=-k k k k k a a 。 经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132 1)(1)1(21321222 1 21为偶数为奇数n n a n n n n n 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526331348531n n n n n --= ????=---L 。 变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2), 则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

必修5--数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 题型三、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A +=

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

2020版高考数学大二轮复习4.2递推数列及数列求和的综合问题学案(理)

第2讲 递推数列及数列求和的综合问题 考点1 由递推关系式求通项公式 (1)累加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (2)累积法:形如 a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1 ,求其通项公式. (3)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q 1-p ,再转化为等比数列求解. (4)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1 ,得 a n +1q n +1=p q ·a n q n +1q ,构造新数列{ b n }? ? ???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. [例1] 根据下列条件,确定数列{a n }的通项公式: (1)a 1=2,a n +1=a n +n +1; (2)a 1=1,a n = n -1 n a n -1(n ≥2); (3)a 1=1,a n +1=3a n +2. 【解析】 (1)由题意得,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1) 2+1. 又a 1=2=1×(1+1) 2+1,符合上式, 因此a n = n (n +1) 2 +1. (2)∵a n =n -1 n a n -1(n ≥2), ∴a n -1= n -2n -1a n -2,…,a 2=1 2 a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1 n . 当n =1时,a 1=1,上式也成立.

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

专题六数列第十七讲递推数列与数列求和答案

专题六数列 第十七讲递推数列与数列求和 答案部分 S 6 = —i -2 -4 -8 -i6 —32 = —63 . 因为 S n =2a n +i ,所以当 n =i 时,a i =2a i +i ,解得 q =-i , 当 n > 2 时,a n =S n -S n_i =2a n +i —2a n4—i ,所以 a n =2a n_i , 所以数列{a n }是以-1为首项,2为公比的等比数列,所以 a n =-22 所以"卄一 63 . 1. 【解析】??? a n+ = 1 -3a n ,- O n }是等比数列 2. 3. 4 又 a ?=—— 3 f f 1门 4|1——- ?- a 1 =4,-? S 10 = - ---- 1 --- =3(1 -3」0 ),故选 C . 1+- D 【解析】由数列通项可知,当 i 剟n 25, n 亡时,a .…0,当26剟n 50, n 忘 N+ 时,a n , 正数;当51剟n 数是100. -63【解析】通解 =2时, a i =3时, a i 0 ,因为 a i + a 26 A 0 , a 2 + a 27 a 0 “? S ], S 2,…,S 50 都是 i00, n w N +同理S 5i ,S 52,…,S i00也都是正数,所以正数的个 因为 S n =2a n +i ,所以当 n =i 时,a i =2a i +i ,解得 a i = —i ; = 2a2 +1,解得 a^ = —2 ; + a s =2a 3 +i ,解得 a^ -4 ; =4时, a i +a 2 + a 3 + a 4 =2a 4 +i ,解得 a^ -8 ; =5时, a i + a 2 + a 3 +a 4 + a^2a 5 +i ,解得 a^ T6 ; =6时, a i 中a 2 “3 乜4 乜5 “6 =2a 6 +i ,解得 a s = -32. 所以 优解

求递推数列通项公式和求和的常用方法

求递推数列通项公式和求和的常用方法 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,下面就求递推数列通向公式的常用方法举例一二,供参考: 一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 【解析】: 1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a += ,又11 2 a =, ∴12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 跟踪训练1.已知数列{}n a 的前n 项和n S ,满足关系() 1lg n S n +=(1,2)n =???.试证数列{}n a 是等比数列. 二 归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法. 例二 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式. 【解析】: 11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=???? 猜测21n n a =-*()n N ∈,再用数学归纳法证明.(略) 反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性. 跟踪训练2.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有自然数n ,n a 与1的等差中项等于n S 与1的等比中项,求数列{}n a 的通项公式. 三 累加法:利用121 1()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如 1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 例三 已知无穷数列{}n a 的的通项公式是12n n a ?? = ??? ,若数列{}n b 满足11b =,(1)n ≥,求数列{}n b 的通项 公式. 【解析】:11b =,112n n n b b +?? -= ??? (1)n ≥,∴1211()()n n n b b b b b b -=+-+???-=1+12+??+

递推数列题型归纳解析

递推数列题型归纳解析-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1 递推数列题型归纳解析 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 例:已知31=a ,n n a n n a 23131+-= + )1(≥n ,求n a 。

2 变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1, 1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的通项1___ n a ?=?? 12 n n =≥ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14) 在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;

相关主题
文本预览
相关文档 最新文档