当前位置:文档之家› 局部放电测量

局部放电测量

局部放电测量
局部放电测量

局部放电测量

随着电力设备故障诊断技术的发展,人们发现电气设备的许多故障和事故与局部放电有关,因此对局部放电的测量越来越重视,在《交接规程》和《预试规程》中列为试验项目。

一、局部放电的基本概念:

1、什麽是局部放电

局部放电是指电气设备在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现象。

以变压器为例:变压器绝缘结构复杂,内部发生局部放电的原因很多,如果设计不当,局部场强过高,工艺上有缺陷使绝缘中含有气泡,在运行中油质劣化分解出气泡,机械振动和热胀冷缩造成局部开裂出现气泡。在这些情况下,在外施电压下都会发生局部放电。一旦发生局部放电,放电就会持续发展,造成绝缘老化,严重的会造成绝缘击穿。

2、视在放电量:

是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压的变化量相同。此时注入的电荷量称为局部放电的视在放电量。以皮库(PC)表示。

3、局部放电起始电压

是指试验电压从不产生局部放电的较低电压逐渐增加,能观察到试品开始出现局部放电时,试品两端施加的最低电压称局部放电起始电压

4、局部放电熄灭电压

试品发生局部放电后,在逐渐降低外施电压的过程中,试验装置尚能观察到局部放电时,试品两端施加的最低电压称局部放电熄灭电压。(外施电压在降低就观察不到局部放电了)

5、局部放电的几种检测方法

1、电荷法测量局部放电

常规的电荷法局部放电测量,是通过放电量的变化发现缺陷。

2、高频法测量局部放电

用产生的高频信号达到发现缺陷的目的。测量频率在40MHZ---300MHZ。

3、振动法测量局部放电

通过放置在外壳上的传感器接受放电产生的振动脉冲打到检测放电故障的目的

4、声测法测量局部放电

测量原理与振动法相似,通过放置在外壳上的声传感器接受放电产生的超声信号,达到发现缺陷的目的。

5、测分解物法

在局部放电作用下。可能有分解物或生成物出现,可以用色谱及光谱分析来确定各种分解物或生成物,从而判断局部放电的程度。

二、局部放电的试验回路和测量仪器

1、局部放电试验基本回路

图1 局部放电测量的基本回路

(a)测量阻抗与耦合电容器串联回路,(b)测量阻抗与试品串联回路,(c)平衡回路

Z f–高压滤波器Cx—试品等效电容Ck--耦合电容器Zm--测量阻抗Z—调平衡元件

2、试验回路选择

2.1试验电压下,试品的工频电容电流超出测量阻抗Zm的允许值,或试

品的接地部定接地时,可采用图1(a)试验回路

2.2试验电压下,试品的工频电容电流符合测量阻抗Zm的允许值时,可

采用图1(b)试验回路

2.3试验电压下,图1(a)、(b)试验回路有过高的干扰信号时,可采用

图1(c)试验回路

3、视在放电量的校准:

3.1校准的基本原理

视在放电量校准的基本原理是:以幅值为U0的方波通过串接小电容C0

注入试品两端,此时注入的电荷为:

Q O=U0C0

3.2直接校准

将已知电荷量Q O注入试品两端称为直接校准

图2直接校准的接线

3.3间接校准

将已知电荷量Q O注入测量阻抗Zm两端称为间接校准

图3间接校准的接线

三、电力设备的局部放电试验

1、电力设备的局部放电试验前对试品要求

1.1本试验在所有高压绝缘试验之后进行,必要时可在耐压试验前后各进行一次。

1.2试品的表面应清洁干燥,试品在试验前不应受机械、热的作用。

1.3油浸绝缘试品经长途运输或注油后应静止48小时后,方能试验。

1.4测定回路的背景噪声水平。

2、变压器局部放电试验

2.1变压器局部放电试验的试验电压

根据国家标准GB1094.3—2003《电力变压器》中规定变压器局部放电试验电压为:

U1=1.7U m 局部放电试验的预加电压

U2=1.5 U m//√3 在此电压下允许放电量Q<500PC

U2=1.3 U m//√3 在此电压下允许放电量Q<300PC

U m-----设备最高工作电压

局部放电试验电压及标准

2.2局部放电试验步骤

首先试验电压升到U2下进行测量,保持5分钟,然后试验电压生到U1保持5秒钟,最后电压降到U2下进行测量,保持30分钟

图4变压器局部放电试验的加压时间及步骤

试验前,记录所有测量电路的背景噪声水平,其值应低于规定的视在放电量的50%。

在电压升至U2及由U2再下降的过程中,应记下起始、熄灭放电电压。

在整个试验过程中,应连续观察放电波形,并按一定时间间隔记录放电量Q。放电的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。

在整个试验期间试品不发生击穿,在U2的第二阶段的30min内,所有测量端子测得的放电量Q连续地维持在允许的限值内,并无明显地,不断地向允许的限值内增长的趋势,则试品合格。

如果放电量曾超过允许限值,但之后又降并低于允许的限值。则试验应继续进行,直到此后30min的期间内局部放电量不超过允许的限值。则试品合格。

2.3变压器试验的基本接线

图5变压器局部放电试验的基本原理接线

利用变压器套管电容作为耦合电容C K,并在其末屏端子对地串接测量阻抗Zm。

2.4试验电源

试验电源一般采用50H Z的倍频或其他合适频率。

现场试验电源是采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150H Z电源,或其它形式产生的试验电源。

3、互感器的局部放电试验

3.1. 电流互感器

3.1.1电流互感器电流互感器试验接线

图6电流互感器局部放电试验接线

Ck--耦合电容器Zm--测量阻抗

L1、L2---电流互感器一次绕组端子K1、K2--电流互感器二次绕组端子

(a)测量阻抗与耦合电容串联(b)测量阻抗与二次绕组端子串联

3.1.2对电容式电流互感器

图7电容式电流互感器局部放电试验接线

Cg---电容式电流互感器末屏

3.2、电压互感器试验接线

3.2.1用自磁法试验接线:

试验电压一般可用电压互感器二次绕组自励磁产生,以杂散电容取代耦合电容。如图8(a) 以150HZ的频率作为试验电源。(三倍频)

自磁法接有耦合电容器C K采用如图8(b) 试验接线

图8电压互感器自磁法试验接线

3.2.2用外施电压的试验接线

3.3.三倍频发生器

3.4. 互感器的局部放电试验电压

四、局部放电试验的干扰及抑制

1、局部放电试验的干扰来源

1.1电源网络的干扰

局部放电试验所用电源一般都是来自低压配电网,在低压配电网中,各类

来自试验场地及其附近的大电流设备,频繁启动的设备等都对试验造成影

响。如绕线机、电焊机、起重机等。在试验设备还没有加压时,局放仪上就已经显示各种各样的干扰信号了。

1.2空间干扰

空间干扰主要有空间强电磁干扰和空间悬浮电位干扰。

当试验设备还没有加压,空间强电磁干扰信号就已经在局放仪上,有了干扰信号。它一般来自大功率信号发射塔,以及载波通讯等设备。

1.3试验回路接触不良、各部位电晕及试验设备的内部放电。

1.4接地系统的干扰

1.5金属物体悬浮电位的放电‘

2、干扰的抑制

抑制干扰的措施很多。有些干扰在变电所现场要完全消除是不可能的。实际试验时只要将干扰抑制在某一水平以下,能有效测量试品内部的局部放电就可以了。在很大程度上取决于测试者的分析能力和经验。

2.1低通滤波器

在高压试验变压器的低压侧设置低通滤波器,抑制试验供电网络中的干扰。低通滤波器的截止频率应尽可能低,并设计成能抑制来自相线、中线(220V 电源)两线路中的干扰。通常设计成π型滤波器。图10 (a)

图10 双π型滤波网络接线和屏蔽式隔离变压器

2.2屏蔽式隔离变压器

隔离变压器的输入和输出端之间只有磁的联系,没有电路连接。线路中的低频躁声就基本被隔离,并且隔离变压器目前一都是采用双屏蔽,输入端和输出端都接有电容,这样线路中的高频的噪声也基本被控制。

隔离变压器是目前最有效和最常见的抗干扰措施之一。如图10(b)

屏蔽式隔离变压器和低压电源滤波器同时使用,抑制干扰效果较好。

2.3高压滤波器

在试验变压器的高压端设置高压低通滤波器,抑制电源供电网络中的干扰。高压滤波器通常设计成T型或TT型,也可L型。它的阻塞频率应与局部放电检测仪的频带相匹配。

图11高压滤波器的接线图

(a)高压滤波器的T型接线(b) 高压滤波器的L型接线

2.4高压端部电晕放电的抑制

高压端部电晕放电的抑制,主要是选用合适的无晕环(球)及无晕导电杆作为高压连线。

2.5接地干扰的抑制

抑制试验回路接地系统的干扰,唯一的措施是在整个试验回路选择一点接地。

2.6试验回路尽量紧凑,特别是高压引线线径要足够大,并与试品垂直。2.7试品周围物品,不应产生悬浮电压,周围金属材料应接地。

2.8空间干扰的抑制

改变试验设备的摆放位置。改变试验设备的摆放方向。尽量缩短高压引线。

五、局部放电试验所需要设备

1、变压器局部放电试验所需要设备

1.1无局放变频电源:

额定容量:300KW

额定输入电压:三相380V 50赫兹

额定输出电压:单相0-----350V

额定输出电流:857A

输出频率:30----300HZ

局部放电量≤10PC

1.2无局放励磁变压器:

额定容量:300KV A

输入电压: 0---350V (低压320 .360 400 400V可串可并)

输入电流: 0---857A

输出电压: 35×2KV (高压二个绕组可串可并)

输出电流: 4.2×2A

额定频率:100HZ

工作频率:30------300HZ

局部放电量≤10PC

允许运行时间: 60min

允许温升: 在额定容量连续运行60min, 绕组温升不大于65K 1.3无局放电抗器:

额定电压: 70KV

额定电流: 7A

额定容量:490KV A

额定频率:100HZ

额定电感量:15.92H

局部放电量≤10PC

允许运行时间: 60min

品质因数: Q≥60

1.4无局放电容分压器:

额定电压: 100KV

额定电容:500PC

额定频率:30----300HZ

局部放电量≤10PC

2互感器局部放电试验所需要设备需要设备

2.1对110KV及以下互感器局部放电试验接线

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

局部放电测试仪校准装置

JFD-401 局放仪校验装置使用说明书 一、概述 按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003《局部放电测量》、JJG(机械)145 -93《局部放电检测装置》检定规程的要求,检定局放仪需用仪器有:示波器、正弦信号发生器、脉冲发生器、双脉冲发生器、频率计、电压表、电流表、电容电桥、兆欧表等。上述仪器中除脉冲发生器、双脉冲发生器外,均为常规测试仪器。而脉冲发生器要求电压覆盖范围宽,脉冲波形满足特殊规定要求;双脉冲发生器需输出脉冲时延可调的双脉冲,固均需专门研制。本校准系统的核心即为一台高性能的校准脉冲发生器和一台双脉冲发生器,校准脉冲发生器可以满足局放仪视在放电量测量线性度误差、正负脉冲响应不对称误差、开关换档误差、检测灵敏度等主要检定项目检定的要求;双脉冲发生器可以满足局放仪低重复率脉冲响应误差、脉冲分辨时间测量、脉冲频率测量、数字式局放仪等检定项目检定的要求。另配的校准回路箱提供屏蔽的校准回路,使检定时干扰水平大大降低,保证检定的顺利进行以及检定的测量精度。 二、原理和结构 JFD-401 校准系统分为四大部分:JFD-401C校准脉冲发生器、JFD-401J 积分系统、JFD-401S双脉冲发生器和JFD-401H校准回路箱。校准脉冲发生器可输出幅值大范围可调、波形符合要求的校准脉冲。双脉冲发生器可输出脉冲频率可调、两脉冲间隔脉冲时延可调、波形符合要求的校准脉冲并可进行脉冲计数、积分系统用于以积分方式检定局放仪方波发生器。校准回路箱可以调节试品电容及耦合电容,使其满足检测阻抗的调谐范围。上述四部分分别装在独立的金属机箱里,保证屏蔽效果良好。 三、技术参数 JFD-401C 校准脉冲发生器的技术指标如下: 1、校准脉冲上升时间:<60nS 2、校准脉冲电压幅值可调范围:粗调档分0db,-20db,-40db三档;细调档可从1.0V至110V无级调节;实际上可以做到从10mV至100V连续可调。 3、校准脉冲电容档:20pF,50PF,100pF,500pF,1000PF,2000PF 共六档。

局部放电试验原理

局部放电试验 第一节局部放电特性及原理 一、局部放电测试目的及意义 局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。 局部放电的种类: ①绝缘材料内部放电(固体-空穴;液体-气泡); ②表面放电; ③高压电极尖端放电。 局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。 局部放电的特点: ①放电能量很小,短时间内存在不影响电气设备的绝缘强度; ②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。 ③对绝缘系统寿命的评估分散性很大。发展时间、局放种类、产生位置、绝缘种类等有关。 ④局部放电试验属非破坏试验。不会造成绝缘损伤。 局部放电测试的目的和意义: 确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。 局部放电主要参量: ①局部放电的视在电荷q: 电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。 ②局部放电试验电压: 按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。 ③规定的局部放电量值: 在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。 ④局部放电起始电压Ui: 试品两端出现局部放电时,施加在试品两端的电压值。 ⑤局部放电熄灭电压Ui: 试品两端局部放电消失时 的电压值。(理论上比起始电 压低一半,但实际上要低很多 5%-20%甚至更低) 二、局部放电机理: 内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。等效原理图:

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

局部放电试验

局部放电测量指导书 一、适用范围 本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。 二、测量基本方法与步骤 2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。对于变压器来说,一般通过套管末屏处测量,类似并联法。 (1)并联法: 2.2试验步骤: 2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;

2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。 2.2.3试验前试品应按有关规定进行预处理: (1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。 (2)在无特殊要求情况下,试验期间试品应处于环境温度。 (3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。 2.2.4测定局放起始电压和熄灭电压 拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。 2.2.5测定局部放电量 (1)无预加电压的测量 试验时试品上的电压从较低值起逐渐增加到规定值,保持一定 时间再测量局放量,然后降低电压,切断电源。有时在电压升

局部放电测试仪的用途

局部放电测试仪的用途 高压诊断在确保昂贵设备的可靠连续运行以及为员工创造安全环境方面发挥着关键作用。高压诊断的重要任务之一是检测局部放电。使用带有一组异类传感器的特殊监视器可以检测到它们。这些设备适用于哪些目的? 一个不容忽视的问题 首先,必须对局部放电进行监控,因为这可以防止严重的问题。 局部放电(PD)通常出现在电线绝缘损坏的地方。它可能导致短路和火灾,造成破坏性的致命故障。最危险的情况是外部整体出现隔离性不良,并逐渐崩溃,导致意外的设备故障。因此,对高压设备进行连续或定期监控并及时检测局部放电非常重要。 局部放电测试仪(也称为局部放电检测系统)的功能和用途 监视局部放电的最可靠的是使用局部放电测试仪进行连续监视,定期检查。

在具有固定监视功能的网络中,局部放电测试仪可用于诊断未连接至固定传感器的网络部分以及其他监视工具。此外,便携式监视器可用于长期监视由局部放电测试仪检测到的可能的PD。此外,在高峰期以及在安装新设备之后,会在最关键的区域安装局部放电测试仪,这是对网络状态的短期评估。 局部放电测试仪可以在不同区域快速连接,而不会干扰固定监控网络,也无需停止设备

局部放电测试仪连接所有主要类型的PD传感器:电感(HFCT),电容(TEV),用于旋转机械的高压电容器(HVCC),用于检测阀中局部PD的空气声(AA)。 研究与保护 通常,局部放电测试仪可以执行两个主要任务:研究寻找损坏的绝缘材料的PD,并确保设备的安全运行。局部放电测试仪首次提供了以前只能用于昂贵且难以部署固定系统的功能。因此,现在可以识别与操作特性变化,天气状况波动以及其他因素相关的局部放电,如果使用手持仪器进行一次性诊断,这些因素可能仍然不可见。

实验 局部放电测量

实验4局部放电测量0 实验目的 了解局部放电产生的基本原理。 学习局部放电的测量方法及仪器的正确使用。 分析局部放电起始电压、视在放电量与设备绝缘质量的关系。 了解各种局部放电信号的特点。 1.局部放电的产生和实验原理 电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出 现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这 些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影 响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常 电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。 图1固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等效电路 局部放电的产生机理常用三电容模型来解释,如图1所示。 图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即: u = [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1) g 因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。 u 随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放g 电,于是C g上的电压很快从U g下降到U r,放电熄灭,则:

U = [C b/(C g+C b)]u c r 式中u c为相应的外施电压;U r为残余电压(0≤U r

局部放电测试分析仪

PDM-1506数字化局部放电测试分析仪的介绍: 局部放电现象,主要指的是高压电气设备、电力设备的绝缘在足够强的电场作用下局部范围内发生的放电。轻微的局部放电对电力设备绝缘的影响较小,绝缘强度的下降较慢;而强烈的局部放电,则会使绝缘强度很快下降使高压电力设备绝缘损坏。 成都智云测控仪器有限公司生产的PDM-1506数字化局部放电测试分析仪是对电气设备等产生的局部放电信号进行检测、记录、显示、单波分析、图谱自动识别、图谱智能学习等于一体的数字化智能设备。基于工业级平板测量仪器设计,集多种信号调理、数据采集、信号分析于一体,集成液晶触摸显示屏,可通过触摸屏直接进行操作。内置大容量锂电池,无需供电即可现场使用。 本仪器按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003、《局部放电测量》、JJG(机械)145-93《局部放电检测装置》检定规程的要求研制。设备便携、坚固,适宜于野外试验、工业现场等应用场景。配置WIFI、LAN接口,可组网应用。 特点: ★工业平板电脑的应用:工业级平板测量仪器,内置大容量锂电池,10英寸触摸屏,集成USB3.0接口、网口、外部天线,适宜于配电站现场、机房等应用场景。 ★便于携带、体积小、无现场供电干扰:传统的局部放电检测仪体积大,占用空间大,不易于携带;该发明与传统局放仪器相比,优势特点明显。 ★高性能局放信号数据采集: 通道数:1~4通道/台,各通道高速同步并行采集; 采样率:50MSps; A/D分辨率:14Bit; 输入范围:±1mV~±30V; 信号带宽:0~10MHz; 信号滤波:多阶连续信号滤波器,支持多档频率的带通滤波; ★大容量无损记录:可一次记录数百周期的局部放电信号,数据全部记录在采集设备缓存中,通过专用数据分析软件逐段浏览分析,便于对比。 ★高速实时监测:仪器支持高速实时监测显示,在较长周期的监测过程中,在无损记录的同时,设备可实时读取数据,并经过典型压缩后,进行实时传输和显示,保证用户在第一时间查阅到真实的测量信号波形。 ★典型局部放电信号单波识别分析:设备内置多种标准放电图谱库,可对局部放电信号进行单波对比识别,判断放电类型,方便维护或者维修被测电气设备。 ★智能化图谱学习系统:对于图谱库中未存在的放电类型,可智能学习并保存新图谱,为以后的实验提供分析判断依据。 应用: ★绝缘材料内部放电(固体-空穴;液体-气泡)测试分析; ★电力设备、器材表面放电测试分析; ★高压电极尖端放电测试分析;

局部放电测试仪通用技术规范

局部放电测试仪通用技术规范

本规范对应的专用技术规范目录

局部放电测试仪采购标准技术规范使用说明 1. 本采购标准技术规范分为标准技术规范通用部分、标准技术规范专用部分以及本规范使用说明。 2. 采购标准技术规范通用部分原则上不需要设备招标人(项目单位)填写,更不允许随意更改。如对其条款内容确实需要改动,项目单位应填写《项目单位通用部分条款变更表》并加盖该网、省公司招投标管理中心公章及辅助说明文件随招标计划一起提交至招标文件审查会。经标书审查同意后,对通用部分的修改形成《项目单位通用部分条款变更表》,放入专用部分,随招标文件同时发出并视为有效。 3. 采购标准技术规范专用部分分为标准技术参数、项目单位需求部分和投标人响应部分。《标准技术参数表》中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动。项目单位对“标准参数值”栏的差异部分,应填写“项目单位技术差异表”,“投标人保证值”栏应由投标人认真逐项填写。项目单位需求部分由项目单位填写,包括招标设备的工程概况和招标设备的使用条件。对扩建工程,可以提出与原工程相适应的一次、二次及土建的接口要求。投标人响应部分由投标人填写“投标人技术参数偏差表”,提供销售业绩、主要部件材料和其他要求提供的资料。 4. 投标人填写“技术参数和性能要求响应表”时,如与招标人要求有差异时,除填写“技术偏差表”外,必要时应提供相应试验报告。 5. 有关污秽、温度、海拔等需要修正的情况由项目单位提出并在专用部分的项目单位技术差异表明确表示。 6.采购标准技术规范的页面、标题等均为统一格式,不得随意更改。

目录 1总则 (1) 1.1 一般规定 (1) 1.2 投标人应提供的资格文件 (1) 1.3 工作范围和进度要求 (1) 1.4 技术资料 (1) 1.5 标准和规范 (1) 1.6 必须提交的技术数据和信息 (2) 2 性能要求 (2) 3 主要技术参数 (2) 4 外观和结构要求 (2) 5 验收及技术培训 (3) 6 技术服务 (3) 附录A 供货业绩 (4) 附录B 仪器配置表 (4)

变压器局部放电试验基础和原理-新版.pdf

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使 用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操 作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期 运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用 下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在- 定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。 这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。 通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体 周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生 电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量 的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙 上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2)

(4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC) (2)电源采用独立变压器(图4、5)

局部放电的在线监测

局部放电的在线监测 一、绝缘内部局部放电在线监测的基本方法 局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。因此针对这些现象,局部放电监测的基本方法有脉冲电流测量、超声波测量、光测量、化学测量、超高频测量以及特高频测量等方法。其中脉冲电流法放电电流脉冲信息含量丰富,可通过电流脉冲的统计特征和实测波形来判定放电的严重程度,进而运用现代分析手段了解绝缘劣化的状况及其发展趋势,对于突变信号反应也较灵敏,易于准确及时地发现故障,且易于定量,因此,脉冲电流法得到广泛应用。目前,国内不少单位研制的局部放电监测装置普遍采用这种方法来提取放电信号。该方法通过监测阻抗、接地线以及绕组中由于局部放电引起的脉冲电流,获得视在放电量。它是研究最早、应用最广泛的一种监测方法,也是国际上唯一有标准(IEC60270)的局放监测方法,所测得的信息具有可比性。图4-4为比较典型的局部放电在线监测(以变压器为例,图中CT表示电流互感器)原理框图。 图4-4 脉冲电流法监测变压器局部放电原理框图 随着技术的发展,针对不同的监测对象,近年来发展了多种局部放电在线监测方法。如光测量、超高频测量以及特高频测量法等。利用光电监测技术,通过光电探测器接收的来自放电源的光脉冲信号,然后转为电信号,再放大处理。不同类型放电产生的光波波长不同,小电晕光波长≤400nm呈紫色,大部为紫外线;强火花放电光波长自<400nm扩展至>700nm,呈桔红色,大部为可见光,固体、介质表面放电光谱与放电区域的气体组成、固体材料的性质、表面状态及电极材料等有关。这样就可以实现局部放电的在线监测。同样,由于脉冲放电是一种较高频率的重复放电,这种放电将产生辐射电磁波,根据这一原理,可以采用超高频或特高频测量法监测辐射电磁波来实现局部放电在线监测。 日本H.KAwada等人较早实现了对电力变压器PD的声电联合监测(见图4-5)。由于被测信号很弱而变电所现场又具有多种的电磁干扰源,使用同轴电缆传递信号会接受多种干扰,其中之一是电缆的接地屏蔽层会受到复杂的地中电流的干扰,因此传递各路信号用的是光纤。通过电容式高压套管末屏的接地线、变压器中性点接地线和外壳接地线上所套装的带铁氧体(高频磁)磁心的罗戈夫斯基线圈供给PD脉冲电流信号。通过装置在变压器外壳不同位置的超声压力传感器,接受由PD源产生的压力信号,并由此转变成电信号。在自动监测器中设置光信号发生器,并向图中所示的CD及各个MC发出光信号。最常用的是,用PD 所产生的脉冲电流来触发监测器,在监测器被触发之后,才能监测到各超声传感器的超声压力波信号。后由其中的光信号接收器接收各个声、电信号。 综合分析各个传感器信号的幅值和时延,可以初步判断变压器内部PD源的位置。如果

局部放电检测仪

PDV5局部放电检测仪

目录 PDV 5 (1) 1 产品概述 (3) 2 检测原理 (4) 3 仪器操作 (4) 4传感器操作 (5) 5仪器的功能 (6) 5.1 频谱扫描 (7) 5.2 启/停测量 (7) 5.3结果显示 (7) 5.4放电类型识别 (8) 5.5抗干扰 (8) 5.5.1 主要干扰类型 (9) 5.5.2 仪器对干扰的抑制 (9) 5.6 数据回读浏览 (9) 5.7 自动更新 (10) 5.8 数据导出 (10) 5.9 帮助 (10) 6使用条件 (10) 7性能指标 (10) 8现场测量方法与注意事项 (11) 附录A GIS 局部放电的典型图谱 (14) 附录B 干扰信号的典型图谱 (15) 附录C 检测数据的要求 (16) 附录D 术语和定义 (16)

1 产品概述 局部放电测量有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。 为此,我们精心设计了PDV5局部放电检测仪,专门用于定量检测GIS等电力变电设备内部的局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。 PDV5局部放电检测仪采用目前流行的超高频和超声波检测局部放电的方法,通过外置的UHF天线接收GIS内部局部放电辐射和产生的超高频和超声波信号,能有效检测到设备内部产生的微弱局部放电信号。PDV5在使用上以超高频为主要检测方法,超声波为辅助检测手段。 PDV5具有如下特点: ①单通道设计,可以选择接入超高频传感器或者超声波传感器。 ②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。 ③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。 ④在检测过程中自动实时进行局部放电智能化诊断,并且将判断结论显示在仪器界面上,帮助现场工作人员分析局部放电类型。 ⑤具备连续检测和存储数据的能力,数据能通过外插U盘的方式导出。 ⑥在检测过程中实时显示放电幅度趋势图,Q-N-Φ图(PRPD), 特征棒图,有经验的现场分析人员可以清楚的观测到设备内部产生的局部放电的时域和相域的特征,从而判断局部放电严重程度和类型。

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

局部放电测量

局部放电测量 随着电力设备故障诊断技术的发展,人们发现电气设备的许多故障和事故与局部放电有关,因此对局部放电的测量越来越重视,在《交接规程》和《预试规程》中列为试验项目。 一、局部放电的基本概念: 1、什麽是局部放电 局部放电是指电气设备在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现象。 以变压器为例:变压器绝缘结构复杂,内部发生局部放电的原因很多,如果设计不当,局部场强过高,工艺上有缺陷使绝缘中含有气泡,在运行中油质劣化分解出气泡,机械振动和热胀冷缩造成局部开裂出现气泡。在这些情况下,在外施电压下都会发生局部放电。一旦发生局部放电,放电就会持续发展,造成绝缘老化,严重的会造成绝缘击穿。 2、视在放电量: 是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压的变化量相同。此时注入的电荷量称为局部放电的视在放电量。以皮库(PC)表示。 3、局部放电起始电压 是指试验电压从不产生局部放电的较低电压逐渐增加,能观察到试品开始出现局部放电时,试品两端施加的最低电压称局部放电起始电压 4、局部放电熄灭电压

试品发生局部放电后,在逐渐降低外施电压的过程中,试验装置尚能观察到局部放电时,试品两端施加的最低电压称局部放电熄灭电压。(外施电压在降低就观察不到局部放电了) 5、局部放电的几种检测方法 1、电荷法测量局部放电 常规的电荷法局部放电测量,是通过放电量的变化发现缺陷。 2、高频法测量局部放电 用产生的高频信号达到发现缺陷的目的。测量频率在40MHZ---300MHZ。 3、振动法测量局部放电 通过放置在外壳上的传感器接受放电产生的振动脉冲打到检测放电故障的目的 4、声测法测量局部放电 测量原理与振动法相似,通过放置在外壳上的声传感器接受放电产生的超声信号,达到发现缺陷的目的。 5、测分解物法 在局部放电作用下。可能有分解物或生成物出现,可以用色谱及光谱分析来确定各种分解物或生成物,从而判断局部放电的程度。 二、局部放电的试验回路和测量仪器 1、局部放电试验基本回路

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

TCD-9302局部放电测试仪

TCD-9302 局部放电测试仪 使 用 说 明 书

上海苏特电气有限公司 TCD-9302局部放电测试仪 技术使用说明书 一、概述 TCD-9302局部放电测试仪是我厂研制开发生产的一种新型仪器。它基本上保持了原有局部放电检测仪的优点和功能,并致力于缩小仪器体积、重量、使之成为名符其实的携带式仪器。该仪器是根据IEC(270)标准,利用脉冲电流法原理研制而成,并满足GB-7354-2004、GB-1207-97、GB-1208-97中关于局部放电测试对测试仪器规定的技术要求。该仪器具有灵敏度高、放大器系统动态范围大、测试的试品范围广、操作简便等优点。并采用先进的抗干扰组件和独特的门显示电路,抗干扰能力强,并具有四种高频椭圆扫描,适用于高压产品的型式、出厂试验,新产品研制试验,电机、互感器、电缆、套管、电容器、变压器、避雷器、开关及其它高压电器局部放电的定量测试。可供制造厂、科研部门、电力部门现场使用。 二、名词、术语 1.局部放电

局部放电是指在绝缘的局部位置放电,它并不构成整个绝缘的贯通性击穿。它包含三种放电形式:内部放电(在介质内部)、沿面放电(在介质表面)、电晕放电(在电极尖端)。 2.电荷量q 在试品两端瞬时注入一定电荷量,使试品端电压的变化和由局部放电本身引起的端电压的变化相同,此注入量即为局部放电的视在电荷量。 3.视在放电量校准器 视在放电量校准器是一标准电量发生器,试验前它以输出某固定电量加之试品两端,模拟该试品在此电量下放电时局部放电测试仪的响应,此时调整刻度系数,确定局部放电检测仪的量程,以便在试验时测量该试品在额定电压下的视在放电量。因该放电量时以标准电量发生器比较后间接测出,而非直接测出,故此放电量称为“视在放电量”。 校正电量发生器是测量局部放电时必备的仪器,它的性能参数直接关系到测试结果的准确性。 视在放电量校准器由校准脉冲电压发生器和校准电容串联组成,其参数主要包括:脉冲波形上升时间、衰减时间、内阻、脉冲峰值、校准电容值等。 校准脉冲电压发生器电压波形上升时间为从0.1U0到0.9U0的时间,衰减时间定义为从峰值下降到0.1U0的时间。 4.检测阻抗 检测阻抗是拾取检测信号的装置,在使用中,应根据不同的测试目的,被试品的种类来选择合适的检测阻抗,以提高局部放电测量的灵敏度、分辨能力、波形特性及信噪比。 检测阻抗按调谐电容范围分1~12号。(见表1)

(完整word版)局部放电测量市场调查

中国电力高压设备局部放电检测监测市场发展机会分析 局部放电检测、监测技术在国外发展较早,特别是在欧美和日本等发达地区已经有了几十年的应用和实践经验。检测设备比较成熟,价格相对较高,销售对象主要是省级电力试验研究院和电力公司。目前国内也已有多家研究机构和电力设备厂商开发出了局部放电在线检测设备,但大多是借鉴和模仿国外的产品,在产品实用性和测试结果判断方面还缺乏一定的实践经验。价格较低,在市局级及区级电力部门有比较大的市场空间。局部放电监测技术目前在国内还不成熟,主导产品仍是代理国外的产品,广泛用于电缆、变压器、GIS、开关柜等电气设备。许多国内代理商,自上个世纪末期率先将状态监测类产品引入国内,经过多年的努力,逐步建立起该类产品良好的市场信誉,积累起丰富的工程经验,并逐渐明确监测产品和技术的发展方向。局部放电检测、监测设备是维护电力系统输变电设备安全稳定运行的重要保障,随着国家坚强智能电网建设的全面开展,输变电设备的安全监控力度的加强,该行业将面临前所未有的机遇,未来的市场需求将进一步加大。 电力高压设备的状态检测、监测技术分为多种,如气体分析,局部放电、红外成像等,不同厂家主打不同技术路线,如采用气体分析技术的思源电气股份有限公司、中能电力科技开发有限公司;采用局部放电技术的厦门红相电力设备股份有限公司、西安金源电气有限公司;采用红外成像技术的宁波理工监测科技股份有限公司等。按照应用分类来看,GIS、电缆、变电器等状态检测监测设备的厂家相对较多,产品有代理国外的也有自主研发的,而开关柜状态检测监测设备的市场竞争相对集中,厦门红相电力设备股份有限公司是该类设备的主要供货商,占有市场的较大销售份额。 中国电力高压设备状态检测、监测技术还相对落后,设备性能不佳,高端设备多为国外进口产品,因此在市场上占有较大份额的为国内公司代理的国外先进产品。国内企业自主研发的产品正逐步成熟和完善,未来国产化的产品会逐步占领市场。 局部放电检测、检测市场发展处于起步阶段,但未来市场空间巨大 目前该市场的发展尚处于起步阶段,但随着状态检测、监测技术的快速发展,在未来几年里,该市场规模将迅速扩大。下图为2004-2008年中国电力高压设备局部放电检测、监测设备的市场销售总额,可以看出近年来中国电力高压设备局部放电检测、监测设备市场规模保持稳定增长。到2008年,市场销售总额达到了2亿多。 图1 2004-2008年中国电力高压设备检测、监测设备市场规模(单位:万元) 数据来源:赛迪顾问2009,09 (1)开关柜检测、监测设备 开关柜检测监测设备市场集中度较高,产品主要为国外进口设备,国内厂家代理,如英国EA公司的局放检测监测设备在国内占有较大市场份额。国内主要厂家是厦门红相电力设备股份有限公司、上海亚卡黎实业有限公司、北京埃德尔黛威新技术有限公司等。总体来看,

第4章-局部放电测量的基本原理

第4章 局部放电测量的基本原理 脉冲电流法的基本原理可用图4.1所示电路阐述:当试品C X 产生一次局部放电时,脉冲电流经过耦合电容C k 在检测阻抗两端产生一个瞬时的电压变化,即脉冲电压 U ,脉冲电压经传输、放大和显示等处理,可以测量局部放电的基本参量。脉冲电流法是对局部放电频谱中的较低频段(一般为数千赫兹至数百千赫兹或至多数兆赫兹,局部放电信号能量主要集中在该段频带内)成分进行测量,以避免无线电干扰。传统的测量仪器一般配有脉冲峰值表指示脉冲峰值,并有示波管显示脉冲大小、个数和相位。放大器增益很大,其测试灵敏度相当高,而且可以用已知电荷量的脉冲注入校正定量,从而测出放电量q 。 图4.1 脉冲电流法基本原理示意图 4.1 脉冲电流法的基本测量线路 (a)并联法测量回路 (b )串联法测量回路 (c )平衡法测量回路 图4.2 脉冲电流法的基本试验测量线路示意图 脉冲电流法的基本试验测量线路有三种,如图4.2所示,其中图4.1(a )、(b)统称为直接法测量回路,(c )称为平衡法测量回路。每种测量回路应包括以下基本部分: (1)试验电压u ; (2)检测阻抗Zd ,将局部放电产生的脉冲电流转化为脉冲电压; (3)耦合电容C k ,与试品C x 构成使脉冲电流流通回路,并具有隔离工频高电压直接加在检测阻 抗上Z d 的作用; (4)高压滤波器Zm ,一方面阻塞放电电流进入试验变压器,另一方面抑制从高压电源进入的 谐波干扰。 (5)测量及显示检测阻抗输出电压的装置M 。 e

并联法多用于试品电容较大或试品有可能被击穿的情况下,过大的工频电流不会流入检测阻抗Z d而将Zd烧损并在测试仪器上出现过电压的危险。另外,某些试品在正常测量中无法与地分开,只能采用并联法测量线路。 串联法多用于试品电容较小情况下,耦合电容具有滤波作用,能够抑制外部干扰,而且测量灵敏度随C k /C x 的增大而提高。在相同的条件下,串联法比并联法具有更高的灵敏度,这是因为高压引线的杂散电容及试验变压器入口电容(无电源滤波器时)也被利用充当耦合电容。另外,C k 可利用高压引线杂散电容来充当,线路更简单,可以避免过多的高压引线以降低电晕干扰,在220kV 及更高电压等级的产品试验中多被采用。 平衡法需要两个相似的试品,其中一个充当耦合电容。它是利用电桥平衡的原理将外来的干扰消除掉,因而抗干扰能力强。电桥平衡的条件与频率有关,只有当C x 1与Cx 2的电容量和介质损失角δtg 完全相等,才有可能完全平衡消除掉各种频率的外来干扰;否则,只能消除掉某一固定频率的干扰。在实际测量中,试品电容的变化范围很大,若要找到与每个试品有相同条件的电容是困难的。因而,往往采用两个同类试品作为电桥的两个高压臂以满足平衡条件。 4.2 检测阻抗 检测阻抗,也称为输入单元,其主要作用是取得局部放电所产生的高频脉冲电流信号,并对试验电源的工频及其谐波低频信号则予以抑制。检测阻抗是连接试品与仪器主体部分的关键部件,对仪器的频率特性与灵敏度有直接关系。检测阻抗可分为RC 型及LCR 型两大类,如图 4.3所示,图中电容C d主要由至仪器主体连接电缆的电容、放大器输人电容等组成。 4.2.1 RC 型检测阻抗 图4.3表示接有RC 型检测阻抗时的等效局部放电检测电路。当试品C x 产生局部放电时,视在放电量为q ,C x 两端会产生一个脉冲电压u ?,理想情况下u ?是一个直角脉冲波,但在实际情况中u ?具有一定的上升时间并具有以下的形式 )1(t m f e U u α--=? (4.1) 式中脉冲电压幅值)]/(/[d k d k x m C C C C C q U ++=,f α为放电衰减常数。 对于理想情况,在放电瞬间,电荷q 引起的C k 和C d 上响应的脉冲电压可认为按电容反比例分配,则C d 上的脉冲电压幅值为 图4.3 检测阻抗 图4.4 接RC 检测阻抗的测试回路

相关主题
文本预览