当前位置:文档之家› 天体运动:不同轨道上天体运动速度比较

天体运动:不同轨道上天体运动速度比较

天体运动:不同轨道上天体运动速度比较
天体运动:不同轨道上天体运动速度比较

天体运动:不同轨道上天体运动速度的比较

方法一:离心运动要加速,向心运动要减速。

方法二:天体运行规律:半径r越大,周期T越大,线速度V越小,角速度ω越小。

方法三:周期或者角速度相同,则有V=ωr,r越大,v越大。

1.如图所示,从地面上A点发射一枚远程弹道导弹,在引力作用下,沿ACB椭圆轨

道飞行击中地面目标B,C为轨道的远地点,距地面高度为h。已知地球半径为R,

地球质量为M,引力常量为G,设距地面高度为h的圆轨道上卫星运动周期为T o。

下列结论正确的是()

A.导弹在C点的速度大于

B.导弹在C点的加速度等于

C.距离地面高度为h的圆轨道上卫星在c点引力等于导弹沿ACB在C点的引力

D导弹从A点运动到B点的时间一定小于T0

2. (多选)(2015·黄安模拟)如图所示,a为地球赤道上的物体,b为沿地球表面附近做匀速

圆周运动的人造卫星,c为地球同步卫星.关于a、b、c做匀速圆周运动的说法中正确的是( )

A.地球对b、c两星的万有引力提供了向心力,因此只有a受重力、b、c两星不受重力

B.周期关系为T a=T c>T b

C.线速度的大小关系为v a<v c<v b

D.向心加速度的大小关系为a a>a b>a c

3.(多选)如图所示,在“嫦娥”探月工程中,设月球半径为R,月球表面的重力加速度为g0.飞船在半径为4R的圆形轨道Ⅰ上运动,到达轨道的A点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B时,再次点火进入近月轨道Ⅲ绕月做圆周运

动,则( )

A.飞船在轨道Ⅲ的运行速率大于g0R

B.飞船在轨道Ⅰ上运行速率小于在轨道Ⅱ上B处的速率

C.飞船在轨道Ⅰ上的重力加速度小于在轨道Ⅱ上B处重力加速

D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比为4∶1

4.(单选)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其它条件都不变,则未来与现在相比( )

A.地球的第一宇宙速度变小 B.地球赤道处的重力加速度变小

C.地球同步卫星距地面的高度变小 D.地球同步卫星的线速度变小

5. (单选)双星系统是指由两颗彼此靠得很近的星体组成的系统,通过哈勃太空望远镜拍摄

到的天狼星和天狼星是一个双星系统,它们在彼此间的万有引力作用下绕重心

连线上的某点做匀速圆周运动,天狼星 的质量是天狼星 的 倍,其中 ,

则下列结论正确的是( )

A.天狼星 和天狼星 的角速度大小之比为

B.天狼星 和天狼星 的线速度大小之比为

C.天狼星 和天狼星 的加速度大小之比为

D.天狼星 和天狼星 的公共圆心不在质心连线上

天体运动追及相遇问题

方法:角速度大比角速度小的多跑一圈

6(多选).水星或金星运行到地球和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星凌日”.已知地球的公转周期为365天,若将水星、金星和地球的公转轨道视为同一平面内的圆轨道,理论计算得到水星相邻两次凌日的时间间隔为116天,金星相邻两次凌日的时间间隔为584天,则下列判断合理的是( )

A.地球的公转周期大约是水星的2倍

B.地球的公转周期大约是金星的1.6倍

C.金星的轨道半径大约是水星的3倍

D.实际上水星、金星和地球的公转轨道平面存在一定的夹角,所以水星或金星相邻两次凌日的实际时间间隔均大于题干所给数据

7.(多选)(2014·全国卷新课标Ⅰ·19)太阳系各行星几乎在同一平面内沿同一方向绕太阳

做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示.则下列判断正确的是( )

A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 8.(单选)某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为( )

9.如图所示,是地球的同步卫星。另一卫星

的圆形轨道位于赤道平面内,离地面高度为,已知地球半径为,地球自转角速度为

,地球表面的重力

加速度为,

为地球中心。(

1

)求卫星的运行周期;(2)若卫星绕行方向与地球自转方向相同,某时刻

、两卫星相距最近(

、在同一直线上),则至少经过多长时间,他们再一次相距最近?

答案

1.答案BD

C.质量未知,故引力不相等

2.

3. 飞船在轨道Ⅲ上运行时的速率设为v ,由mg 0=m v 2

R

,得v =g 0R ,选项A 错误;设飞船在轨道Ⅰ、Ⅲ

上运行速率分别为v 1、v 3,由G

mM R 2=m v 214R 和G mM R 2=m v 23

R ,解得v 1=GM

4R 和v 3=GM

R

,可见v 3>v 1;设轨道Ⅱ上的B 点速度为v B ,飞船在B 点由轨道Ⅲ变轨到轨道Ⅱ为离心运动,则G mM R <m v 2

B

R

,即v B >

GM R

,则v B >v 3>v 1,选项B 正确;由mg =G mM

r

2,得g =

GM

r 2,由r A >r B ,则g A <g B ,选项C 正确;由G mM R

2

m ??

?

?2πT 1

2

×4R 和G mM R

2=m ??

??2πT 3

2

R ,解得T 1

∶T 3

=8∶1,选项D 错误.

4.试题分析:同步卫星的周期等于地球的自转周期,根据万有引力定律和牛顿第二定律

可知,同步卫星的周期越大,轨道半径越大,所以地球自转变

慢后,同步卫星需要在更高的轨道上运行,而此时万有引力减小,线速度减小, C 、错误,D 正确。由于地球的质量,半径均不变,故地球表面的万有引力不变,加速度,第一宇宙速度均不变,A ,B 错误。 5.双星系统由彼此之间的万有引力提供各自圆周运动的向心力,二者角速度大小之比为 ,A 错;二

者的向心力大小之比为

,D 错;由牛顿第二定律知二者的加速度大小之比为

,C 错;根据

,B 对。

6.解析 水星相邻两次凌日的时间间隔为t =116天,设水星的周期为T 1,则有:,代入数

据解得T 1≈88天,可知地球公转周期大约是水星的4倍,故A 错误;金星相邻两次凌日的时间间隔为

584天,设金星的周期为T 3,则有:=2π,代入数据解得T 3≈225天,可知地球的公转

周期大约是金星的1.6倍,故B 正确;

根据G Mm r 2=mr (2πT )2

,得r = 3GMT 2

2,因为水星的公转周期大约是金星的0.4倍,

则水星的轨道半径大约是金星的0.5倍,故C 错误;由所给资料,若运行轨道平面不存在夹角,那么行星凌日间隔时间会与理论时间一致,而实际与理论不同,故运行轨道平面必然存在夹角,故D 正确.

7解析: 本题以“行星冲日”为背景考查了圆周运动的相遇问题.由题意可知地球的轨道半径r 地=1.0

周期T 地=1年.AU ,公转周期T 地=1年.由开普勒第三定律r 3

T 2=k 可知T 行=

???

?r 行r 地

3·T 地

=r 3行年,根

转过的角度之差Δθ=2n π及ω=

Δθ

t

可知相邻冲日时间间隔为t ,则??

?

?2πT 地-2πT 行t =2π,即t =

T 行T T 行-又T 火= 1.53年,T 木= 5.23年,T 土=9.53年,T 天=193年,T 海=303年,代入上式得t >1年,故选项木星冲日时间间隔t 木= 5.23

5.23-1

年<2年,所以选项B 正确;由以上公式计算t 土≠2t 天,t 海最小,选项2πT 1t -2π

T 2t =2π

2πT 3t -2πT 2t

项D正确.

8.

9.A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1

看,在相同时间内,A比B多转了π。所以再次相距最近的时间t1,由;第一次相距最远的时间t2,由。

8.

9.分析与解答:A、B两颗行星做匀速圆周运动,由万有引力提供向心力

,因此T1

t1,由;第一次相距最远的时间t2,由

。如果在问题中把“再次”或“第一次”这样的

词去掉,那么结果如何?

超失重问题1.某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为时,

求此时卫星距地球表面有多远?(地球半径,取)例:

分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于

在地面的实际重力。

解:如图,设此时火箭离地球表面的高度为,火箭上物体对支持物的压力为,物体受到的重力为

根据超、失重观点有

可得

而由可知:

所以

说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。

既掌握基本问题的处理方法,又熟悉“另类”问题的分析要点,这样在面对天体运动问题时才能应付自如

分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。

解:如图,设此时火箭离地球表面的高度为,火箭上物体对支持物的压力为,物体受到的重力为

根据超、失重观点有

可得

而由可知:

所以

说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全

(完整word版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中陈庆威2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。 根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。 一、追及问题 【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力 ,因此T1

果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了 π。所以再次相距最近的时间t 1,由;第一次相 距最远的时间t 2,由。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。地球的轨道半径为R ,运转周期为T 。地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间? 解析:由题意可得行星的轨道半径θsin R r = 设行星绕太阳的运行周期为T /,由开普勒大三定律有: 23 23T r T R ' =,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球 θ θπππω33sin )sin 1(222T T T -=-'=? 某时刻该行星正好处于最佳观察期,有两种情况:一是 刚看到;二是马上看不到,如图3所示。到下一次处于最佳观察期至少需经历时间分别为 两者都顺时针运转:T t ?--=?-= ) sin 1(2sin )2(2331θπθ θπωθπ 两者都逆时针运转: T t ?-+=?+= )sin 1(2sin )2(2332θπθ θπωθπ 二、相遇问题 【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止 开始从P 点沿PD 方向做加速度为a 的匀加速直线运动,1年后在D 点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图4所示(图中“S ”表示太阳)。根据以上条件,求地球与太阳之间的万有引力大小。 视角 太阳 行星 图2 太阳 行星 地球 图3 θ θ

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

高三物理第二轮复习圆周运动和天体运动专题练习

高三物理第二轮复习圆周运动和天体运动专题练习 班级姓名座号 1.自行车和人的总质量为m,在一水平地面运动,若自行车以速度v转过半径为R的弯道,自行车的倾角应多大?自行车所受地面的摩擦力多大? 2.(14分)一颗在赤道上空运行的人造卫星,其轨道半径为r=2R (R为地球半径),卫星的运动方向与地球自转方向相同。已知地球自转的角速度为ω,地球表面处的重力加速度为g。 (1)求人造卫星绕地球转动的角速度。 (2)若某时刻卫星通过赤道上某建筑物的正上方,求它下次通过该建筑物上方需要的时间。 3.如图所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的 17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重 力加速度)

4.(14分)2005年10月17日凌晨4时33分,“神六”返回舱缓缓降落在内蒙古四子王旗主着陆场,意味着我国首次真正意义上有人参与的空间飞行试验取得圆满成功,标志着中国航天迈入新阶段。两位宇航员在离地高度为h的圆轨道运行了t时间,请问在这段时间内“神六”绕地球多少圈?已知地球半径为R,地球表面重力加速度为g。 5.(18分)宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部最低点静止放置一质量为m的小球(可视为质点)如图所示,当施加给小球一瞬间水平冲量I时,刚好能使小球在竖直面内做完整的圆周运动.已知圆弧轨道半径为r,月球的 半径为R,万有引力常量为G. (1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大? (2)轨道半径为2R的环月卫星周期为多大? 6.人类选择登陆火星的时间在6万年以来火星距地球最近的一次,这时火星与地球之间的距离仅有5.58×107km。登陆前火星车在距火星表面H高处绕火星做匀速圆周运动,绕行n圈的时间为t,已知火星半径为R,真空中的光速为c=3.00×108m/s。 求: (1)火星车登陆后不断向地球发送所拍摄的照片,照片由火星传送到地球需要多长时间? (2)若假设地球、火星绕太阳公转均为匀速圆周运动,其周期分别为T地和T火,试证明:T地

天体运动模型

常见的天体运动模型 天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解四个基本模型是关键。 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 一、自转模型 1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力 由于地球的自转,因而地球表面的物体随地球自转时需 要向心力,向心力必来源于地球对物体的万有引力,重力实际 上是万有引力的一个分力,由于纬度的变化,物体作圆周运动 的向心力也不断变化,因而地球表面的物体重力将随纬度的变 化而变化,即重力加速度的值g 随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处, 。 2.忽略地球(星球)自转影响,则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力. 在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M ,半径为R ,其表面的重力加速度为g ,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加速度g 与的相互替代,因此称为“黄金代换”。 二、环绕模型 环绕模型的基本思路是:①把天体、卫星的环绕运动近似看 做是匀速圆周运动;②万有引力提供天体、卫星做圆周运动的向 心力:G Mm r 2=m v 2r =m ω2r =m ? ?? ??2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引 力等于重力:由G Mm R 2=mg 可得天体质量M =R 2g G ,这往往是题目中重要的隐含条件。 三、变轨模型 若卫星所受万有引力等于做匀速圆周运动的向心力,将 保持匀速圆周运动;当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力就不再等于 向心力,卫星将做变轨运行。①当v 增大时,所需向心力增 大,即万有引力不足以提供向心力,卫星将做离心运动,脱 离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道 运行,由v =r GM 知其运行速度要减小,但重力势能、

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

天体运动中的双星问题

天体运动中的双星问题 1.我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察 测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此 可求出S2的质量为 C. D. 2.经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期 相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可 知 A.m1︰m2做圆周运动的角速度之比为2︰3 B.m1︰m2做圆周运动的线速度之比为3︰2 C.m1做圆周运动的半径为 D.m 2做圆周运动的半径为 3.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球 绕O点运动的线速度大小之比约为 A 1∶6400 B 1∶80 C 80∶1 D 6400∶1 8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线 上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的 A C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍 11.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O 的两侧。引力常数为G。 求两星球做圆周运动的周期; 1、设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,

天体运动_规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有 其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提供向心力了。在不是赤道和极地的位置,万有引力是指向球心的,而所需要的向心力指向圆心(并不重合),所以我们说重力是竖直向下的,而不能说重力也是指向球心的。考虑实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2,所以有时候可以忽略不计。但是在有些自转比较快的星球上,这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中 陈庆威 2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。 根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。 而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。 、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π; 如 解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没

果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了 距最远的时间 t 2,由 。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。 地球的轨道半径为 R ,运转周期为 T 。地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。 若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题 【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从 P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件, 求地球与太阳之间的万有引力大小。 π。所以再次相距最近的时间 太阳 R 3 T 2 3 T r 2 ,得:T T sin 3 绕向相同, 行星的角速度比地球大,行星相对地球 2 2 (1 sin 3 ) 行星 视角 地球 图2 T T sin 3 某时刻该行星正好处于 最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。 观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳 两者都顺时针运转: t 1 2 ) sin 3 ?T 3 2 (1 sin 3 ) 两者都逆时针运转: t 2 ( 2 ) sin 3 ?T 2 (1 sin 3 ) 太阳 行星 θθ 地球 图3 t 1, ;第一次相

天体运动中的几个“特殊”问题

天体运动专题讲座: 天体运动中的几个“特殊”问题 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测量中 卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示 卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,,D.,, 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为 和,试计算:(1)双星的轨道半径;(2)双星的运行周期; (3)双星的线速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终 与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相 等。但两者做匀速圆周运动的半径不相等。

三、追及问题 例:两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,卫星离地面的 高度等于,卫星离地面高度为,则: (1)、两卫星运行周期之比是多少? (2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多 少个周期与相距最远? 分析:两卫星周期之比可按基本思路处理;要求与相距最远的最少时间,其实是一个追 及和相遇问题,可借用直线运动部分追及和相遇问题的处理思想,只不过,关键一步应该变换成“利用角位移关系列方程”。或直接将角位移关系转化成转动圈数关系,运算过程更简洁。 四、超失重问题 例:某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为时,求此时卫星距地球表面有多远?(地球半径,取) 分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。 说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。 既掌握基本问题的处理方法,又熟悉“特殊”问题的分析要点,这样在面对天体运动问题时才能应付自如。

天体运动中重要的模型:公转、自转、天体的追及相遇问题

【例1】 火星的半径约为地球半径的一半,火星的质量约为地球质量的1/9。地球上质量为50kg的人,如果到火星去,他的质量和重力分别是( ) A.50kg 500N B.50kg 222N C.25kg 500N D.25kg 222N 【例2】 月球质量是地球质量的1/81,月球的半径是地球半径的1/4。月球上空高500m处有一质量为60kg的物体自由下落。它落到月球表面所需要的时间是多少? 【例3】 宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星∶R地=1∶4,地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,空气阻力不计。则( ) A.g′∶g=5∶1 B.g′∶g=5∶2 C.M星∶M地=1∶20 D.M星∶M地=1∶80 【例4】 一位善于思考的同学,为探月宇航员估算环绕月球做匀速圆周运动的卫星的最小周期想出了一种方法:在月球表面以初速度v0竖直上抛一个物体,若物体只受月球引力作用,忽略其他力的影响,物体上升的最大高度为h,已知该月球的直径为d,卫星绕月球做圆周运动的最小周期为( ) A B C D

【例5】 某一颗星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体, 水平射程为60m ,如果在该星球上,从相同高度以相同的初速度平抛同一物体,那么其水平射程应为 ( ) A .10m B .15m C .90m D .360m 【例6】 火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ) A .0.2g B .0.4 g C .2.5g D .5g 【例7】 万有引力定律和库仑定律都遵循平方反比律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比。例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F /q ,在引力场中可以有一个类似的物理量来反映各点引力场的强弱,设地球质量为M ,半径为R ,地球表面处的重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( ) A .2M G R B .2g C .2(2)Mm G R D . 4g 三颗卫星 【例8】 已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。则以下结论正确的是( ) A . 23v v = B . 231 7 v v = C . 131 7 a a = D . 13491 a a = 【例9】 如图所示,a 为地球赤道上的物体;b 为沿地球表面附近做匀速圆周运动的人造卫星;c 为地球同步卫星。关于a 、b 、c 做匀速圆周运动的说法中正确的是( ) A .角速度的大小关系为a c b ωωω=> B .向心加速度的大小关系为a b c a a a >> C .线速度的大小关系为a b c v v v => D .周期关系为a c b T T T => 同步卫星

天体运动相关问题处理

天体运动 开普勒行星运动三定律 引力势能 机械能守恒定律 动量守恒 1.根据行星绕日做椭圆运动(开普勒第一定律)的面积速度为恒量(开普勒第二定律),试证明各行星绕日 运行的周期T 与椭圆轨道的半长轴a 之间的关系为C T a =23 (开普勒第三定律),并求出常量C 的表达式。 2.要发射一颗人造地球卫星,使它在半径为2r 的预定轨道上绕地球做匀速圆 周运动,为此先将卫星发射到半径为1r 的近地暂行轨道上绕地球做匀速圆周运动,如图所示,在A 点,实际上使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B 时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A 点到达B 点所需的 时间,设万有引力恒量为G ,地球质量为M 。 3.质量为m 的飞船在半径为R 的某行星表面上空高R 处绕行星作圆周运动,飞船在A 点短时间向前喷气,使飞船与行星表面相切地到达B 点,如图所示。设喷气相对飞船的速度大小 为Rg u =,其中g 为该行星表面处的重力加速度。(1)试求飞船在A 点短时 间喷气后的速度;(2)求所喷燃料(即气体)的质量。

4.天文学家在16世纪就观测到了哈雷彗星,天文资料显示:哈雷彗星的近日距为0.59天文单位,远日距为3 5.31天文单位(1天文单位 = 地日距离R ,),地球公转速率为km/s 30。试根据以上资料求: (1)哈雷彗星的回归周期为多少年; (2)哈雷彗星的最大速率v 是多少。 5.卫星沿圆周轨道绕地球运行,轨道半径R r 3=,其中地球半径km 6400=R 。由于制动装置短时间作用,卫星的速度减慢,使它开始沿着与地球表面相切的椭圆轨道运动,如图所示。问:制动后经过多少时间卫星落回到地球上? 6.宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R ,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的a 倍,因a 量很小,所以飞船新轨道不会与火星表面交会,如图所示,飞船喷气质量可忽略不计。 (1)试求飞船新轨道的近火星点的高度近h 和远火星点高度远h ; (2)设飞船原来的运动速度为0v ,试计算新轨道的运行周期T 。 7.地球m 绕太阳M (固定)做椭圆运动,已知轨道半长轴为a ,半短轴 为b ,如图所示,试求地球在椭圆各顶点1,2,3的运动速度的大小及其曲 率半径。

自主招生培训——圆周运动与天体运动

万有引力定律和天体运动 1,证明:一个质量分布均匀的球壳对球体内任一质点的万有引力为零。 2,2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 (A)在轨道Ⅱ上经过A的速度小于经过B的速度 (B)在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 (C)在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 (D)在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度 3,我国于2007年10月24日成功发射了“嫦娥一号”探月卫星, 卫星由地面发射后,由发射轨道进入停泊轨道,然后再由停泊轨道调速后进入地月转移轨道,再次调速后进入工作轨道,开始绕月做匀速圆周运动,对月球进行探测,其奔月路线简化后如图所示。 ?卫星从停泊轨道进入地月转移轨道时速度应增加还是减小? ?若月球半径为R,卫星工作轨道距月球表面高度为H。月球表面 的重力加速度为(g为地球表面的重力加速度),试求:卫星在 工作轨道上运行的线速度和周期。 ?速度应增加(2分) ?由向心力公式得:(2分)

得:(2分) 由周期公式得:T==(2分) 4,天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G) 设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为 w1,w2。根据题意有 w1=w2 ① r1+r2=r ② 根据万有引力定律和牛顿定律,有 ③ ④ 联立以上各式解得 ⑤ 根据角速度与周期的关系知 ⑥ 联立③⑤⑥式解得

天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。 例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球 的引力作用而产生的重力加速度g ,,则g/g , 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 分析与解:因为g= G 2 R M ,g , = G 2)3(R R M +,所以g/g , =1/16,即D 选项正确。 问题10:会用万有引力定律求天体的质量。 通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。 例16、已知地球绕太阳公转的轨道半径r=1.49?1011 m, 公转的周期T= 3.16?107 s,求太阳的质量M 。 分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得: G 2r Mm =mr(2π/T)2 M=4π2r 3/GT 2=1.96 ?1030 kg. 例17 、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。 分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有 x 2+h 2=L 2 由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得 (2x )2+h 2=(3L)2 设该星球上的重力加速度为g ,由平抛运动的规律得: h= 2 1gt 2 由万有引力定律与牛顿第二定律得: mg= G 2R Mm 联立以上各式解得M=2 2 332Gt LR 。 问题11:会用万有引力定律求卫星的高度。 通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。 例18、已知地球半径约为R=6.4?106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。 分析与解:因为mg= G 2R Mm ,而G 2 r Mm =mr(2π/T)2

圆周运动与天体运动

冲刺2010·名师易错点睛·物理 圆周运动与天体运动 7】 一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( ) A .飞船的轨道半径 B .飞船的的运行速度 C .飞船的运行周期 D .行星的质量 【答案】 C 【8】 某同学在物理学习中记录了一些与地球、月球有关的数据资料如下: 地球半径R=6400km ,月球半径r=1740km , 地球表面重力加速度g 0=9.80m/s 2, 月球表面重力加速度g ′=1.56m/s 2, 月球绕地球转动的线速度v=1km/s , 月球绕地球转动一周时间为T=27.3天 光速c=2.998×105km/s , 1969年8月1日第一次用激光器向位于天顶的月球表面发射出激光光束,经过约t=2.565s 接收到从月球表面反射回来的激光信号,利用上述数据可算出地球表面与月球表面之间的距离s ,则下列方法正确的是 ( ) A .利用激光束的反射2 t c s ?=来算 B .利用月球运动的线速度、周期关系T r R s v )(2++= π来算 C .利用地球表面的重力加速度,地球半径及月球运动的线速度关系r R s v m m ++= 20g 月月来算 D .利用月球表面的重力加速度,地球半径及月球运动周期关系 )(422 r R s T m g m ++='π月月来算 【答案】 AB 【解析】 激光束在地月之间往返的距离为ct ,故A 选项正确;月球绕地球运动的半径为s+R+r ,则月球的线速度与周期的关系为T r R s v )(2++=π,B 正确;月球所受的向心力不等于月球质量乘以地面的重力加速度,C 错误;D 中月球质量乘以月球表面的重力加速度

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

第四章 专题突破 天体运动中常考易错的“三个命题点”.doc

专题突破 天体运动中常考易错的“三个命题点” 同步卫星的运动规律 考向1 同步卫星的运动特点 【例1】 “静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料。设地球同步卫星的轨道半径是地球半径的n 倍,下列说法正确的是( ) A.同步卫星的运行速度是第一宇宙速度的1n B.同步卫星的运行速度是地球赤道上物体随地球自转获得速度的1n C.同步卫星的运行速度是第一宇宙速度的1 n D.同步卫星的向心加速度是地球表面重力加速度的 1 n 解析 同步卫星绕地球做匀速圆周运动,由万有引力提供向心力,则G Mm r 2=ma n =m v 2r =mω2r =m 4π2T 2r ,得同步卫星的运行速度v = GM r ,又第一宇宙速度v 1=GM R ,所以v v 1=R r =1n ,故选项A 错误,C 正确;a n =GM r 2,g =GM R 2,

所以a g =R 2r 2=1n 2,故选项D 错误;同步卫星与地球自转的角速度相同,v =ωr , v 自=ωR ,所以v v 自 =r R =n ,故选项B 错误。 答案 C 考向2 同步卫星与其他卫星运动物理量的比较 【例2】 (2019·名师原创预测)我国首颗极地观测小卫星是我国高校首次面向全球变化研究、特别是极地气候与环境监测需求所研制的遥感科学实验小卫星。假如该卫星飞过两极上空,其轨道平面与赤道平面垂直,已知该卫星从北纬15°的正上方,按图示方向第一次运行到南纬15°的正上方时所用时间为1 h ,则下列说法正确的是( ) 图1 A.该卫星与同步卫星的轨道半径之比为1∶4 B.该卫星的运行速度一定大于第一宇宙速度 C.该卫星与同步卫星的加速度之比为316∶1 D.该卫星在轨道上运行的机械能一定小于同步卫星在轨道上运行的机械能 解析 该卫星从北纬15°运行到南纬15°时,转动的角度为30°,则可知卫星的周期为12小时,而同步卫星的周期为24小时,设卫星和同步卫星的轨道半径分别 为r 1、r 2,根据开普勒第三定律有r 31T 21=r 32T 22,可得r 1r 2 =314,故A 错误;第一宇宙速度是最大环绕速度,所以该卫星的运行速度不大于第一宇宙速度,故B 错误; 根据a =(2πT )2r ,知a 1a 2=r 1r 2·T 22T 21 =316,故C 正确;由于不知道该卫星与同步卫星的质量关系,所以无法判断机械能的大小,D 错误。 答案 C

天体运动变轨问题.doc

变轨问题——金榜教育 1.(安徽省皖南八校2011 届)我国“嫦娥二号" 探月卫星于2010 年 10 月成功发射。在“嫦娥 二号”卫星奔月过程中,在月球上空有一次变轨过程,是由椭圆轨道 A 变为近月圆形轨道 B ,A 、 B .两轨道相切于P 点,如图所示.探月卫星先后沿 A 、 B 轨道运动经过P 点时,下列说法正确的是 A .卫星运行的速度v A= v B B .卫星受月球的引力F A =F B C.卫星的加速度a A >a B D .卫星的动能 E kA

相关主题
文本预览
相关文档 最新文档