当前位置:文档之家› 分子育种1

分子育种1

作物分子设计育种(精)

目前,对大多数作物的育种来说,育种家可供利用的亲本材料有几百甚至上千份,可供选择的杂交组合有上万甚至更多。由于试验规模的限制,一个育种项目所能配置的组合一般只有数百或上千,育种家每年花费大量的时间去选择究竟选用哪些亲本材料进行杂交;对配制的杂交组合,一般要产生2000个以上的 F2 分离后代群体,然后从中选择1%~2%的理想基因型,中选的 F2 个体在遗传上是杂合体,需要做进一步的自交和选择,每个中选的 F2 个体一般需产生100个左右的重组近交家系才能从中选择到存在比例低于1%的理想重组基因型。育种早期选择一般建立在目测基础上,由于环境对性状的影响,选择到优良基因型的可能性极低,统计表明,在配制的杂交组合中,一般只有1%左右的组合有希望选出符合生产需求的品种,考虑到上述分离群体的规模,最终育种效率一般不到百万分之一。因此常规育种存在很大的盲目性和不可预测性,育种工作很大程度上依赖于经验和机遇。 生物个体的表型是基因型和环境共同作用的结果,植物育种的主要任务是寻找控制目标性状的基因,研究这些基因在不同目标环境群体下的表达形式,聚合存在于不同材料中的有利基因,从而为农业生产提供适宜的品种。生物数据可以来自生物的不同水平,如群体水平、个体水平、孟德尔基因水平和 DNA 分子水平等,各类生物数据为作物育种提供了大量的信息。尤其随着分子生物学和基因组学的飞速发展,生物信息数据库积累的数据量极其庞大,但由于缺乏必要的数据整合技术,可资育种工作者利用的信息却非常有限,作物重要农艺性状基因( quantitative trait locus,QTL )的定位结果也难以用于指导作物育种实践。作物分子设计育种将在庞大的生物信息和育种家的需求之间搭起一座桥梁,在育种家的田间试验之前,对育种程序中的各种因素进行模拟筛选和优化,提出最佳的亲本选配和后代选择策略,从而大幅度提高育种效率。 1 作物分子设计育种相关基础研究现状及发展趋势

水稻抗逆、优质分子设计育种创新团队

团队创新助力中国农业科研 --水稻优质、抗逆分子设计育种创新团队 团队首席科学家黎志康(左三) 2003年8月,作为中国农业科学院国外引进人才,黎志康带领他实验室的团队一起回国,成为近年来中国农科院团队整体引进回国的杰出代表。5年来,以黎志康博士为首席科学家,万建民、王健康、赵开军、徐建龙等农科院一、二级人才为骨干队伍的“水稻抗逆、优质分子设计育种创新团队”,集中优势研究力量和科技资源,充分发挥多学科综合交叉优势,围绕国家重大需求,以近年来国内外倍受关注的“分子育种理论与技术”为生长点和切入点,重点攻克抗逆、优质分子育种理论与技术体系,对水稻抗逆、优质等复杂性状进行深层次基因挖掘和种质创新,分离重要功能基因和进行品种分子设计,取得一系列突破性进展。 团队还充分发挥骨干成员在知识结构上的互补性,以及研究方向相对集中的特点,开展水稻抗逆复杂性状的遗传网络解析和植物分子育种新方法等研究。提出的种质资源大规模回交导入结合DNA分子标记技术高效发掘优异隐蔽基因的分子育种策略,已成为国内外种质资源有利基因挖掘和育种利用的主导方法,居国际领先水平。 该团队依托于农作物基因资源与遗传改良国家重大科学工程,拥有分子育种和分子设计的高效平台及全国水稻分子育种协作网;目前主持国家973、863、农业部948、转基因专项、支撑计划、行业科技及盖茨基金、国际挑战计划等国内外重大项目32项,年均合同经费达5034万元。在北京昌平和海南南滨建有规模化试验场,为本团队研究工作顺利的开展提供全方位的保障。 团队力争在3~5年内在多方面取得重要进展,创建水稻抗逆、优质的分子育种理论与技术体系,研制选择导入系QTL和品种分子设计的计算机软件,克隆优质、抗逆基因,通过分子设计培育高产、优质、抗逆新品种,大力促进我国水稻分子育种的发展和进一步提升我国在这一领域的国际竞争优势,将团队建设成为一支在国内外有影响的一流团队。 “宝剑锋从磨砺出,梅花香自苦寒来”。水稻抗逆、优质分子设计育种创新团队将继续发扬“严谨、勤奋、开放、创新”的团队精神,在复杂数量性状遗传机理剖析及分子设计改良上勇于创新,从而在育种实践中向“知其然,又知其所以然”的方向迈出重要的一步。

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

作物分子育种

一、作物分子育种 作物育种基本任务:1.在研究和掌握作物形状遗传变异规律的基础上,发掘研究和利用作物种植资源;2.选育优良品种或杂种以及新作物;3.繁殖生产用种。 作物分子育种:即在经典遗传学和分子生物学等理论指导下,将现代生物技术手段整合于传统育种方法中,实现表现型和基因型选择的有机结合,培育优良新品种。 分子标记育种:又称为分子标记辅助选择,是利用与目标基因紧密连锁的分子标记,在杂交后代中准确鉴别不同个体基因型,从而进行辅助选择育种。特点:能有效结合基因型与表现型鉴定,显著提高选择的准确性。转基因育种:利用基因重组DNA技术,将功能明确的基因通过遗传转化手段导入受体品种的基因组,并使其表达期望形状的育种方法。特点:能打破基因不同物种交流障碍,克服传统育种的困难问题。 分子设计育种(刚起步):目的——通过各种技术的集成与整合,在育种家的田间试验之前,对育种程序中的各种因素进行模拟、筛选和优化,确立目标基因型,提出最佳亲本选配和后代选择策略,提高育种试验可见性。我国作物分子育种中存在的问题:1.基因资源挖掘力度有待加强;2.实用分子标记和具重要育种价值的基因十分贫乏;3.作物分子育种技术尚待突破;4.通过分子育种培育的突破性品种不多,产业化程度不高;5.作物分子育种的组织体系和实施机制需要创新。 作物分子育种意义:1.发展作物分子育种是保障国家安全的重大需求;2.全面实现作物分子育种相关技术突破;3.加速作物分子育种研发和产业化。 常规育种和分子育种比较:1.常规育种表现型选择时,会受时空因素影响,而分子育种不会;2.常规育种来源广,育种亲本贫乏;分子育种基因来源广,基因资源丰富。3.常规育种基因局限于种内,少数局限于亚种间;分子育种基因交流不受物种限制。4.常规育种目标性状有不明确性;分子育种目的基因功能已知,目标性状明确。5.最明显特征:常规育种选择时间长;分子育种选择时间短,可调控基因及其产物的功能、表达。 分子育种与传统育种关系:分是传的延伸和发展,二者是互补、嫁接、结合的关系,常规育种与分子育种形成了现代作物育种。 二、作物分子标记育种 遗传标记:指可追踪染色体,染色体某一节段,某个基因座在家系中传递的任何一种遗传特性。两个特点:可遗传性、可识别性。 在植物遗传育种研究中可被应用的遗传标记应具备以下四个条件:1.多态性高;2.最好表现为共显性,能够鉴别出纯合基因型和杂合基因型;3.对主要农艺性状影响小;4.经济方便,容易观察记载。 植物中常用的遗传标记: 形态学标记:即植物的外部形态特征,主要包括肉眼可见的外部特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。 细胞学标记:即植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。生化标记:利用电泳技术对蛋白质、酶等生物大分子进行鉴定。主要包括同工酶和等位酶标记。 分子标记 分子标记的类型:RFLP、RAPD、AFLP、SSR 分子标记:在生物系统和进化研究中,每个能反应遗传变异的,能提供系统学信息的多态位点称为一个分子标记,在遗传育种研究中每个与感兴趣的性状或目的基因链锁的多态性位点也称为一个分子标记。特点:1.表现稳定(DNA形式);2.数量多;3.多态性高;4.表现中性,不影响目标性状表达;5.区别Aa和AA;6.成本不太高。 分子标记技术:能提供分子标记的分子生物学技术。特点(优点):1.分子标记技术选用的分子信息比较稳定;2.提供遗传信息量是无限的;3.能很好区分同源性和相似性;4.能提供物种间比较共同的尺度;5.打开了遗传学研究的大门。 三、DNA PEX(异基磺原甲酸)提取方法的具体步骤包括:1.研磨:加入液氮研磨后,放入液氮预冷的离心管,尽量用2ml管,研碎材料不超过离心管一半;2.水浴:加800ul的PEX提取液,充分混匀,65℃水浴45分钟,期间混匀3次,动作不能剧烈;3.离心:12000rpm室温离心10分钟,取灭过菌管,将上清液转入,再次离心;4.沉淀DNA:离心后上清液再次转移,在装有转入上清液的离心管中加1/10体积的3mol/l醋酸钠和1倍体积的异丙醇,混匀,放入-20℃的冰箱中至少沉淀30分钟;5.洗DNA:离心15分钟,倒掉上清液,70%酒精洗所得的DNA,分两次进行;6.室温干燥:用适量的TE溶解DNA;7.再次离心:DNA中的杂质和不溶物会 沉于离心管底部,将上清转移到5ml的离心管中,管壁标记材料名称; 8.检测DNA质量及浓度,放入冰箱。 DNA提取注意事项:1.提取材料尽量要幼嫩叶片;2.整个提取过程应低温, 一般利用液氮、冰浴;3.当DNA处于溶解状态,尽量减弱溶液涡旋,动 作要柔缓。 DNA降解的外源因素:1.外界物理因素:温度、湿度;2.化学因素:PH 值、水解反应、氧化反应;3.生物因素:酶解及微生物侵染等作用。这些 因素都直接与DNA的构型分子组成有关。 四、植物DNA的分子和检测 在琼脂糖凝胶电泳中影响DNA迁移的因素:DNA分子质量、DNA分子 构型、琼脂糖、凝胶浓度、电场强度、EB影响。 聚丙烯酰胺凝胶电泳电泳板的制备:①清洗电泳板②处理电泳板③组装 电泳板④电泳板灌胶。电泳板灌胶是最关键的一步。 影响泳动速度的因素:①电场强度②缓冲溶液的PH③缓冲溶液的离子强 度④电渗⑤焦耳热⑥筛孔 五、RAPD标记 RAPD标记技术的实验原理: RAPD标记技术的应用:①RAPD标记可用于植物亲缘关系及种质资源遗 传多样性分析②RAPD标记构建分子标记遗传连锁图谱③对优异基因定 位及优异性状的选择④构建DNA指纹图谱及品种鉴定⑤鉴定及标记外援 染色体片段⑥分子标记辅助育种 RAPD标记技术的特点:1.优点:①RAPD标记技术中使用的随机引物, 不需要预先了解目的基因和相应的序列,引物价格便宜,成本较低;② RAPD标记技术操作技术简单,试验周期短、能在较短时间筛选大量样品 ③选用引物没有种属限制④需要模板量较少⑤无需借助于有伤害性的同 位素,耗费的人力物力少⑥灵敏度高⑦可以覆盖整个基因组⑧RAPD产物 有大于50%的条带扩增于单拷贝区。2.缺点:①用于二倍体生物时,不能 很好的区别杂合子和纯合子②在某种情况下,实验重复性不高,实验结果 可靠性低③使用效果受生物种类的影响 如何简单设计一个实验,运用RAPD标记分析植物间的遗传多样性? 六、SSR标记 SSR标记技术实验原理:SSR即简单重复序列,又称微卫星DNA,根据 微卫星DNA两端的单拷贝序列设计一堆特异引物,利用PCR技术,扩 增每个位点的微卫星序列,通过电泳分析核心序列的长度多态性。一般的, 同一类微卫星DNA可分布于整个基因组的不同位置上,而通过其重复的 次数不同以及重复程度的不完全而造成每个座位的多态性。SSR标记的 多态性丰富,重复性好,其标记呈共显性,且在基因组中分散分布,因此 可作为遗传标记。 SSR标记技术的应用:SSR标记技术已被广泛用于遗传图谱构建,品种 指纹图谱绘制及品种纯度检测,以及目标性状基因标记等领域。特别在人 类和哺乳动物的分子连锁图谱中,微卫星标记已成为取代RFLP标记的第 二代分子标记。 SSR标记技术特点:1.优点:①数量丰富,覆盖整个基因组,揭示的多态 性高②具有多等位基因的特性,提供的信息量高③以孟德尔方式遗传,呈 共显性,可鉴别出杂合子和纯合子④每个位点由设计的引物顺序决定⑤结 果重复性高,稳定可靠⑥DNA用量少,对DNA质量要求不高,操作简 单⑦SSR标记一般检测到的是一个单一的多等位基因位点⑧SRR序列的 两侧序列常较保守,在同种而不同遗传型间多相同⑨需要事先知道重复序 列两侧的DNA序列的信息来设计引物,因此引物开发成本高,但一旦开 发,同行受益无穷。2.缺点:①开发和合成新的SRR引物投入高、难度 大②现有的SSR标记数量有限,不能标记所有的功能基因,不能构建饱 和的SRR遗传图谱③SSR多态性的检测和应用很大程度上依赖PCR扩增 的效果④SSR座位突变率高,对变异反应非常敏感等。 SSR标记如何设计引物:①建立基因组DNA的质粒文库②根据欲得到的 SRR类型设计并合成寡聚核苷酸探针,通过菌落杂交筛选所需重组克隆 ③对阳性克隆DNA插入序列测序④根据SSR两侧序列设计并合成引物⑤ 以待研究的植物DNA为模板,用合成的引物进行PCR扩增反应⑥高浓 度琼脂糖凝胶,非变性或变性聚丙烯酰胺凝胶电泳检测其多态性。 七、AFLP AFLP标记技术的原理:AFLP技术是基于PCR反应的一种选择性扩增限 制性片段的方法。由于不同物种的基因组DNA大小不同,基因组DNA 经限制性内切酶完全消化后,在限制性片段两端连接上人工接头作为扩增 的模板。实际的引物与接头和酶切位点互补,并在3’加上2~3个选择性 碱基,因此在基因组被酶切后的无数片段中,只有一小部分限制性片段被 扩增,即只有那些与引物3’端互补的片段才能进行扩增,称为选择性扩 增。为了对扩增片段的大小进行灵活的调节,一般采用两个限制性内切酶。 扩增产物经放射性同位素标记、聚丙烯酰胺凝胶电泳分离,可产生数量丰 富的带型标记,然后根据凝胶上DNA指纹的有无来检测多态性。分辨率 高,是一种十分理想和高效的遗传标记。 所用的两种酶:酶切频率较高的限制性酶,酶切频率较低的稀有酶;(4 个识别位点的Mse I,6个识别位点的EcoR I) AFLP引物包括3部分:5’端的与人工接头序列互补的核心序列,限制性 内切酶特定序列和3’端的选择性碱基。 AFLP的应用:①可用于构建分子遗传连锁图谱②可用于构建指纹图谱, 进行品种鉴定③可用于种内和种间的遗传多样性研究④可用于分子标记 辅助选择育种⑤可用于基因定位基因克隆的研究。 AFLP标记技术特点;1.优点:AFLP不需要预先知道DNA序列的信息, 因此可以用于没有任何分子生物学研究基础的物种,概括其特点如下:① 用于AFLP分析的限制性内切酶与选择性碱基组合的数目和种类很多② AFLP多态性远远超过其他分子标记③多数表现孟德尔方式遗传④模板 用量少,且对模板浓度的变化不敏感⑤AFLP标记中由于扩增片段较短, 其分辨率很高⑥由于利用特定引物扩增,退火温度高,因而假阳性低,可 靠性高⑦AFLP分析的大多数扩增片段与基因组的单一位置相对应,可用 于分析基因组DNA及克隆相应的DNA片段,可作为遗传图谱和物理图 谱的位标和联系两者的桥梁。2.缺点:①AFLP标记技术试验中对样品 DNA的质量要求较高②内切酶质量要求比较高③技术难度高,成本比较 昂贵④很难鉴别等位基因⑤受专利保护,目前用于分析的试剂盒价格昂 贵,分析成本高⑥实验中产生的大量谱带,对其分析和解释有时存在困难, 需要借助计算机软件的帮助。 DNA甲基化:是由DNA甲基化酶催化的一种天然修饰方式。甲基化是 基因组DNA的一种主要的表观遗传修饰方式,是调控基因组功能的重要 手段。本质上只影响表型而不影响基因型改变。 RFLP标记:限制性片段长度多态性标记 PCR:聚合酶链式反应 RAPD标记:随机扩增多态性DNA标记 AFLP标记:扩增片段长度多态性标记 SSR标记:简单序列重复标记

分子标记辅助选择育种

分子标记辅助选择育种 传统的育种主要依赖于植株的表现型选择 (Phenotypieal selection)。环境条件、基因间互作、基因型与环境互作等多种因素会影响表型选择效率。例如抗病性的鉴定就受发病的条件、植株生理状况、评价标准等影响;品质、产量等数量性状的选择、鉴定工作更困难。一个优良品种的培育往往需花费7~8年甚至十几年时间。如何提高选择效率,是育种工作的关键。 育种家在长期的育种实践中不断探索运用遗传标记来提高育种的选择效率与育种预见性。遗传标记包括形态学标记、细胞学标记、生化标记与分子标记。棉花的芽黄、番茄的叶型、抗TMV的矮黄标记、水稻的紫色叶鞘等形态性状标记,在育种工作中曾得到一定的应用。以非整倍体、缺失、倒位、易位等染色体数目、结构变异为基础的细胞学标记,在小麦等作物的基因定位、连锁图谱构建、染色体工程以及外缘基因鉴定中起到重要的作用,但许多作物难以获得这类标记。生化标记主要是利用基因的表达产物如同工酶与贮藏蛋白,在一定程度上反映基因型差异。它们在小麦、玉米等作物遗传育种中得到应用。但是它们多态性低,且受植株发育阶段与环境条件及温度、电泳条件等影响,难以满足遗传育种工作需要。以DNA多态性为基础的分子标记,目前已在作物遗传图谱构建、重要农艺性状基因的标记定位、种质资源的遗传多样性分析与品种指纹图谱及纯度鉴定等方面得到广泛应用,尤其是分子标记辅助选

择(molecular marker-as—sisted selection,MAS)育种更受到人们的重视。 第一节分子标记的类型和作用原理 一、分子标记的类型和特点 按技术特性,分子标记可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指纹技术。PCR是Mullis等(1985)首创的在模板DNA、引物和4种脱氧核糖核苷酸存在的条件下,依赖于DNA聚合酶的体外酶促反应,合成特异DNA片段的一种方法。PCR技术的特异性取决于引物与模板DNA的特异结合。PCR反应分变性(denaturation)、复性(annealling)、延伸(exten—sion)三步(图17—1)。变性指的是通过加热使DNA双螺旋的氢键断裂,双链解离形成单链DNA的过程;复性(又称退火)是指当温度降低时,单链DNA回复形成双链的过程,由于模板分子结构较引物要复杂得多,而且反应体系中引物DNA大大高于模板DNA,容易使引物和其互补的模板在局部形成杂交链;延伸是指在DNA聚合酶和4种脱氧核糖核苷三磷酸底物及Mg2+存在的条件下,在聚合酶催化下进行以引物为起始点的5'-3'的DNA链延伸。以上三步为一个循环,每一循环的产物可以作为下一个循环的模板,经25~30个循环后,介于两个引物之间的特异DNA片段得到大量的复制,数量可达2×106-7拷贝。按照PCR所需引

作物分子育种习题答案

一、名词解释 1 作物分子育种: 直接从分子水平上改变某一作物品种基因组成而创造可稳定遗传变异来进行新品种培育的过程,称为作物分子育种。 2 基因组: 一个物种单倍体细胞所含有的整套染色体,物种全部遗传信息的总和,包括核基因组和细胞器基因组。 3 人工染色体: 人工组建的具有染色体功能的DNA分子。 4 功能标记: 称诊断标记,是基于生物功能已知的引起表型变异的基因内部序列多态性位点开发的分子标记。 5 分子设计育种: 利用作物基因组学蛋白质组学和代谢组学的生物数据,借助生物信息学的方法和手段,对整个基因组控制作物重要农艺性状的基因及基因网络进行分子水平上的设计和操作,进而培育作物新品种的过程。 6 基因组学: 研究基因组结构、功能和进化的科学。 7 染色体工程:按照人们预定目标,采用一定的方法和步骤,通过染色体操纵改变生物染色体组成并进而改变其遗传性的过程。 8 物理图谱:用分子生物学方法直接检测DNA标记在染色体上的实际位置绘制成的图谱。 9 序列图谱:以某一染色体上所含的全部碱基顺序绘制的图谱。 10 遗传图谱:指基因或DNA标记在染色体上的相对位置与遗传距离。通常用cM表示(基因或DNA片段在染色体交换过程中分离的频率)。 11 转录图谱:以EST为位标,根据转录顺序的位置和距离绘制的图谱,它是染色体DNA某一区域内所有可转录序列的分布图,是基因图的雏形。 12 同源:如果两条或多条序列拥有共同祖先,则称它们同源。 13 直系同源:不同物种间,功能相同或相似的序列来源于共同祖先的现象。 14 并系同源:同一物种中,由于基因倍增事件产生相似序列的现象。 15 异同源:指物种间遗传物质平行转移的现象。 16 染色体转导:(染色体介导的基因转移技术)将同特定基因表达有关的染色体或染色体片段转入受体细胞,是该基因得以表达,并能在细胞分裂中一代一代地传递下去,又称染色体转导。 17 序列比对:通过比较生物分子序列,发现它们的相似性,找出序列之间共同的区域,同时辨别序列之间的差异,从而揭示生物序列的功能、结构和进化的信息。 二、填空 1国际作物分子育种领域主要争夺的焦点是生物基因资源。 2作物分子育种大致经历了常规育种阶段、生物技术渗透阶段和分子育种阶段。 3TRAP标记是利用生物信息工具和EST数据库信息, 产生目标候选基因区多态性标记。 4将功能标记定位到染色体上,一般有非整倍定位技术、连锁标记技术、FISH技术和电子定位技术。 5基因组学研究应该包括结构基因组学和功能基因组学两方面的内容。 6 基因间存在直系同源、并系同源和异同源三种同源现象。 7作物分子育种大致经历了从常规育种到分子育种再到设计育种的三个历程。 8 SRAP标记是利用独特的引物设计对ORFs进行扩增,上游引物长17bp,下游引物长18bp。 9染色体微切割常用的两种方法是细玻璃针切割法和显微激光切割法。 10作物基因组包括核基因组、线粒体基因组和叶绿体基因组三部分。 11转基因作物外源DNA整合位点是随机的,但多发生在同源系列区和高度重复序列区。 三、选择题 1分子标记可以位于:( ABCD) A 内含子区 B 外显子区 C 重复区 D 5’UTR 2 针对外显子扩增的功能标记有:( BD )

野生稻高产基因及其分子标记辅助育种研究(精)

野生稻高产基因及其分子标记辅助育种研究邓启云1, 袁隆平1, 梁凤山2, 李继明1, 李新奇1, 王乐光2, 王斌2 ( 1国家杂交水稻工程技术研究中心,湖南长沙410125;2 中国科学院遗传与发育生物学研 究所, 北京100101) 摘要:传统遗传育种方法在挖掘和利用水稻栽培品种的遗传资源方面日趋饱和,进一步提高杂交水稻产量潜力必须考虑利用水稻野生近缘种的有利基因库。随着分子生物学技术的发展,分子标记辅助选择在定向导入远缘有利基因方面的研究日益成为活跃的研究领域。介绍了马来西亚普通野生稻的2个高产QTLs的发现,及其分子标记辅助育种的初步进展,并展望了这一领域的研究前景。 关键词:野生稻高产基因(QTL);杂交水稻;分子标记辅助选择(MAS) 中图分类号: 文献标识码: A. 文章编号: Studies on Yield-enhancing Genes from Wild Rice and Its Marker-assisted Selection in Hybrid Rice DENG Qi-yun1, YUAN Long-ping1, LIANG Feng-shan2, LI Ji-ming1, LI Xin-qi1, WANG Yue-guang2, WANG Bin2 ( 1 China National Hybrid Rice Research and Development Center (CNHRRDC), Changsha, Hunan 410125, People’s Republic of China; 2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China ) Abstract: Facts have proved that genetic improvements are the most practicable way to increase rice productivity. But it is now quite limited to further raise the rice ceiling through traditional breeding methods based on the exploitation of genetic diversities within Oryza sativa. As the biotechnology fast developing recently, it becomes more and more important research field that breeders try to introduce distantly related favorable genes into rice cultivars from wild relatives of rice. It is described here that the discovery of the two yield-enhancing QTLs from wild rice and preliminary studies on marker assisted selection (MAS) in hybrid rice breeding program. And the prospects in the realm of MAS breeding were also discussed in the paper. Keywords: Yield-enhancing genes (QTLs) from wild rice; Hybrid rice; Marker-assisted selection (MAS) 我国现有人口超过13亿,人均耕地面积不足867 m2, 预计本世纪30年代,我国人口将增加到16亿,人均耕地将减少到667 m2左右,粮食自给仍然是摆在我们面前的紧迫问题。从全球范围看,由于人口增长以及环境恶化和城市化发展所带来的耕地面积减少的趋势在相当长一段时间内还无法逆转,因此继续提高主要粮食作物单位面积产量始终是各国政府和科学家关注的热点课题。水稻是最重要的粮食作物之一,实践证明,通过遗传改良来提高水稻单位面积产量是最行之有效的途径。

分子标记辅助育种技术

分子标记辅助育种技术 第一节 分子标记的类型和作用原理 遗传标记是指可以明确反映遗传多态性的生物特征。 在经典遗传学中,遗传多态性是指等位基因的变异。 在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。 在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。 在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。 在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。 1、形态标记 形态标记是指那些能够明确显示遗传多态性的外观性状。如、株高、穗型、粒色等的相对差异。 形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。 有些形态标记受环境的影响,使之在育种的应用中受到限制。 2、细胞学标记 细胞学标记是指能够明确显示遗传多态性的细胞学特征。如染色体的结构特征和数量特征。 核型:染色体的长度、着丝粒位置、随体有无。 可以反映染色体的缺失、重复、倒位、易位。 染色体结构特征 带型:染色体经特殊染色显带后,带的颜色深浅、宽窄 和位置顺序,可以反映染色体上常染色质和异染 色质的分布差异。 染色体数量特征—是指细胞中染色体数目的多少。染色体数量上的

遗传多态性包括整倍体和非整倍体变异。 细胞学标记 优点:克服了形态标记易受环境影响的缺点。 缺点: (1)培养这种标记材料需花费大量的人力物力; (2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料; (3)这种标记常常伴有对生物有害的表型效应; (4)观察鉴定比较困难。 3、蛋白质标记 用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。 非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。 酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。 蛋白质标记的不足之处: (1)每一种同工酶标记都需特殊的显色方法和技术; (2)某些酶的活性具有发育和组织特异性; (3)标记的数量有限。 4 、 DNA标记 DNA分子标记是DNA水平上遗传多态性的直接反映。 DNA水平的遗传多态性表现为核苷酸系列的任何差异,包括单个核苷酸的变异。 二、分子标记的类型及作用原理

分子育种题库

分子育种题库 一、名词解释: 分子育种:根据育种目标,通过在DNA分子水平上的操作,对植物基因组进行改良(如:引入外源基因和改良内源基因),创造符合人类需求的新性状(如:抗虫、抗病、抗除草剂等),具有新性状的植物,或通过适当的选择和繁殖直接形成一个新品种,或用它作为种质通过杂交育种途径育成一个新品种。 植物育种:根据育种目标,用育种技术,诱导、创造和重组遗传变异,选育出符合育种目标(高产、优质、抗逆)的在遗传上稳定一致的优良新品种(基因型),并繁殖出足够量的种子或种苗供生产应用。分子标记辅助育种:利用分子生物学技术,对一个目标性状(如抗病、抗虫)进行分子标记(如RFLP、SSR、RAPD),当分子标记与性状有连锁时,根据分子标记表型从DNA水平上直接选择目标性状。这种高效和精确地选取目标性状的技术称为分子标记辅助育种。 转基因育种:根据育种目标,从供体生物中分离目的基因,经DNA重组与遗传转化或直接运载进入受体作物,经过筛选获得稳定表达的遗传工程体,并经过田间试验与大田选择育成转基因新品种或种质资源。 基因组:单倍体生物中所含的遗传物质(DNA 或RNA)总和。 基因组学: 启动子:DNA分子上被RNA聚合酶、转录调节因子等,识别并结合,形成转录起始复合物的区域。终止子: 内含子:DNA与成熟RNA 间的非对应区域。 外显子:DNA与成熟RNA 间的对应区域。 DNA的变性和复性: 转化体: 转化受体:是指将接受外源目的基因的植物细胞、组织、器官乃至植株。 载体:用于运载外源目的基因的DNA分子 共整合载体系统:是指一个含T-DNA和Vir相容性Ti质粒构成的单质粒系统 双元载体系统:也称反式载体,是指由两个分别含T-DNA和Vir相容性Ti质粒构成的双质粒系统。Southern杂交: Northern杂交: Ti质粒:农杆菌中有一种致瘤质,.简称为Ti 质粒报告基因:常是一些可起酶学反应的可容易被测定的基因 标记基因:常是抗性基因,如抗菌素基因 T-DNA:在Ti质粒中,有一段DNA序列,它能从农杆菌细胞转移到植物细胞中,并插入在植物染色体中而稳定遗传下去。这一段DNA叫转移DNA,简称T-DNA。 转基因植物安全性: 遗传标记:可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。 同工酶:是指一个以上基因座位编码的酶的不同形式 分子标记:指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA 间的差异。 RFLP: RAPD: SSR: AFLP: AP-PCR: SCAR: ISSR: STS: CAPS: VNTR: RGA: 遗传图谱:通过遗传重组所得到的基因在具体染色体上线性排列图,又称为遗传连锁图。 物理图谱:指利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。 比较基因组学:是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科 同线性:是指一个物种某染色体或染色体片段上的两个或多个标记被定位于另一个物种的同源染色体上, 但这些标记间的相对顺序有时有变化。 共线性:则指同源染色体或染色体片段不仅其标记, 而且其标记间排列顺序都是保守的。 基因定位:将具有某一表现型性状的基因(主效/微效)或与该基因相关的标记定位在遗传连锁图或相应的染色体上,称为基因定位 RIL: NIL: DH: QTL: 近等基因系: 连锁累赘: 基因聚合(基因垒集): MAS: BSA分析法: RACE: PFGE: 二、简答题: 1.转基因育种包括哪些基本过程?与杂交育种

我国大豆分子设计育种成果与展望

我国大豆分子设计育种成果与展望 田志喜1* 刘宝辉2 杨艳萍3 李 明1 姚 远4 任小波4 薛勇彪1 1 中国科学院遗传与发育生物学研究所 北京 100101 2 中国科学院东北地理与农业生态研究所 哈尔滨 150081 3 中国科学院文献情报中心 北京 100190 4 中国科学院 重大科技任务局 北京 100864 摘要 大豆是重要的粮油兼用作物,同时也是人类优质蛋白及畜牧业饲料蛋白的主要来源,在我国粮食结构中占有 重要地位。目前,我国育种技术主要以常规育种为主,大豆科学研究和生产水平明显落后于美国。通过中国科学院战略性先导科技专项(A 类)“分子模块设计育种创新体系”的实施,已经鉴定到若干高产、优质分子模块,解析了部分重要农艺性状的模块耦合效应,创制了一批大豆优异种质材料,成功培育多个高产、优质的初级模块大豆新品种,初步建立了大豆分子模块设计育种体系。未来,应继续加强种质资源的系统评价、挖掘利用和创制,推动自主性整合公共数据库构建,健全数据共享机制,大力开展大豆高产稳产突破性技术和豆粕替代饲料的研究,加快分子设计育种和人工智能育种创新体系建设,培育具有突破性的大豆新品种,创制绿色高效栽培技术,增强我国大豆自产能力,缓解大豆需求缺口。 关键词 大豆,育种技术,分子模块设计育种,分子模块,模块耦合与组装 DOI 10.16418/j.issn.1000-3045.2018.09.004 *通讯作者 资助项目:中国科学院战略性先导科技专项(A 类)(XDA 08000000)修改稿收到日期:2018年8月27日 ① USDA. https://https://www.doczj.com/doc/737686687.html,/psdonline/app/index.html#/app/advQuery. 专题:分子模块设计育种 Designer Breeding by Molecular Modules 1 我国大豆产业与科研现状 1.1 大豆是我国食用油和饲料的主要来源,供需矛盾日 益突出 大豆是重要的粮食作物和经济作物,为人类提供丰富优质的油脂和蛋白资源。无论大豆油还是作为饲 料的豆粕,我国一直都是消费大国,消费量居世界第一 位。仅 2017 年,我国消费大豆油 1 740 万吨,占全球消费总量的 30.9%;消费豆粕 7 407 万吨,占全球消费总量的 31.7%①。 随着人口增长、人民生活水平提高和饮食结构的变化,我国对大豆的需求逐年增加,供求矛盾日益突出。

分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种 分子标记辅助选择育种(Marker Assisted Selection (MAS)或Marker Assisted Breeding)是利用与目标基因紧密连锁的分子标记或功能标记),在杂交后代中准确地对不同个体的基因型进行鉴别,并据此进行辅助选择的育种技术。通过分子标记检测,将基因型与表现型相结合,应用于育种各个过程的选择和鉴定,可以显著提高育种选择工作的准确性,提高育种研究的效率。 分子标记辅助育种示意图 DNA分子标记相对同类技术来说具有很强的优越性:因为大部分标记为共显性,对隐性性状的选择十分有利;数量极多,应对极其丰富的基因组变异;在生物发育的不同阶段,不同组织的DNA都可用标记分析;不影响目标性状的表达,与不良性状无必然的连锁等等。随着分子生物学技术的发展,现在DNA分子标记技术也有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴定、基因库构建、基因克隆等方面。 分子标记的类型 分子标记按技术特性可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指

纹技术;第三类是一些新型的分子标记,如单核苷酸多态性(Single nucleotide polymorphism,SNP),由基因组核苷酸水平上的变异引起的DNA序列多态性,包括单碱基的转换、颠换以及单碱基的插入/缺失等。 分子标记是以DNA多态性为基础,因而具有以下优点:①表现稳定,多态性直接以DNA 形式表现,无组织器官、发育时期特异性,不受环境条件、基因互作影响;②数量多,理论上遍及整个基因组;③多态性高,自然界存在许多等位变异,无需专门人为创造特殊遗传材料,这为大量重要性状基因紧密连锁的标记筛选创造了条件;④对目标性状表达无不良影响,与不良性状无必然连锁;⑤部分标记遗传方式为共显性,可鉴别纯合体与杂合体;⑥成本不高,一般实验室均可进行。对于特定探针或引物可引进或根据发表的特定序列自行合成。 各种分子标记的原理和优缺点 第一代分子标记:RFLP RFLP在20世纪70年代已被发现,是发现最早的一种分子标记。1980年,人类首先将其用于构建连锁图。 RFLP标记的原理:植物基因组DNA上的碱基替换、插入、缺失或重复等,造成某种限制性内切酶(restriction enzymes,简称RE)酶切位点的增加或丧失是产生限制性片段长度多态性的原因。对每一个DNA/RE组合而言,所产生的片段是特异性的,它可作为某一DNA 所特有的“指纹”。某一生物基因组DNA经限制性内切酶消化后,能产生数百万条DNA片段,通过琼脂糖电泳可将这些片段按大小顺序分离,然后将它们按原来的顺序和位置转移至易于操作的尼龙膜或硝酸纤维素膜上,用放射性同位素(如P32)或非放射性物质(如生物素、地高辛等)标记的DNA作为探针,与膜上的DNA进行杂交(即Southern杂交),若某一位置上的DNA酶切片段与探针序列相似,或者说同源程度较高,则标记好的探针就结合在这个位置上。放射自显影或酶学检测后,即可显示出不同材料对该探针的限制性片段多态性情况。对于线粒体和叶绿体等相对较小的DNA分子,通过合适的限制性内切酶酶切,电泳分析后有可能直接检测出DNA片段的差异,就不需Southern杂交。RFLP探针主要有三种来源,即cDNA克隆、植物基因组克隆(Random Genome克隆,简称RG克隆)和PCR克隆。 优点: RFLP标记具有共显性的特点。共显性(co-dominant)标记指的是双亲的两个以上分子量不同的多态性片段均在F1中表现。它已被广泛用于多种生物的遗传分析,特别是构建植物遗传图谱。

植物分子育种复习题

植物分子育种复习题 分子植物育种:依据分子遗传学,遗传学和植物育种学的理论,利用DNA重组技术和DNA标记技术来改良植物品种的新型学科。 分子标记:DNA水平上遗传多态性的直接反映,是直接以DNA多态性为基础的遗传标记。 SSR:微卫星或简单序列重复,以2-6个核苷酸为基本单元的简单串联重复序列。 InDel:插入缺失标记,指的是两种亲本中在全基因组中的差异,相对另一个亲本而言,其中一个亲本的基因组中有一定数量的核苷酸插入或缺失。根据基因组中插入缺失位点,设计一些扩增这些插入缺失位点的PCR 引物,就是InDel。 CAPS:先对样品DNA进行专化性扩增,再用限制性内切酶对扩增产物进行酶切检测其多态性,称为CAPS 标记。 SNP:具有单核苷酸差异引起的遗传多态性特征的DNA区域,可以作为一种DNA标记,即SNP。 基因功能标记:根据已克隆的基因序列开发的分子标记,标记和基因共分离,能完全准确地跟踪和识别基因。 显性标记:仅能检测显性等位基因,不能够区分纯合和杂合基因型的遗传标记。有RAPD、AFLP、ISSR、STS。 共显性标记:同时能检测出显性和隐性等位基因,能够区分纯合和杂合基因型的遗传标记。有RFLP、RAPD、AFLP、SSR、ISSR、SCAR、STS、CAPs。 特异引物PCR标记:针对已知序列的DNA区段而设计的,具有特定核苷酸序列,引物长度通常为18-24核苷酸。常用的特异引物PCR标记主要有SSR标记、SCAR标记、STS标记及RGA标记等。 随机引物PCR标记:所用引物的核苷酸序列是随机的,其扩增的DNA区段是事先未知的。常用的随机引物PCR标记主要有RAPD、AP-PCR、DAF、ISSR等。 基于PCR的分子标记有:1. 特异引物PCR标记主要有SSR标记、SCAR标记、STS标记及RGA标记;2. 随机引物PCR标记主要有RAPD、AP-PCR、DAF、ISSR。 基于限制性酶切和PCR相结合的分子标记有AFLP标记和CAPS标记。 RIL群体:杂种后代经过多代自交而产生的一种作图群体。通常从F2代开始,采用单粒传代的方法来建立。 DH群体:单倍体经过染色体加倍形成的二倍体称为加倍单倍体或双单倍体(DH),由它们组成的群体为DH 群体。 LOD值:假设两座位间存在连锁(r < 0.5)的概率与假设没有连锁(r = 0.5)的概率。这两种概率之比可以用似然比统计量来表示,即L(r)/L(0.5),其中L()为似然函数。为了计算方便,常将L(r)/L(0.5)取以10为底的对数,称为LOD值。 BSA:将高值和低值两组个体的DNA分别混合,形成两个DNA池,然后检验两池间的遗传多态性。 RCA:源于BSA的方法,可用于隐性分析。

相关主题
文本预览
相关文档 最新文档