当前位置:文档之家› 牛顿第二定律、两类动力学问题

牛顿第二定律、两类动力学问题

牛顿第二定律、两类动力学问题
牛顿第二定律、两类动力学问题

《牛顿第二定律、两类动力学问题》

一、选择题

1.一辆空车和一辆满载货物的同型号汽车,在同一路面上以相同的速度向同一方向行驶.两辆汽车同时紧急刹车后(即车轮不滚动只滑动),以下说法正确的是( )

A.满载货物的汽车由于惯性大,滑行距离较大

B.满载货物的汽车由于受到的摩擦力较大,滑行距离较小

C.两辆汽车滑行的距离相同

D.满载货物的汽车比空车先停下来

【答案】选C.

【详解】由于两辆汽车的车轮与地面间的摩擦因数相同,所以汽车刹车时的加速度a=μg相同,由知,两辆汽车滑行的距离相同.A、B均错,C正确;由知两车同时停下,D错.

2.下列说法正确的是( )

A.物体所受到的合外力越大,其速度改变量也越大

B.物体所受到的合外力不变(F合≠0),其运动状态就不改变

C.物体所受到的合外力变化,其速度的变化率一定变化

D.物体所受到的合外力减小时,物体的速度可能正在增大

【答案】选C、D.

【详解】物体所受到的合外力越大,物体的加速度(速度变化率)也越大,即速度变化得越快,但速度改变量还与时间有关,故选项A错误、C正确;物体的合外力不为零,就会迫使运动状态(运动的快慢

和方向)发生变化,选项B错误;合外力的大小与速度的大小之间没有直接关系,选项D正确.

3.下列说法正确的是( )

A.若物体运动速率始终不变,则物体所受合力一定为零

B.若物体的加速度均匀增加,则物体做匀加速直线运动

C.若物体所受合力与其速度方向相反,则物体做匀减速直线运动

D.若物体在任意相等的时间间隔内位移相等,则物体做匀速直线运动【答案】选D.

【详解】若物体运动速率始终不变,速度大小不变,但速度方向可能变化,因此合力不一定为零,A错;物体的加速度均匀增加,即加速度在变化,是非匀加速直线运动,B错;物体所受合力与其速度方向相反,只能判断其做减速运动,但加速度大小不能确定,C错;若物体在任意相等的时间间隔内位移相等,则物体做匀速直线运动,D对.

4.关于单位制,下列说法中正确的是( )

A.kg、m/s、N是导出单位

B.kg、m、C是基本单位

C.在国际单位制中,时间的基本单位是s

D.在国际单位制中,力的单位是根据牛顿第二定律定义的

【答案】选C、D.

【详解】力学中的基本单位有三个:kg、m、s.有些物理单位属于基本单位,但不是国际单位,如厘米(cm)、克(g)、小时(h)等;有些单位属于国际单位,但不是基本单位,如米/秒(m/s)、帕斯卡(Pa)、牛顿(N)

等.

5.如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是

()

A.斜向右上方B.竖直向上C.斜向右下方D.上述三种方向均不可能

【答案】A

【详解】物体A受到竖直向下的重力G、支持力FN和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力FN和摩擦力Ff的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确.

6.商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如右图所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()

A.mg B.mgsin θ

C.mgcos θ D.0

【答案】C

【详解】以箱子和里面所有苹果作为整体来研究,受力分析得,Mgsin θ=Ma,则a=gsin θ,方向沿斜面向下;再以苹果为研究对象,受力分析得,合外力F=ma=mgsin θ,与苹果重力沿斜面的分力相同.由此可知,其他苹果给它的力应与重力垂直于斜面的分力相等,即mgcos θ,故C正确.

7.如右图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为()

A.μmg B.2μmg

C.3μmg D.4μmg

【答案】C

【详解】当A、B之间恰好不发生相对滑动时力F最大,此时,对于A物体所受的合外力为μmg

由牛顿第二定律知aA=μmg

m=μg

对于A、B整体,加速度a=aA=μg

由牛顿第二定律得F=3ma=3μmg.答案为C.

8.如右图所示,用皮带输送机将物块m向上传送,两者间保持相对静止,则下列关于m所受摩擦力Ff的说法正确的是()

A.皮带传动的速度越大Ff越大

B.皮带加速运动的加速度越大Ff越小

C.皮带速度恒定,m质量越大Ff越大

D.Ff的方向一定与皮带速度方向相同

【答案】C

【详解】当传送带加速时,Ff-mgsin θ=ma,即Ff=mgsin θ+ma.故皮带加速运动的加速度越大Ff越大,与速度无关,A、B均错.当皮带匀速运动时,a=0,因此Ff=mgsin θ,故m越大Ff越大,C对.当皮带向上减速时mgsin θ+Ff=ma,当a增大到a>gsin θ时,Ff方向沿斜面向下,故D错.

9.如图所示,一根轻质弹簧竖直立在水平地面上,下端固定.一小球从高处自由落下,落到弹簧上端,将弹簧压缩至最低点.小球从开始压缩弹簧至最低点过程中,小球的加速度和速度的变化情况是()

A.加速度先变大后变小,速度先变大后变小

B.加速度先变大后变小,速度先变小后变大

C.加速度先变小后变大,速度先变大后变小

D.加速度先变小后变大,速度先变小后变大

【答案】C

【详解】小球在压缩弹簧的过程中,弹簧对小球的弹力逐渐变大,由牛顿第二定律可知:小球先加速后减速,其加速度先变小后变大,速度先变大后变小,故C正确.

10.一质量为M的探空气球在匀速下降,若气球所受浮力F始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g.现欲使该气球以同样速率匀速上升,则需从气球吊篮中减少的质量为()

A.2(M-F

g ) B.M-2F

g

C.2M-F

g

D.0

【答案】A

【详解】对探空气球匀速下降和匀速上升的两个过程进行受力分析如图所示.列出平衡方程式

F+f=Mg

F=f+xg,联立解得x=2F

g-M,所以Δm=M-x=2(M-

F

g).

二、非选择题

11.放在水平地面上的一物块,受到方向不变的水平推力F的作用,

力F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图所示.重力加速度g =10 m/s2.求:

(1)物块在运动过程中受到的滑动摩擦力的大小; (2)物块在3~6 s 中的加速度大小; (3)物块与地面间的动摩擦因数.

【答案】(1)Ff =4 N (2)a =2 m/s2 (3)μ=0.4

【详解】(1)由v -t 图象可知,物块在6~9 s 内做匀速运动,由F -t 图象知,6~9 s 的推力F3=4 N ,故 Ff =F3=4 N

(2)由v -t 图象可知,3~6 s 内做匀加速运动,由 a =vt -v0t

② 得a =2 m/s2

(3)在3~6 s 内,由牛顿第二定律有F2-Ff =ma ④ 且Ff =μFN =μmg ⑤

由④⑤式求得μ=0.4

⑥ 12.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为mA 、mB ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和

从开始到此时物块A 的位移d ,重力加速度为g.

【答案】a =F -(mA +mB)gsinθmA d =(mA +mB)gsinθ

k

【详解】令x1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知mAgsinθ=kx1①

令x2表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,

由胡克定律和牛顿定律kx2=mBgsinθ ②

可知F -mAgsinθ-kx2=mAa

③ 由②③式可得a =F -(mA +mB)gsinθmA

由题意,d =x1+x2 ⑤ 由①②⑤式可得d =(mA +mB)gsinθk

牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律题型总结

牛顿运动定律的应用(张胜富) 一、知识归纳: 1、牛顿第二定律 (1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同. (2)定义式:F 合=ma 2、对牛顿第二定律的理解 (1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系. (2)矢量性.F=ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a的方向,反之亦然. (3)同体性:a = m F 合各量都是属于同一物体的,即研究对象的统一性. (4)独立性:F合产生的a 是物体的合加速度,x方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x,F y =ma y. (5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒: (1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度. (2)不能根据m= m F 得出m∝F ,m ∝a 1 的结论.物体的质量m 与物体受的合外力和运动的加速度无关. 3、合外力、加速度、速度的关系 (1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F=ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系. (2)合力与速度同向时,物体做加速运动,反之减速. (3)力与运动关系: 力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系. (4)加速度的定义式与决定式: a= t v ??是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =m F 是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加 速度的因素. 特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F方向总是相同,但速度v 的方向不一定与合外力的方向相同. 讨论点一:如图所示,对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用瞬间 ( ) A .物体立即获得速度 B.物体立即获得加速度 C.物体同时获得速度和加速度

牛顿第二定律练习题(经典好题)

牛顿定律(提高) 1、质量为m 的物体放在粗糙的水平面上,水平拉力F 作用于物体上,物体产生的加速度为a 。若作用在物体上的水平拉力变为2F ,则物体产生的加速度 A 、小于a B 、等于a C 、在a 和2a 之间 D 、大于2a 2、用力F 1单独作用于某一物体上可产生加速度为3m/s 2,力F 2单独作用于这一物体可产生加速度为1m/s 2,若F 1、F 2同时作用于该物体,可能产生的加速度为 A 、1 m/s 2 B 、2 m/s 2 C 、3 m/s 2 D 、4 m/s 2 3、一个物体受到两个互相垂直的外力的作用,已知F 1=6N ,F 2=8N ,物体在这两个力的作用下获得的加速度为2.5m/s 2,那么这个物体的质量为 kg 。 4、如图所示,A 、B 两球的质量均为m ,它们之间用一根轻弹簧相连,放在光滑的水平面上,今用力将球向左推,使弹簧压缩,平衡后突然将F 撤去,则在此瞬间 A 、A 球的加速度为F/2m B 、B 球的加速度为F/m C 、B 球的加速度为F/2m D 、B 球的加速度为0 5如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其 质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是

A.a A=g;a B=gB.a A=2g ;a B=g C.a A=2g ;a B=0 D.a A=0 ;a B=g 6.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。(1)要匀速拉动箱子,拉力F为多大? (2)以加速度a=10m/s2加速运动,拉力F为多大? 7如图所示,质量为m的物体在倾角为θ的粗糙斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。 8.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律

牛顿第二定律 一、知识与技能 1、掌握牛顿第二定律的文字内容和数学公式; 2、理解公式中各物理量的意义及相互关系。 3、知道在国际单位制中力的单位“牛顿”是怎样定义的。 4、会用牛顿第二定律的公式实行相关的计算。 1、以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。 2、培养学生的概括水平和分析推理水平。 三、情感、态度与价值观 1、渗透物理学研究方法的教育。 2、理解到由实验归纳总结物理规律是物理学研究的重要方法。 ★教学重点 牛顿第二定律 ★教学难点 牛顿第二定律的意义 ★教学方法 1、复习回顾,创设情景,归纳总结; 2、通过实例的分析、强化训练,使学生理解牛顿第二定律的意义。 ★教学过程 一、引入新课 教师活动:利用多媒体播放汽车启动、飞机起飞等录像资料。教师提出问题,启发引导学生讨论它们的速度的变化快慢即加速度由哪些因素决定? 学生活动:学生观看,讨论其可能性。 点评:通过实际问题及现象分析,激发学生学习兴趣,培养学生发现问题的水平 教师活动:提出问题让学生复习回顾: l、物体的加速度与其所受的作用力之间存有什么关系? 2、物体的加速度与其质量之间存有什么关系? 学生活动:学生回顾思考讨论。

教师活动:(进一步提出问题,完成牛顿第二定律探究任务的引入)物体的加速度与其所受的作用力、质量之间存有怎样的关系呢? 学生活动:学生思考讨论,并在教师的引导下,初步讨论其规律. 点评;通过多媒体演示及学生的讨论,复习回顾上节内容,激发学生的学习兴趣。培养学生发现问题、探究问题的水平。 二、实行新课 教师活动:学生分析讨论后,教师进一步提出问题: l、牛顿第二定律的内容应该怎样表述? 2、它的比例式如何表示? 3、各符号表示什么意思? 4、各物理量的单位是什么?其中,力的单位“牛顿”是如何定义的? 学生活动:学生讨论分析相关问题,记忆相关的知识。 教师活动:上面我们研究的是物体受到一个力作用的情况,当物体受到几个力作用时,上述规律又将如何表述? 学生活动:学生讨论分析后教师总结:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 点评:培养学生发现一般规律的水平 教师活动:讨论a和F合的关系,并判断下面哪些说法不对?为什么? A、只有物体受到力的作用,物体才具有加速度. B、力恒定不变,加速度也恒定不变。 C、力随着时间改变,加速度也随着时间改变。 D、力停止作用,加速度也随即消失。 E、物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速 度逐渐减小。 F、物体的加速度大小不变一定受恒力作用。 学生活动:学生讨论分析后教师总结:力是使物体产生加速度的原因,力与物体的加速度具有矢量性、瞬时性和独立性 点评:牛顿第二定律是由物体在恒力作用下做匀加速直线运动的情形下导出的,但由力的独立作用原理可推广到几个力作用的情况,以及应用于变力作用的某一瞬时。 教师活动:出示例题引导学生一起分析、解决。

牛顿第二定律教学设计市级一等奖

牛顿第二定律 教学设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 学情分析???? 学生学习了第二节实验课:探究加速度与力/质量的关系,?对a?m?F三者关系都有了初步了解,并且总结出了相关规律,所以对本节理论课内容做好了铺垫,对掌握本节内容具有重要作用,? 教学目标: 知识与技能 1、能准确表述牛顿第二定律 2、理解数学表达式中各物理量的意义及相互关系 3、知道在国际单位制中力的单位“牛顿”是怎样定义的 4、能运用牛顿第二定律分析和处理简单的问题 过程与方法 通过对上节课实验结论的归纳,培养学生概括和分析推理能力

情感与态度 1、渗透物理学研究方法的教育——由实验归纳总结物理规律 2、让学生感受到物理学在认识自然上的本质性、深刻性、有效性 教学重点: 牛顿第二定律 教学难点: 1、牛顿第二定律公式的理解 2、理解k=1时,F=ma 教学方法和程序:探讨、归纳、数字化实验、讯飞多媒体辅助互动等。具体步骤是:创设物理情景→回顾与思考→数字化演示实验→总结规律→讯飞多媒体辅助互动。 教学过程:

板书设计: 牛顿第二定律 1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同 2.表达式:a =F 合m 或F 合=ma 说明:①a =F m 是加速度的决定式②力是产生加速度的原因③m =F a 中m 与F 、a 无关 1. 3.对牛顿第二定律的理解:①矢量性 ②因果性 ③瞬时性 ④同体性 ⑤独立性 ⑥局限性 4.应用牛顿第二定律解题的一般步骤 备用习题: 1.如图所示,一物体以一定的初速度沿斜面向 上滑动,滑到顶点后又返回斜面底端.试分析在物 体运动的过程中加速度的变化情况. 解析:在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中, 物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是

牛顿第二定律基础计算终审稿)

牛顿第二定律基础计算文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

牛顿第二定律基础计算 1、如图所示,光滑水平面上有一个质量m=7.0kg的物体,在 F=14N的水平力作用下,由静止开始沿水平面做匀加速直线运 动.求: (1)物体加速度的大小; (2)5.0s内物体通过的距离. 2、如图所示,光滑水平面上,质量为5 kg的物块在水平拉力F=15 N的作用下,从静止开始向右运动。求: (1)物体运动的加速度是多少 (2)在力F的作用下,物体在前10 s内的位移 3、质量为2kg的物体,在水平拉力F=5N的作用下,由静止开始在水平面上运动,物体与水平面间的动摩擦因素为0.1,求: (1)该物体在水平面上运动的加速度大小。 (2)2s末时,物体的速度大小。 4、如图所示,质量为20Kg的物体在水平力F=100N作用下沿水平面做匀速直线运动,速度大小V=6m/s,当撤去水平外力后,物体在水平面上继续匀减速滑行3.6m后停止运动.(g=10m/s2)求: (1)地面与物体间的动摩擦因数;

(2)撤去拉力后物体滑行的加速度的大小. 5、一质量为2kg的物块置于水平地面上.当用10N的水平拉力F拉物块时,物块做匀速直线运动.如图所示,现将拉力F改为与水平方向成37°角,大小仍为10N,物块开始在水平地面上运动.(sin 37°=0.6,cos 37°=0.8,g取10m/s2)求:(1)物块与地面的动摩擦因数; (2)物体运动的加速度大小. 6、如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,小球和车厢相对静止,球的质量为. 已知当地的重力加速度 ,,求: (1)车厢运动的加速度,并说明车厢的运动情况. (2)悬线对球的拉力. 7、如图所示,位于水平地面上质量为M的物块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动,若木块与地面之间的动摩擦因数为μ,求:(1)地面对木块的支持力; (2)木块的加速度大小. 8、如图所示,一个人用与水平方向成的力F=10N推一个静止 在水平面上质量为2kg的物体,物体和地面间的动摩擦因数为 0.25。(cos37o=0.8,sin37o=0.6, g取10m/s2)求:

牛顿第二定律 基础理解

牛顿第二定律基础理解 不定项选择 1、关于运动和力的关系,下列说法中正确的是 A.力是维持物体运动的原因 B.力是改变物体运动状态的原因 C.一个物体受到的合力越大,它的速度越大 D.一个物体受到的合力越大,它的加速度越大 2、关于伽利略理想实验,以下说法正确的是() A.理想实验是一种实践活动 B.理想实验是一种思维活动 C.伽利略的理想实验否定了亚里士多德关于力与运动的关系 D.伽利略的理想实验证实牛顿第二定律 3、下列说法中正确的是( ) A.物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿运动定律又叫惯性定律 B.牛顿第一定律仅适用于宏观物体,只可用于解决物体的低速运动问题 C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例 D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 4、关于速度、加速度、合外力之间的关系,正确的是( ) A.物体的速度越大,则加速度越大,所受的合外力也越大 B.物体的速度为零,则加速度为零,所受的合外力也为零 C.物体的速度为零,但加速度可能很大,所受的合外力也可能很大 D.物体的速度很大,但加速度可能为零,所受的合外力也可能为零 5、下列对力和运动的认识正确的是() A.亚里士多德认为只有当物体受到力的作用才会运动 B.伽利略认为力不是维持物体速度的原因,而是改变物体速度的原因 C.牛顿认为力是产生加速度的原因 D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去

6、由牛顿第二定律表达式F=ma可知 ( ) A.质量m与合外力F成正比,与加速度a成反比 B.合外力F与质量m和加速度a都成正比 C.物体的加速度的方向总是跟它所受合外力的方向一致 D.物体的加速度a跟其所受的合外力F成正比,跟它的质量m成反比 7、关于运动和力的关系,下列说法中正确的是( ) A.当物体所受合外力不变时,运动状态一定不变 B.当物体所受合外力为零时,速度一定不变 C.当物体速度为零时,所受合外力不一定为零 D.当物体运动的加速度为零时,所受合外力不一定为零 8、下列说法正确的是( ) A.物体所受到的合外力越大,其速度改变量也越大 B.物体所受到的合外力不变(F合≠0),其运动状态就不改变 C.物体所受到的合外力变化,其速度的变化率一定变化 D.物体所受到的合外力减小时,物体的速度可能正在增大 9、下列说法正确的是() A.物体受到的合外力方向与速度方向相同时,物体做加速直线运动 B.物体受到的合外力方向与速度方向成锐角时,物体做加速曲线运动 C.物体受到的合外力方向与速度方向成钝角时,物体做减速直线运动 D.物体受到的合外力方向与速度方向相反时,物体做减速直线运动 10、在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法正确的是( ) A.在任何情况下k都等于1 B.在国际单位制中k一定等于1 C.k的数值由质量、加速度和力的大小决定 D.k的数值由质量、加速度和力的单位决定 11、力F1单独作用在物体A上时产生的加速度a1大小为5m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a可能是() A. 5m/s2 B. 2m/s2 C. 8m/s2 D. 6m/s2

牛顿第二定律练习题和答案

~ 牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] % A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 ? 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过 程中,关于小球运动状态的下列几种描述中,正确的是 [ ] . A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] … A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律计算题2汇总

1.(9分)如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以v0=1 m/s 的速度匀速向右运动。现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s2。 (1)求旅行包经过多长时间到达传送带的右端。 (2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件? 2.(18分)如图所示,倾角α=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m 、质量M= 3kg 的薄木板,木板的最右端叠放一质量m=lkg 的小物块,物块与木板间的动摩擦因数μ=3 2.对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l02 /m s . (1)为使物块不滑离木板,求力F 应满足的条件; (2)若F=37.5N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 3.如图所示,一质量为M =4 kg ,长为L =2 m 的木板放在水平地面上,已知木板与地面间的动摩擦因数为0.1,在此木板的右端上还有一质量为m =1 kg 的铁块,小铁块可视为质点,木板厚度不计.今对木板突然施加一个水平向右的拉力.(g =10 m/ ) (1)若不计铁块与木板间的摩擦,且拉力大小为6 N ,则小铁块经多长时间将离开木板? (2)若铁块与木板间的动摩擦因数为0.2,铁块与地面间的动摩擦因数为0.1,要使小铁块相对木板滑动且对地面的总位移不超过1.5 m ,则施加在木板水平向右的拉力应满足什么条件?

牛顿第二定律以专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律两类动力学问题及答案解析

牛顿第二定律两类动力学问题 知识点、两类动力学问题 1.动力学的两类基本问题 第一类:已知受力情况求物体的运动情况。 第二类:已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图: 对牛顿第二定律的理解 1.牛顿第二定律的“五个性质”

2.合力、加速度、速度的关系 (1)物体的加速度由所受合力决定,与速度无必然联系。 (2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。 (3)a=Δv Δt 是加速度的定义式,a与v、Δv无直接关系;a= F m 是加速度的决定式。 3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。如果物体受到的阻力恒定,则( ) 图1 A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动 C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小 解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。至O点时弹力减为零,此后弹力向左且逐渐增大。所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反

牛顿第二定律 提升计算

牛顿第二定律提升计算 1、如图所示,一个质量的物块,在的拉力作用下,从静止开始沿水平面做匀加速直线运动, 拉力方向与水平方向成,假设水平面光滑,取重力加速度,,。(1)画出物体的受力示意图; (2)求物块运动的加速度大小; (3)求物块速度达到时移动的距离。 2、如图所示,质量为10kg的金属块放在水平地面上,在大小为100N,方向与水平成37°角斜向上的拉力作用下,由静止开始沿水平地面向右做匀加速直线运动.物体与地面间的动摩擦因数μ=0.5.2s后撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?(已知sin37°=0.6,cos37°=0.8.g取10m/s2) 3、如图所示,长度l=2m,质量M=kg的木板置于光滑的水平地面上,质量m=2kg的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10N,取 g=10m/s2.求: (1)将木板M固定,小物块离开木板时的速度大小; (2)若木板M不固定,m和M的加速度a1、a2的大小; (3)若木板M不固定,从开始运动到小物块离开木板所用的时间.

4、如图甲所示,t=0时,一质量为m=2kg的小物块受到水平恒力F的作用,从A点由静止开始运动,经过B点时撤去力F,最后停在C点.图乙是小物块运动的速度一时间图象.已知重力加速度g=l0m/s2,求: (1)从第Is末到第2s末,物体运动的距离; (2)恒力F的大小. 5、一质量为的小球用轻细绳吊在小车内的顶棚上,如图所示.车厢内的地板上有一质量为 的木箱.当小车向右做匀加速直线运动时,细绳与竖直方向的夹角为θ=30°,木箱与车厢地板相对静止. (空气阻力忽略不计,取g=10 m/s2) 求: (1)小车运动加速度的大小 (2)细绳对小车顶棚拉力的大小 (3)木箱受到摩擦力的大小 . 6、质量分别为m1和m2的木块,并列放置于光滑水平地面,如图所示,当木块1受到水平力F的作用时,两木块同时向右做匀加速运动,求: (1)匀加速运动的加速度多大? (2)木块1对2的弹力.

高中物理必修一知识讲解 牛顿第二定律 提高(两篇)

牛顿第二定律【学习目标】 1.深刻理解牛顿第二定律,把握 F a m =的含义. 2.清楚力的单位“牛顿”是怎样确定的. 3.灵活运用F=ma解题. 【要点梳理】 要点一、牛顿第二定律 (1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比. (2)公式: F a m ∝或者F ma ∝,写成等式就是F=kma. (3)力的单位——牛顿的含义. ①在国际单位制中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2. ②比例系数k的含义. 根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位. 要点二、对牛顿第二定律的理解 (1)同一性 【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论: ①物体此时受哪些力的作用? ②每一个力是否都产生加速度? ③物体的实际运动情况如何? ④物体为什么会呈现这种运动状态? 【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F. ②由“力是产生加速度的原因”知,每一个力都应产生加速度. ③物体的实际运动是沿力F的方向以a=F/m加速运动. ④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F. 从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性. 因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同. (2)瞬时性 前面问题中再思考这样几个问题: ①物体受到拉力F作用前做什么运动? ②物体受到拉力F作用后做什么运动? ③撤去拉力F后物体做什么运动? 分析:物体在受到拉力F前保持静止. 当物体受到拉力F后,原来的运动状态被改变.并以a=F/m加速运动. 撤去拉力F后,物体所受合力为零,所以保持原来(加速时)的运动状态,并以此时的速度做匀速直线运动. 从以上分析知,物体运动的加速度随合力的变化而变化,存在着瞬时对应的关系.

牛顿第二定律计算题

牛顿第二定律计算题(难度) 1.(17分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为 1m 和2m ,各接触面间的动摩擦因数均为μ。重力加速度为g 。 (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小范围; (3)本实验中, 1m =0.5kg , 2m =0.1kg , μ=,砝码与纸板左端的距 离d=0.1m ,取g=102 /m s 。 若砝码移动的距离超过l =0.002m ,人眼就能感知。 为确保实验成功,纸板所需的拉力至少多大 2.如图所示,竖直光滑的杆子上套有一滑块A,滑块通过细绳绕过光滑滑轮连接物块B,B 又通过一轻质弹簧连接物块C ,C 静止在地面上。开始用手托住A,使绳子刚好伸直处于水平位置但无张力,现将A 由静止释放,当速度达到最大时,C 也刚好同时离开地面,此时B 还没有到达滑轮位置.已知:m A =, m B =1kg, m c =1kg ,滑轮与杆子的水平距离L=。试求: (1)A 下降多大距离时速度最大 (2)弹簧的劲度系数 (3)的最大速度是多少 3.如图甲所示,平板小车A 静止在水平地面上,平板板长L=6m ,小物块B 静止在平板左端,质量m B = 0.3kg ,与A 的动摩擦系数μ=,在B 正前方距离为S 处,有一小球C ,质量m C = 0.1kg ,球C 通过长l = 0.18m 的细绳与固定点O 相连,恰当选择O 点的位置使得球C 与物块B 等高, 且C 始终不与平板A 接触。在t = 0时刻,平板车A 开始运动,运动情况满足如图乙所示S A – t 关系。若BC 发生碰撞,两者将粘在一起,绕O 点在竖直平面内作圆周运动, 并能通过O 点正上方的最高点。BC 可视为质点,g = 10m/s 2 , 求:(1)BC 碰撞瞬间,细绳拉力至少为多少 (2)刚开始时,B 与C 的距离S 要满足什么关系 4.如图所示为某钢铁厂的钢锭传送装置,斜坡长为L =20 m ,高为h =2 m ,斜坡上紧排着一排滚筒.长为l =8 m 、质量为m =1×103 kg 的钢锭ab 放在滚筒上,钢锭与滚筒间的动摩擦因数为μ=,工作时由电动机带动所有滚筒顺时针匀速转动,使钢锭沿斜坡向上移动,滚筒边缘的线速度均为v =4 m/s.假设关闭电动机的瞬时所有滚筒立即停止转动,钢锭对滚筒的总压力近似等于钢锭的重力.取当地的重力加速度g =10 m/s2.试求: (1)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶所需的最短时间; (2)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶的过程中电动机至 C B A L S O 图甲 3 S A t 12 图乙

牛顿第二定律练习题二

项城二高《牛顿第二定律》练习题二(内部资料) 命题人:王留峰日期:2010-12-20 一、选择题 1.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是(B) A.物体立即获得加速度和速度 B.物体立即获得加速度,但速度仍为零 C.物体立即获得速度,但加速度仍为零 D.物体的速度和加速度仍为零 2. 当作用在物体上的合外力不等于零的情况下,以下说法正确的是( BD ). A. 物体的速度一定越来越大 B. 物体的速度可能越来越小 C. 物体的速度可能不变 D. 物体的速度一定改变 3. 关于惯性,下述说法中正确的是( AC ). A. 物体能够保持原有运动状态的性质叫惯性 B. 物体静止时有惯性,一但运动起来不再保持原有的运动状态也就失去了惯性 C. 一切物体在任何情况下都有惯性 D. 在相同的外力作用下,获得加速度大的物体惯性大 4. 如图4–1弹簧的拉力为F2,重物对弹簧的拉力为F3,弹簧对钉子的拉力为F4,下面说 法正确的是( BCD ). A. F2、F3是一对作用力,反作用力 B. F1、F3是一对作用力,反作用力 C. F2、F4是同性质的力 D. F2、F3是一对平衡力

5. 下列说法正确的是( BC ). A. 物体在恒力作用下,速度变化率均匀增大 B. 物体在恒力作用下,速度变化率不变 C. 物体在恒力作用下,速度变化率大小与恒力的大小成正比 D. 物体在恒力作用下速度逐渐增大 6. 质量为m的物体,放在水平支持面上,物体以初速度v0在平面上滑行,已 知物体与支持面的摩擦因数为,μ,则物体滑行的距离决定于( A ). A.μ和v0 B.μ和m C. v0和m D.μ、v0和m 7. 下面说法正确的是( C ). A. 物体受的合外力越大,动量越大 B. 物体受的合外力越大,动量变化量越大 C. 物体受的合外力越大,动量变化率越大 D. 物体动量变化快慢与合外力没关系 8. 如图4–2所示,升降机静止时弹簧伸长8cm,运动时弹簧伸长4cm,则升降机的运动 状态可能是( CD ). A. 以a=1m/s2加速下降 B.以a=1m/s2加速上升 C. 以a=4.9m/s2减速上升 D. 以a=4.9m/s2加速下降 9.一质量为2kg的物体同时受到两个力的作用,这两个力的大小分别为2N和6N,当两个力的方向发生变化时,物体的加速度大小可能为( BCD) A.1m/s2 B.2 m/s2 C.3 m/s2 D.4 m/s2 二、填空题 10. 在平直公路上,汽车由静止出发匀加速行驶,通过距离S后,关闭油门,继续滑行2S 距离后停下,加速运动时牵引力为F,则运动受到的平均阻力大小是 F/3 .

相关主题
文本预览
相关文档 最新文档