当前位置:文档之家› 浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术
浅析飞机复合材料结构修理技术

龙源期刊网 https://www.doczj.com/doc/787545282.html,

浅析飞机复合材料结构修理技术

作者:刘军

来源:《科技创新与应用》2014年第30期

摘要:随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中

被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。

关键词:飞机复合材料;结构修理;技术分析

前言

国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。

1 飞机复合材料结构类型以及损伤类型

目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。

1.1飞机复合材料结构类型

1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同

材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。

1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体

的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。

1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之

间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际

构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。

金属填充复合材料修补金属件知识讲解

金属填充复合材料修 补金属件

金属填充复合材料修补金属件 金属填充复合材料修补金属件 一、为什么使用Loctite? Fixmaster?金属填充复合材料? Loctite? Fixmaster? 金属填充复合材料可为设备因冲击及机械损伤造成的缺陷提供维修解决方案,如套的裂纹,轴及套的磨损等。 Loctite? Fixmaster?金属填充复合材料可有效修复和重建机械设备的损伤不需要加热和焊接。 传统方式 VS. 现代解决方案 传统方式如硬表面堆焊需大量的时间,成本昂贵。Loctite? Fixmaster?金属填充复合材料操作方便,具有优良的抗压强度。可以给设备提供有效的保护。Loctite? Fixmaster?金属填充复合材料和Loctite? Nordbak?耐磨防护剂可修复不同类的磨损,使其可重新投入使用。 二、Loctite? Fixmaster?金属填充复合材料的优点: (1)、快速维修 (2)、可选择钢粉、铝粉或非金属填充 (3)、低收缩率 (4)、耐久维修 (5)、使用方便 (6)、高抗压强度 (7)、不需加热

(8)、可在线维修 (9)、类似金属色 (10)、固化后可钻孔、攻丝和机械加工 (12)、与金属,陶瓷,木材.玻璃和部分塑料良好的粘结力 三、选择Loctite? Fixmaster?金属填充复合材料时需考虑的关键因素 金属修补Loctite? Fixmaster?复合材料填充钢粉或铝粉等不同金属粉末,使在维修时尽可能接近设备本体性能,非金属填充的产品用于修复磨损严重的场合。产品一致性产品粘度满足客户的不同需求,Loctite? Fixmaster?产品粘度分为浇铸型、膏状及棒状可供选择。 特殊需求对于一些特殊场合的应用,汉高拥有一些有特殊性能的产品,如高抗压强度,耐高温或耐磨产品可供选择。 四、表面处理正确的表面处理是这些产品成功应用的关键因素。 好的表面处理可以增加Loctite? Fixmaster?复合材料与部件的粘附力;防止金属表面与Loctite? Fixmaster?复合材料之间锈蚀;延长产品使用寿命。 正确的表面处理必须干净和干燥;无表面及内部化学污染;无锈蚀;表面粗糙度75um以上。 五、产品应用 Loctite? Fixmaster?金属填充复合材料是双组合环氧产品,应用之前必须按正确的比例混合至颜色均一为止。 膏状产品使用时必须紧刮于设备表面且达到所需要的厚度,请注意使用过程中需防止气泡的混入。

复材零件修补方法探索

龙源期刊网 https://www.doczj.com/doc/787545282.html, 复材零件修补方法探索 作者:武彬彬 来源:《科技风》2017年第07期 摘要:随着对飞机性能要求的不断提高,复合材料零件将更加广泛的应用于飞机的各个结构中。已经迅速发展为继铝合金、钛合金之后的又一航空结构材料。但是复合材料零件固然有很多优点,但是,复合材料零件的缺陷修补一直是制约复合材料零件发展的制约条件之一。本文对复合材料零件在实际使用过程中常见的缺陷进行了分类分析,对修补方法进行了初步的研究,为其制定合适的修补方法,减少浪费,降低复合材料应用成本。 关键词:复合材料;缺陷;修补 复合材料零件加工制造过程不同于金属零件,在成型过程中,装配过程中,使用过程中均会出现不同的缺陷。在生产实践中,即使是经过研究和试验制定的合理工艺,在结构件的制造过程还可能产生缺陷,引起质量问题,严重时还会导致整个结构件的报废,造成重大经济损失。因此,研究复合材料,尤其是国产碳纤维复合材料结构件的缺陷分类及维修方法是目前迫切需要解决的问题。 随着我国飞机数量的增加和换代速度的加快,复合材料用量也越来越大,修补的重要性也就越来越凸显。但是,国内在修补方面还是参考国外的一些文献和资料,照葫芦画瓢。而且目前国内对复合材料零件的修补还是没有进行验证,产品设计对此领域还是持保守状态。 对复合材料结构提出的修补要求主要有: ①恢复结构的70%承载能力和使用功能,即恢复结构的基本完整性; ②修理后重量不能增加太多; ③尽量保证原结构外形。 一、缺陷类型 根据目前国内复合材料制件结构及形成时段状态,缺陷存在的类型可以分为以下几类: ①实体层压板缺陷类型:零件分层、贫胶、皱折、鼓包、分层、杂质、打磨过分或伤及纤维的损伤、边缘分层损伤等缺陷。 ②针对复合材料蜂窝夹层件的缺陷类型:蜂窝芯格压缩、蜂窝芯凹陷、芯子与蒙皮分层等缺陷。

(完整word版)飞机夹层结构复合材料零部件的损伤形式及修理方法

常见飞机蜂窝板损伤形式及修理方法 航空器复合材料中的蜂窝板是由薄而强的两层面板中间胶接蜂窝材料而成的一种新型复合材料,也称蜂窝层合结构(见图1)。其面板选材有金属板、玻璃纤维、石英纤维、碳纤维等;夹心材料主要有芳纶、玻璃纤维、铝合金及发泡型结构。蜂窝可制成不同的形状。飞机上的蜂窝结构是由耐腐蚀夹心、面板、衬垫、隔板(假梁)、边肋等零件胶合而成。面板与夹芯之间用胶膜胶接,蜂窝夹芯用芯子胶和耐腐蚀胶根据实际需要形状施加真空压力后加温胶接成型。 图1 蜂窝夹心板结构 一、航空复合材料蜂窝结构损伤种类 根据航空复合材料蜂窝结构部件在使用过程中可能出现损伤的情况,我们可以大致将胶接蜂窝结构部件的损伤分以下5类: 1、表面损伤 图2 典型表面凹坑 此类损伤一般通过目视检查发现,包括表面擦伤、划伤、局部轻微腐蚀、表面蒙皮裂纹、表面小凹坑和局部轻微压陷等。这类损伤一般对结构强度不产生明显的削弱。 2、脱胶及分层损伤

该损伤是指纤维层与层之间或面板与夹芯之间的树脂失效缺陷,主要通过敲击检查、超声波检测等手段发现。此类损伤一般不引起结构外观变化,大多是在生产过程中造成的初始缺陷,并在反复使用过程中缺陷不断扩展而导致的。脱胶或分层面积过大会引起整体复合材料强度的削弱,应及时予以修补。 3、单侧面板损伤 这类损伤包括单侧面板局部压陷、破裂或穿孔,一般通过目视检查即可发现。该类型损伤能使一侧面板和蜂窝夹芯都受到损伤(表面塌陷),对气动性能和结构强度影响较大。一旦发现该类损伤必须经过修理和检验确认后方能能重新使用。 4、穿透损伤 该类型损伤是指蜂窝部件出现穿透性损伤、严重压陷和较大范围的残缺损伤等。此类损伤对结构性能和强度有严重的影响,根据受损情况立即予以修理或按需更换新件。 5、内部积水 该损伤原因主要由于蜂窝结构边缘或蜂窝材料对接边缘密封不严或密封失效,在长期使用过程中由于雨水渗透、油液浸泡以及水汽冷凝而造成蜂窝夹芯出现积水。虽然一般情况蜂窝内部积水不会造成严重影响;但在冬季日夜气温变化较大的情况下,由于积液结冰膨胀将会会造成复合材料部件内部树脂基体脱胶;同时在积液的长期浸泡下也会使复合材料的树脂基体的胶接强度大幅降低而降低部件的整体性能;特别是各类复合材料制备的舵面、襟翼、翼身整流罩及发动机部件等,均应及时检查其内部蜂窝结构的积水情况并作出相应修理措施。目前该类损伤主要通过红外热成像、X-射线检测仪等手段进行检测。 二、蜂窝结构的检查方式 1、目视检查 目视检查法是使用最广泛、最直接的无损检测方法。主要借助放大镜和内窥镜观测结构表面和内部可达区域的表面,观察明显的结构变形、变色、断裂、螺钉松动等结构异常。它可以检查表面划伤、裂纹、起泡、起皱、凹痕等缺陷;尤其对透光的玻璃钢产品,可用透射光检查出内部的某些缺陷和定位,如夹杂、气泡、搭接的部位和宽度、蜂窝芯的位置和状态、镶嵌件的位置等。 2、手锤敲击法 用于单层蒙皮蜂窝结构。用手锤敲击蜂窝结构的蒙皮,根据不同的声响来判断蜂窝结构是否脱胶。敲击时,注意锤头与蒙皮垂直,力度适当,以能判断故障不损坏蒙皮表面为宜。为使判断准确,可先在试件上试验。敲击回声清脆是良好,沉闷是脱粘。 3、外场在位检测的便携式相控阵超声波C扫描检测系统

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

(整理)叶片修复复合材料.

风机叶片修复材料浅谈 内容摘要 风力发电机组长期在恶劣的自然环境中暴露运行,不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击,以及强烈的紫外线照射等外界侵蚀。为了提高损伤修复过程中所使用复合材料的载荷、耐腐蚀和耐冲刷等性能, 必须对所使用叶片修复材料中的树脂基体系统进行精心研究和筛选, 对传统叶片修复工艺进行创新。采用性能优异的环氧树脂, 改善玻璃纤维/树脂界面的粘结性能, 提高叶片的承载能力, 扩大玻璃纤维在大型叶片中的应用范围。研究结果表明叶片修复过程中合理使用的复合材料完全可以达到在恶劣工作环境中长期使用的性能要求。 关键词:风力机; 叶片; 环氧树脂;

引言 随着风力发电机单机功率的不断提高,叶片的质量和尺寸也越来越大,对叶片的要求也越来越高:要求叶片质量轻且分布均匀,外形尺寸精度控制准确;具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片旋转时的振动频率特性曲线正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、抗紫外线照射和抗雷击的性能好;发电成本较低,维护费用最低。叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。因此,轻质高强、耐蚀性好、具有可设计性的玻璃纤维增强环氧树脂复合材料是目前国内大型风机叶片生产及修复的首选材料。 本文主要探讨了风机叶片生产和修复过程中所用的主要材料玻璃纤维增强环氧树脂复合材料,以及PVC材料。

一、叶片损伤原因 为了提高风机的发电效率,风机绝大多数处在地理、气候环境相对恶劣的地区,从而导致风机叶片容易遭受损伤。 其中对于风机叶片发生故障率最大的损伤原因是雷击,而且雷击往往会给风机叶片带来较严重的损伤甚至报废。 其次为风沙磨损、酸雨腐蚀,导致叶片表面出现麻点,影响风机使用寿命。 飞鸟撞击也是造成风机叶片损伤的一大杀手,由于风机所在地人眼稀少,所以飞鸟较多,飞鸟撞击往往会使风机叶片表面大面漆胶衣脱落。 另外由于风机叶片质量和体积较大,所以运输和吊装存在较大难度,不可避免的造成一定程度的损伤,发生率较小但若发生后果不堪设想,可能直接导致叶片报废,不可修复。 最后叶片材料老化也是导致风机叶片损伤的一大原因,但是由于材料质量在不断提高,所以发生概率会越来越小。

飞机铝合金结构的修理方法和应用讲解

2010~2011学年第二学期 飞机结构维修(作业) 专业: 班级学号: 姓名: 授课教师:

飞机铝合金结构的修理方法和应用 摘要:各类飞机大部分以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。因为其密度小、强度高的优点,在航空材料中得以广泛的应用。铝合金结构在使用过程不可避免地受到不同程度的损伤,如蒙皮破孔、梁缘条裂纹、框变形等,因而需要采取相应的方法加以修理,保证各个结构能够在使用中安全负载和工作。 关键词:铝合金结构蒙皮、梁、长桁、隔框、翼肋损伤修理方法 一、飞机铝合金的结构及特点 1. 蒙皮的结构及特点 蒙皮是包围在机翼骨 架外的维形构件,用粘接剂 或铆钉固定于骨架上,形成 机翼的气动力外形。蒙皮除 了形成和维持机翼的气动 外形之外,还能够承受局部 气动力。早期低速飞机的蒙 皮是布质的,而如今飞机的 蒙皮多是用硬铝板材制成 的金属蒙皮。 A340垂直尾翼表面蒙皮

机身蒙皮与机翼蒙皮的作 用和构造相同。如衍梁、衍条、 蒙皮、隔框的不同组合、可以 形成机身的不同构造形式。如 果蒙皮较厚,则衍梁、衍条、 隔柜可以较弱;如果蒙皮较薄, 则上述骨架也应该较强、较多。 机身蒙皮 2 梁的结构及特点 2.1翼梁 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示),剖面多为工字型。翼梁固支在机身上。。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。 2.2衍条与桁梁 衍条的形状、作用与机冀的衍条相似。桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。衍梁的形状与衍条相似,但剖面尺才要大些,其作用与翼梁相似。

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.doczj.com/doc/787545282.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

解析飞机复合材料修理全过程

飞机的复合材料修理:飞机复合材料通常被称为先进复合材料(Advanced Composite Material,ACM)。它使用高强度的纤维增强材料,嵌入在一种树脂基体里,以层或层片的形式叠加起来,形成层板,具有高强度,结实坚硬,能够减轻飞机结构重量,还具有抗腐蚀、破损安全性高等优点。 复合材料的修理工序也极其专业,涉及检查、去除修复损伤、打磨、清洁、制作浸布、铺层、粘接以及固化等众多复杂环节,其特点可用“精细”二字形容。 他们穿着白大褂、戴着口罩和细纱手套……远看你会以为这是一间手术室,其实这里是Ameco复合材料修理车间的洁净室。仅从工作场所上看,已能略猜出一二,复合材料的修理规格不一般。 近年来,复合材料作为飞机结构件的“新宠”,越来越多地被使用在飞机上,如飞机的整流罩、控制面、起落架舱门、大翼和安定面前后缘等部位。据悉,在波音787等一系列先进客机上,复合材料使用的比重甚至超过50%。但提及复合材料的修理,却鲜为人知。 其实,复合材料的修理过程很有意思,就像是为飞机表面做“外科手术”。但整个手术又涉及众多环节,每个环节都能展示出操作者的“十八般武艺”。 诊断:“病情损伤”靠耳朵 复合材料的特点是层面多,有点像“多层三明治”,中间夹层结构是蜂窝芯体,外面覆盖蒙皮,所有材料均由胶膜粘接。蒙皮也有多层,拿飞机大翼盖板来说,从里至外分别由三层碳纤维和一层玻璃纤维组成。 郭玉明是Ameco复合材料车间的一位年轻修理工,他常拿着专业敲击棒在一块襟翼盖板上轻轻敲击。他说,这个方法是为了查出那些从部件表面看不出来的“内伤”,比如开胶或脱层。 “这个地方声音清脆,说明它是完好区域,而这个地方声音沉闷、有点混沌,应该是有脱层。”据郭玉明讲,这份“练耳朵”的能力可不是随便谁都行的,需要多次实战磨炼和领悟。出师2年的郭玉明,当初为了练好这项本领,没少在部件上做“听音练耳”。此外,复合材料损伤的检查方法还有超声波、红外线热成像等。 去除损伤:完美“手术切割”工艺 去除复合材料损伤的工序很讲究。黄景森是Ameco复合材料车间的工艺工程师。据他介绍,切割一块盖板表面的损伤蒙皮,可以用切割片的边缘切去脱层部分。如果是蜂窝芯损坏,工作就会更复杂,要用切割片沿着损伤区域的蒙皮边

飞机结构修理

飞机结构修理 飞机的机体结构通常是由蒙皮和骨架等组成。蒙皮用来构成机翼,尾翼和机身的外形,承受局部气动载荷,以及参与抵抗机翼,尾翼,机身的弯曲变形和扭转变形。骨架包括纵向构件主要包括梁和桁条组成其作用主要是承受机翼、尾翼、机身弯曲时所产生的拉力和压力;横向构件包括翼肋、隔框等,主要用来保持机翼、尾翼和机身的截面形状,并承受局部的空气动力,各类飞机大部分以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。因为其密度小、强度高的优点,在航空材料中得以广泛的应用。铝合金结构在使用过程不可避免地受到不同程度的损伤,如蒙皮破孔、梁缘条裂纹、框变形等,因而需要采取相应的方法加以修理,保证各个结构能够在使用中安全负载和工作。主要介绍飞机铝合金蒙皮、梁、桁、框及肋等结构的维修方法 1.飞机铝合金蒙皮 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮用来构成机翼、尾翼和机身的外形,承受局部空气动力载荷,以及参与抵抗机翼、尾翼、机身的弯曲变形和扭转变形。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。

机身蒙皮与机翼蒙皮的作用和构造相同。如衍梁、衍条、蒙皮、隔框的不同组合、可以形成机身的不同构造形式。如果蒙皮较厚,则衍梁、衍条、隔柜可以较弱;如果蒙皮较薄,则上述骨架也应该较强、较多。 2.梁的结构及特点 翼梁

翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示),剖面多为工字型。翼梁固支在机身上。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。 桁条与桁梁 衍条的形状、作用与机冀的衍条相似。桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。衍梁的形状与衍条相似,但剖面尺才要大些,其作用与翼梁相似。

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

金属填充复合材料修补金属件

金属填充复合材料修补金属件 金属填充复合材料修补金属件 一、为什么使用Loctite? Fixmaster?金属填充复合材料? Loctite? Fixmaster? 金属填充复合材料可为设备因冲击及机械损伤造成的缺陷提供维修解决方案,如套的裂纹,轴及套的磨损等。 Loctite? Fixmaster?金属填充复合材料可有效修复和重建机械设备的损伤不需要加热和焊接。 传统方式 VS. 现代解决方案 传统方式如硬表面堆焊需大量的时间,成本昂贵。Loctite? Fixmaster?金属填充复合材料操作方便,具有优良的抗压强度。可以给设备提供有效的保护。Loctite? Fixmaster?金属填充复合材料和Loctite? Nordbak?耐磨防护剂可修复不同类的磨损,使其可重

新投入使用。 二、Loctite? Fixmaster?金属填充复合材料的优点:(1)、快速维修 (2)、可选择钢粉、铝粉或非金属填充 (3)、低收缩率 (4)、耐久维修 (5)、使用方便 (6)、高抗压强度 (7)、不需加热 (8)、可在线维修 (9)、类似金属色 (10)、固化后可钻孔、攻丝和机械加工 (12)、与金属,陶瓷,木材.玻璃和部分塑料良好的粘结力 三、选择Loctite? Fixmaster?金属填充复合材料时需考虑的关键因素 金属修补Loctite? Fixmaster?复合材料填充钢粉或铝粉等不同金属粉末,使在维修时尽可能接近设备本

体性能,非金属填充的产品用于修复磨损严重的场合。产品一致性产品粘度满足客户的不同需求,Loctite? Fixmaster?产品粘度分为浇铸型、膏状及棒状可供选择。 特殊需求对于一些特殊场合的应用,汉高拥有一些有特殊性能的产品,如高抗压强度,耐高温或耐磨产品可供选择。 四、表面处理正确的表面处理是这些产品成功应用的关键因素。 好的表面处理可以增加Loctite? Fixmaster?复合材料与部件的粘附力;防止金属表面与Loctite? Fixmaster?复合材料之间锈蚀;延长产品使用寿命。正确的表面处理必须干净和干燥;无表面及内部化学污染;无锈蚀;表面粗糙度75um以上。 五、产品应用 Loctite? Fixmaster?金属填充复合材料是双组合环氧产品,应用之前必须按正确的比例混合至颜色均一为止。 膏状产品使用时必须紧刮于设备表面且达到所需要的

abaqus复合材料

复合材料不仅仅是几种材料的混合物。它有一些普通材料所没有的特性。它在潮湿和高温环境、冲击、电化学腐蚀、雷电和电磁屏蔽环境中具有不同于普通材料的特性。 复合材料的结构形式包括层板、夹层结构、微模型、机织预制件等。 复合材料的结构和材料是相同的,并且在结构形成时可以同时确定材料的分布。它的性能与制造过程密切相关,但制造过程非常复杂。由于复合材料结构不同层的材料性能不同,复合材料结构在复杂荷载作用下的破坏模式和破坏准则也各不相同。 在ABAQUS中,复合材料的分析方法如下 1建模 其结构形式决定了其建模方法,可以采用基于连续介质的壳单元和常规壳单元。复合材料应用广泛,但复合材料的建模是一个难点。制作复杂的结构光需要一个月的时间2材料 使用“图纸类型”(图层材质)来建立材质参数。材料参数可以以工程参数的形式给出,也可以通过子选项给出材料强度数据。这种材料只使用平面应力问题。

ABAQUS可以用两种方式定义层压板:复合材料截面定义和复合材料层压板定义复合剖面定义对每个区域使用相同的图层特性。这样,我们只需要创建一个壳组合,将截面属性指定给二维(在网格中定义的常规壳元素)或三维(三维的大小应与壳中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合分析方法简介 复合覆盖定义由复合布局管理器定义,主要用于在模型的不同区域构造不同的层。因此,在定义之前应该先划分区域,并将不同的层分配给不同的区域。它可以根据常规shell的元素和属性进行定义。 传统的壳单元定义每个层的厚度并将其分配给二维模型。根据单元的厚度可以将单元划分为三维单元的厚度方向。 提示:堆栈参考坐标系(放置方向)的定义和每个堆栈坐标系(图层方向)的定义。定义正确的图层角度、图层厚度和图层顺序。ABAQUS无法分析单个层的法向变化超过

用复合材料技术修理金属飞机结构的修理记实_陈绍杰

图1右平尾上蒙皮腐蚀损失情况 用复合材料技术修理金属飞机结构的修理记实 Re p air Practice of Usin g Com p osite Technolo gy for Aircraft Metal Structures ?陈绍杰/沈阳飞机研究所 用 复合材料技术修理金属飞机结构是一项比较新的机体结构修理技 术,90年代已为世界各国普遍采用。该方法实质上是由复合材料结构胶接修理方法发展而来的,此时贴补的胶接补片不是贴在复合材料结构上而是贴在金属结构上。该方法特别适用于金属飞机结构的裂纹的腐蚀等多发性常见损伤,是目前世界上公认的一种优质、高效、低成本的修理方法。原5航空制造工程6杂志已对该项技术作过相应的报道。 任务来源 用复合材料技术修理金属飞机结构,虽然在国际上已是一项成熟的新技术,但在我国国内基本上还是一个空白。有鉴于此,以沈阳飞机制造公司(沈飞)为主,有沈阳飞机研究所参加与希腊的H AI(H ellenic Aeros p ace Industr y )合作成立了/沈阳)Hellenic 飞机修理公司0,拟从希腊引进该项技术,推广应用于国内的军、民机修理业务。HAI 是希腊一家国家控股的国有大型飞机和发动机修理公司,始建于1975年,在欧洲同业者中占有较重要的技术地位。 沈阳)H ellenic 飞机修理公司于1999年7月7日~9日在沈飞公司进行 了第一次采用该技术进行飞机修理,因为这是首次将该技术用于国内飞机的修理实践,故某种程度上带有演示验证的性质。修理材料、修理设备均由希方提供,操作亦由希方为主进行。修理方案和设计及则由双方合作进行。为此希方派来3名技术和操作人员完成了具体的修理工作。 待修结构及损伤情况 待修飞机结构是某型飞机的两个水平尾翼。该机是一架返厂大修的飞机。因该机长期在沿海使用,由环境条件造成多处腐蚀损伤。此次修理的具体对象为该机左右平尾翼尖接近配重处的腐蚀损伤,计有左尾下蒙皮、右平尾上、下蒙皮共3处,具体腐蚀性能 详见表1。 图1给出了一张腐蚀情况的照片,该照片为打磨去除损伤后的情况,从照片上清晰可见损伤严重处的腐蚀深坑。 该机平尾主受力盒的壁板材料为LC9铝合金,相当于7075-T 6,为高强铝合金。该部位除承受静载外,还有翼尖处 用复合材料技术修理金属飞机结构是当今一项比较新的修理技术,本文介绍了在我国首次进行的具有演示验证性质的一次修理实践。

飞机结构修理

飞机结构修理 飞机的机体结构通常就是由蒙皮与骨架等组成。蒙皮用来构成机翼,尾翼与机身的外形,承受局部气动载荷,以及参与抵抗机翼,尾翼,机身的弯曲变形与扭转变形。骨架包括纵向构件主要包括梁与桁条组成其作用主要就是承受机翼、尾翼、机身弯曲时所产生的拉力与压力;横向构件包括翼肋、隔框等,主要用来保持机翼、尾翼与机身的截面形状,并承受局部的空气动力, 各类飞机大部分以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框与起落架都可以用铝合金制造。因为其密度小、强度高的优点,在航空材料中得以广泛的应用。铝合金结构在使用过程不可避免地受到不同程度的损伤,如蒙皮破孔、梁缘条裂纹、框变形等,因而需要采取相应的方法加以修理,保证各个结构能够在使用中安全负载与工作。主要介绍飞机铝合金蒙皮、梁、桁、框及肋等结构的维修方法 1、飞机铝合金蒙皮 蒙皮就是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮用来构成机翼、尾翼与机身的外形,承受局部空气动力载荷,以及参与抵抗机翼、尾翼、机身的弯曲变形与扭转变形。早期低速飞机的蒙皮就是布质的,而如今飞机的蒙皮多就是用硬铝板材制成的金属蒙皮。

机身蒙皮与机翼蒙皮的作用与构造相同。如衍梁、衍条、蒙皮、隔框的不同组合、可以形成机身的不同构造形式。如果蒙皮较厚,则衍梁、衍条、隔柜可以较弱;如果蒙皮较薄,则上述骨架也应该较强、较多。 2、梁的结构及特点 翼梁

翼梁就是最主要的纵向构件,它承受全部或大部分弯矩与剪力。翼梁一般由凸缘、腹板与支柱构成(如图所示),剖面多为工字型。翼梁固支在机身上。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘与腹板组成工字型梁,承受由外载荷转化而成的弯矩与剪力。 桁条与桁梁 衍条的形状、作用与机冀的衍条相似。桁条就是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。衍梁的形状与衍条相似,但剖面尺才要大些,其作用与翼梁相似。

复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究 【摘要】:复合材料是一种新材料,因为其许多特有的优点已经在航空航天、建筑桥梁等领域得到广泛应用,复合材料的损伤修复也逐渐成为研究项目中的热点。其中光修复技术是用得较多的一种,本研究以较常用的复合材料为试件,在简要介绍复合材料的基础上对光修复技术做了详细介绍,期望能为进一步研究复合材料的光修复技术奠定基础。 【关键词】:复合材料;损伤;光修复 引言 复合材料无论是力学性能、损伤情况、失效方面都要比单一材料复杂很多。由于其基体的强度要比增强纤维的强度低很多,导致它抗冲击的性能较差,横向强度以及层间的剪切强度也比较低,当受到局部的冲击时,复合材料普遍会出现纤维断裂、凹痕、剥层、基体破裂等一些损伤现象。而且一旦发生损伤,损伤的区域会在周期性的应力作用下逐渐扩大,进一步影响到复合材料的继续使用。从上个世纪的80年代初,国外已经着手研究和解决复合材料的修复问题,先后投入了大量的人力、物力和资金。到目前为止,美国和欧洲的一些大公司对关于飞机复合材料损伤修理问题开展了较为广泛的研究,并且己经取得一定的成果,但仍然在不断的发展中。早在上个世纪80年代中期,欧美的许多大公司就在飞机的设计文件以及使用手册里面详细规定了复合材料的修复方法,比如美国波音公司的A320维护手册和F-16修理手册。近年来,国内航空航天系统的相关部门对这个问题的紧迫性和重要性已经有所认识,在复合材料的修复问题上也作了许多工作并取得了一些进展,相继成立了空中客车亚洲复合材料结构维修和中国东方航空公司空中客车复合材料结构修理专家系统等致力于研究复合材料修复的机构。但从总体上来看,重视程度依然不够、投资也不足,所以基本上没解决什么问题。对许多缺陷和损伤没有制定明确的修理方法,修理材料、工艺设备等也不够完善。因此,我们通过研究制定关于复合材料的修复手册,更加高效地解决有关复合材料修复的问题,使复合材料能够得到更加广泛的应用。 1.复合材料的性能与特点 复合材料具有很多良好的性能,复合材料代替铝合金结构,可大大降低飞行

飞机复合材料结构设计

7.5 复合材料结构设计 一、复合材料结构设计一般原则 本节主要介绍层压结构和由层压面板构成的夹层结构的设计原则.复合材料结构设计的一般原则从总的方面说与金属结构相似,但其具体内容则有所同,有所不同。相同之处,如传力路线最短等受力构件布置的一些基本原则,又如细节设计中要避免受载偏心,尽量避免开口,开口时注意其形状等一些内容,但由于复合材料与金属材料性质、性能上的不同,在设计原则 的具体内容上必然有很多不同之处。以下我们主要就不同的方面作简要介绍。 1.提高结构效率 针对复合材料的特点,除上述与金属相同的原则外,还应从以下几方面着手: (1)铺层设计中要扬长避短,充分利用复合材料沿纤维方向的优良性能,避免使用其弱的横向性能和剪切性能。 (2)与单纯的层合板不同,对于层压结构耍注意选择合理的结构形式和层板构形,对某些敏感区的局部铺层设计:如在连接区、局部冲击区、集中力作用点、开口附近等处的铺层一般应进行局部调整,在结构尺寸和结构外形突变区注意铺层过渡问题。要注意复合材料层压性带来的某些区域易产生分层,从而可能引发的结构承载能力下降或失效的问题,尽可能采取相应措施(详见本节的三)。 (3)提高结构整体性。复合材料比金属更易制造出形状复杂的构件,并具有可采用共固化工艺制造大型整体件的优点。设计中在不增加工装复杂程度的情况下应尽量减少零件数量,设计成整体件,如大块机翼整体壁板。这样可不用紧固件或减少紧固件的数量,减轻结构重量,提高结构效率,并可减少钻孔、装配的工作量和由孔引起的应力集中以及制造成本。 2.要保证结构中各元件之间的载荷传递 复合材料构件与金属构件不同,除具有一定的形状外,还可以具有不同的层板构形。要使各构件之间(如蒙皮和桁条、冀肋、翼粱之间)和各构件的各个部分之间(如梁的绿条和腹板之间)的承载路径尽量连续。连接的形式与方法应与需传递的载荷性质(拉压、剪切)和方向相适应,尽量避免偏心和切口效应。同一构件须拼接时,其纤维取向也应连续。 3.结构要求良好的工艺性 设计必须保证能制作出保证质量和低成本的结构,尽量避免成形和装配时可能出现的各种缺陷。包括以下各点: (1)避免铺层设计不合理带来的工艺性问题。如铺层、装配不对称或同一铺向角的铺层数集中过多使构件在固化过程中引起弯—拉—扭耦合而产生翘曲变形、树脂裂纹,

复合材料的结构及作用

复合材料的结构及作用 一、复合材料的结构及作用 是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合包装材料一般由基层、功能层和热封层组成。 a.基层也是材料的外层,从商品对包装性能的要求出发,外层应具有良好的光学性能、良好的印刷适性、耐磨、耐热、一定的强度和刚度,这样使包装外观具有极佳的表现力,增加了对消费者的吸引力; b.功能层也是材料的中间层,从商品对包装性能的要求出发,应具有很高的阻隔性以及特殊性能,如防潮性、阻气性、阻氧性、保香性、耐化学性、防紫外线、防静电、防锈等,使内装物得到保护,延长其货架寿命,这是包装功能性的体现; c.热封层也是材料的内层,从商品对包装性能的要求出发,内层与内装物直接接触,起适应性、耐渗透性要好,特别的包装食品的复合材料,内层还应符合食品安全的要求,卫生、无毒、无味,要对其进行封合,因此还要有良好的热封性和粘合性。 复合包装一般要满足以下性能: a.强度性能,包括抗张(拉伸)强度,范围一般在40-100MPa,撕裂强度,范围一般在 0.3-3N,破裂强度范围一般在30-50MPa,热封强度范围一般在20-80N/20mm,另外根据不同使用场合,还要求刚性、耐磨性、断裂伸长率; b.阻隔性能,包括透气性能(透空气、O2、CO2、N2)、防潮性能、透湿性能、透光性能(尤其对特定波长的光线)、保香性能; c.耐候与稳定性能,包括抗油性能、抗化学介质、耐温性能、耐候性能、抗降解性能; d.加工性能,包括自动化包装适性、印刷适性、防静电性能、热收缩与尺寸稳定性; e.安全卫生性能,包括材料成分是否安全,细菌微生物的种类和含量多少,其它一些影响安全卫生的成分; f.其它性能,包括光学性能、透明度、白度、光泽度、废弃物处理的难易、展示性等。 被包物不同,对复合包装材料性能的要求也不同,应从被包物对包装功能的要求出发,选择和设计复合包装材料,使用最少的材料,达到保护内装物的目的,节约成本和资源。二、举例说明 聚乳酸/纳米碳管防静电复合材料。此材料是以纳米碳管为导电料通过球磨和密炼2种方法添加到聚乳酸基体中制备的防静电复合材料。具体工艺流程如下:纳米碳管的纯化处理(p-CNT)——纳米碳管功能化(f-CNT)——球磨法或密炼法混合——热压——成型。 聚乳酸可以看做复合材料的基层,是复合材料的基材框架。PLA是一种新型的生物可降解材料,有较好的生物相容性,属于环境友好型材料,符合绿色环保的要求,并且具有良好的透气性及拉伸强度,但抗冲击性能差,对热不稳定。

相关主题
文本预览
相关文档 最新文档