当前位置:文档之家› 电磁感应中的双杆运动问题的导学案答案

电磁感应中的双杆运动问题的导学案答案

电磁感应中的双杆运动问题的导学案答案
电磁感应中的双杆运动问题的导学案答案

电磁感应中的双杆运动问题

江苏省特级教师戴儒京

有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。

1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离

为L,导轨上面横放着两根质量均为m,电阻均为R(其余部分电阻不计)

的导体棒ab和cd,构成矩形回路。在整个导轨平面内都有竖直向上的磁

感应强度为B的匀强磁场,如图所示,设两导体棒均可沿导轨无摩擦滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动

过程中始终不接触,则(BC )

A、棒ab、cd在运动过程中,回路中始终有感应电流

B、当棒ab、cd的运动稳定后,棒ab、cd有共同速度

C、在运动过程中,产生的的焦耳热最多为

D、在运动过程中,安培力对棒cd做的功数值上等于回路中的电能

2.(2012?宁城县模拟)足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l,导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图2所示,两根导体棒的质量皆为m,电阻皆为R,回路中其余电阻不计,整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B,设两导体棒均可沿导轨无摩擦的滑行,开始时棒cd静止,棒ab有指向棒cd的初速度v0, 若两导体棒在运动中始终不接触,求:

1、运动中产生焦耳热最多是多少?

2、当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

【解析】ab棒向cd棒运动时,两棒和导轨构成的回路的面积变小,穿过它的磁通量也变小,在回路中产生了感应电流,用楞次定律和安培定则判断其方向如图3所示,又由左手定则可

判断ab棒受到的与运动方向相反的安培力作用,作减速运动,

cd棒受到安培力作用作加速运动,在ab棒速度大于cd棒的速

度时,两棒间的距离总会减小,回路中总有感应电流,ab会继

续减速,cd会继续加速,当两棒的速度相等时,回路的面积保

持不变,磁通量不变化,不产生感应电流,两棒此时不受安培

力作用,以相同的速度向右作匀速直线运动。

1、从初始至两棒达到速度相同的过程中,两棒组成的系统受外力之和为零,系统的总动量守恒,有:mv 0 = 2mv ,所以最终作匀速直线运动的速度为:v = v 0 /2

两棒的速度达到相等前,两棒机械能不断转化为回路的电能,最终电能又转化为内能。两棒速度相等后,两棒的机械能不变化,根据能量守恒定律得整个过程中产生的焦耳最多时是两棒速度相等时,而且最多的焦耳热为两棒此时减小的机械能:

222

00

111(2)224

Q mv m v mv =-= 2、设ab 棒的速度变为初速度的3/4时,cd 棒的速度为'

v ,又由动量守恒定律得:

'003

4

mv m v mv =?+ (1)

因ab 和cd 切割磁感线产生的感应电动势方向相反,所以此时回路中的感应电动势为:

'03

4

ab cd E E E Bl v Blv =-=?- (2)

由闭合电路欧姆定律得此时通过两棒的感应电流为:2E

I R

=

…(3) 此时cd 棒所受的安培力为:F = BI l ,联立解得加速度为:204Bl v F a m mR

==

3.(10分)两根足够长的平行光滑导轨,相距1m 水平放置。匀强

磁场竖直向上穿过整个导轨所在的空间B = 0.4 T 。金属棒ab 、cd 质量分别为0.1kg 和0.2kg ,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上。若两棒以相同的初速度3m/s 向相反方向分开,不计导轨电阻,求:

(1)棒运动达到稳定后的ab 棒的速度大小;

(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热; (3)金属棒从开始运动直至达到稳定,两棒间距离增加多少?

3、(10分)(1)ab、cd棒组成的系统动量守恒,最终具有共同速度V,以水平向右为正方向,则m cd V0 – m ab V0 =(m cd + m ab)V ……2分

∴V = 1 m/s ……1分

(2)根据能量转化与守恒定律,产生的焦耳热为:

Q = ?E K减=(m cd+m ab)(V02 – V2)/ 2 = 1.2 J ……2分

(3)对cd棒利用动量定理:

– BIL·?t = m cd(V – V0)

∴ BLq = m cd(V0 – V)……2分

又 q = ?φ /(R1 + R2)= BL?s /(R1 + R2)……2分

∴?s = m cd(V0 – V)(R1+R2)/ B2L2 = 1. 5 m……1分

4.两金属杆ab和cd长均为l,电阻均为R,质量分别为M和m,M>m,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧,两金属杆都处在水平位置,如图4-93所示,整个装置处在一个与回路平面相垂直的匀强磁场中,磁感应强度为B.若金属杆ab正好匀速向下运动,求其运动的速度.

设磁场方向垂直纸面向里.由于M>m,所以ab将向下,cd向上同作加速运动.由于ab 和cd切割磁感线,分别产生感应电动势ε1和ε2,在回路中产生感应电流i,同时ab受到向上的安培力f,cd受到向下的安培力f,随着两杆运动速度增大,安培力f也增大,当两

真题体验

1. 2006年高考广东卷第20题 16.(16分)如图11所示,在磁感应强度大小为B 、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U ”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m 的匀质金属杆1A 和2A ,开始时两根金属杆位于同一竖起面内且杆与轨道垂直。设两导轨面相距为H ,导轨宽为L ,导轨足够长且电阻不计,金属杆单位长

度的电阻为r 。现有一质量为

2

m

的不带电小球以水平向右的速度0v 撞击杆1

A 的中点,撞击后小球反弹落到下层面上的C 点。C 点与杆2A 初始位置相距为S 。求:

(1)回路内感应电流的最大值;

(2)整个运动过程中感应电流最多产生了多少热量;

(3)当杆2A 与杆1A 的速度比为3:1时,2A 受到的安培力大小。

【解析】设撞击后小球反弹的速度为1v ,金属杆1A 的速度为01v ,根据动量守恒定律,

0110)(2

2mv v m

v m +-=, ① 根据平抛运动的分解,有 =S t v 1

22

1gt H =

由以上2式解得=1v H

g

S 2 ② ②代入①得)2(21001H

g S v v +=

③ 回路内感应电动势的最大值为01BLv E m =,电阻为Lr R 2=,所以回路内感应电流的最大

值为=

m I r

H

g s

v B 4)2(0+。 ④

(2)因为在安培力的作用下,金属杆1A 做减速运动,金属杆2A 做加速运动,当两杆速度

大小相等时,回路内感应电流为0,根据能量守恒定律,

220122

1

21mv Q mv ?+= ⑤ 其中v 是两杆速度大小相等时的速度,根据动量守恒定律,mv mv 201=,所以012

1

v v =,

代入⑤式得Q=m 16

1

20)2(H g s v + ⑥ (3)设金属杆1A 、2A 速度大小分别为1v 、2v ,根据动量守恒定律,2101mv mv mv +=

又1321=v v ,所以01143v v =,0124

1

v v =。 金属杆1A 、2A 速度方向都向右,根据右手定则判断1A 、2A 产生的感应电动势在回路中方

向相反,所以感应电动势为)(21v v BL E -=,电流为Lr

E

I 2=,安培力为BIL F =,所以2

A 受到的安培力大小为F=

r

L

B 82)2(0H g s v +。当然1A 受到的安培力大小也如此,只不过方向相反。

答案:16.(1)

r

H

g

s

v B 4)2(0+ (2)Q=m 16

1

20)2(H g s v + (3)F=r L B 82)2(0H g s v + 【点评】金属杆1A 、2A 两杆在同一个金属U 形导轨上都做变速运动,运动方向相同(都向右),同一时刻两杆都切割磁感线产生感应电动势,两个感应电动势在空间中的方向相同(都

向外),但两个感应电动势在回路中的方向相反,所以总电动势是这两个电动势之差,即

)(21v v BL E -=, 电流是R

v v BL I )

(21-=

,方向为金属杆1A 中感应电流的方向,因为1

A 比2A 产生的感应电动势大,安培力是R

v v L B F )

(2122-=,方向都和速度方向相反(都向

左)。 。

2.2004年高考广东卷第15题

15.(15分)如图,在水平面上有两条平行导电导轨MN 、PQ,导轨间距离为l ,匀强磁场垂直 于导轨所在的平面(纸面)向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为12m m 、和1R 2、R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

N

P Q

【解析】 根据右手定则,杆1产生的感应电流方向向上,则杆2中电流方向向下,杆2受的安培力向右,速度向右,设为v ,由于两杆运动时产生的感应电动势在回路中的方向相反,所以,总感应电动势为 )(0v v Bl E -= ①

感应电流 2

1R R I +=

ε

杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 联立以上3式解得:=v )(212

220R R l

B g

m v +-

μ ④

导体杆2克服摩擦力做功的功率 gv m P 2μ= ⑤ 解得 )]([212

2202R R l B g

m v g m P +-

=μμ ⑥

【点评】本例中杆2中由于杆1产生的感应电流流过而受安培力,才产生运动从而产生感应电动势,因为杆2产生的感应电动势与杆1产生的感应电动势在回路中的方向相反,所以总感应电动势为)(0v v Bl E -=,感应电流为2

1R R I +=

ε

,安培力为

F =2

12

02)(R R l v v B BIl +-=

, 3. (2007?江苏模拟)如图所示,水平放置的光滑平行导轨的宽L=0.2m ,轨道平面内有竖直向上的匀强磁场,磁感应强度B=0.5T ,ab 和cd 棒均静止在导轨上,质量相等为m=0.1kg ,电阻相等为R=0.5Ω.现用F=0.2N 向右的水平恒力使ab 棒由静止开始运动,经t=5s ,ab 棒的加速度a=1.37m/s 2,则:

(1)此时ab 和cd 两棒的速度v ab 、v cd 各为多大? (2)稳定时两棒的速度差是多少?

3. (2004全国2)图中

1111a b c d 和2222a b c d 为在同一竖直平面内的金属导轨,处在磁感应强度

为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11a b 段与22a b 段是竖

直的.距离为小1l

11c d 段与22c d 段也是竖直的,距离为2l 。11x y 与22x y 为两根用不可伸

长的绝缘轻线相连的金属细杆,质量分别为

1m 和2m ,它们都垂直于导轨并与导轨保持光滑

接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11x y

上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。(04全国2)

【解析】设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小 21()E B l l v =-

回路中的电流

E

I R =

电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆

11x y 的安培力为

11f Bl I

= ③

方向向上,作用于杆22x y

的安培力 22f Bl I

=

方向向下。当杆作匀速运动时,根据牛顿第二定律有

12120F m g m g f f --+-= ⑤

解以上各式,得

1221()()F m m g

I B l l -+=

- ⑥

1222

21()()F m m g

v R B l l -+=

- ⑦

作用于两杆的重力的功率的大小

12()P m m gv

=+ ⑧

电阻上的热功率

2

Q I R = ⑨

由⑥、⑦、⑧、⑨式,可得 121222

21()()()F m m g P R m m g B l l -+=+-

2

1221()()F m m g Q R

B l l ??-+=??-??

归纳总结:

小结:从以上的分析可以看出处理“双杆滑动”问题要注意以下几点:

1、在分析双杆切割磁感线产生的感应电动势时,要注意是同向还是反向,可以根据切割磁感线产生的感应电流的方向来确定,若同向,回路的电动势是二者相加,反之二者相减。一般地,两杆向同一方向移动切割磁感线运动时,两杆中产生的感应电动势是方向相反的,向反方向移动切割磁感线时,两杆中产生的感应电动势是方向相同的,线圈中的感应电动势是“同向减,反向加”。

2、计算回路的电流时,用闭合电路欧姆定律时,电动势是回路的电动势,不是一根导体中的电动势,电阻是回路的电阻,而不是一根导体的电阻。

3、要对导体杆进行两种分析,一是正确的受力分析,根据楞次定律可知安培力总是阻碍导体杆的相对运动的。也可先判断出感应电流方向,再用左手定则判断安培力的方向。二是正确的进行运动情况分析。这两步是正确选用物理规律基础。

4、合理选用物理规律,包括力的平衡条件、动能定理、动量定理、机械能守恒定律、能量守恒定律、欧姆定律、焦耳定律、楞次定律、法拉第电磁感应定律等。处理这类问题可以利用力的观点进行分析,也可以利用能的观点进行分析,还可以利用动量的观点进行分析。 在利用能的观点进行分析时,要注意导体克服安培力作功的过程是把其它形式的能转化为电能的过程。

1. 电磁感应中“轨道”中的“双杆运动”问题,或者由于两杆的长度不同(如例3),或者

由于两杆的速度不同(如例2、例4),两杆产生的感应电动势往往不等。

2. 两杆产生的感应电动势的方向是否相同,不是看空间方向(如力的方向),而是看回路

中的方向,如相同,则相加,如相反,则相减,往往相反,则总电动势的方向为大者,感应电流的方向与总电动势方向相同。 3. 两杆所受安培力的方向用左手定则分别判断。

4. 运动中克服安培力做的功(功率)等于机械能转变为动能的功(功率),亦即等于焦耳

热(焦耳热功率)。

5. 当速度为变量时,如例5,可用微元法解。在用微元法时要注意:总电动势为

)(21v v BL E -=,电流为)(2121v v R R BL I -?+=,安培力为)(212

12

2v v R R L B F -?+=

6.

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

电磁感应现象教学设计

电磁感应现象教学设计 电磁感应现象教学设计 篇一:电磁感应现象教学设计 一、教材分析 课本从4个层面介绍了电磁感应——定性了解定磁感应现象、掌握感应电动势方向的判定规则和定量计算感应电动势的大小、了解电磁感应的两类情况、了解电磁感应规律在自感涡流电磁阻尼电磁驱动中的应用。 教材对感应电流产生条件、感应电流方向的判定、感应电动势的大小等的处理,全部是从唯象的角度,而且全部是拿磁通量来说事;但实际上,电磁感应存在两种本质完全不同的情况,而且谈论磁通量必须有一个回路,可是一根导体棒切割磁感线却没有回路。这种处理,实际上给学生造成了许多理解和应用上的困难。 不过,教材利用第五节做了一个补充,那么,一轮复习,笔者认为就应该纠回正常思路,先分两种情况说明,然后总结出感应电流产生条件、感应电流方向的判定规则和感应电动势的大小计算的磁通量表述。 另外,一轮复习,第一讲承担着全章知识内容的引领作用,因此本讲可以将本章所涉及的大部分关键模型拿出来与学生见面。 二、学情分析 学生已经自主复习了教材,并自主完成了第一讲资料前后的填空、

辨析和例题、练习,对本章、本讲所涉及的内容和题型都有了较为熟悉的了解。 但是,从练习的完成质量来看,学生对电磁感应的实质、磁通量的变化、楞次定律的综合应用都存在明显困难,这需要老师引导梳理和透彻理解本讲内容、并分类讲解楞次定律的应用思路和技巧。三、教学目标 1、知识与技能:熟练掌握磁通量及其变化的计算方法,理解感应电流的产生条件,深刻理解楞次定律并能够熟练、灵活应用。 2、过程与方法:通过教师的引导,一起重新整理知识脉络,从而加深对本章本节知识内容的理解;同时,通过对练习题的归类分析,从而加深对楞次定律的理解。 3、情感、态度与价值观:培养学生深入学习本章的兴趣和信心。 四、教学重难点 1、磁通量及其变化; 2、感应电流的产生条件; 3、楞次定律、右手定则的理解和应用。五、教学媒体 PPT多媒体课件,《与名师对话》一轮复习资料六、教学时间 七、教学反思 1、本讲第一部分内容——知识串讲部分,结合PPT课件讲快一些,因为特殊原因我的课件未能用成,导致知识串讲部分没有讲完。 2、有教师反映,感生电动势的讲解超纲——高考不考,一轮复习就不应该涉及。 3、楞次定律是电磁感应一章的难点,从后续几讲练习完成情况

§9.4《电磁感应案例分析》导学案2

§9.4《电磁感应案例分析》导学案2 班级 : 姓名: 编写人:陈熠 【学习目标】 1、掌握电磁感应中的图像问题的求解方法。 2、掌握双轻滑杆模型问题的求解方法 【重点、难点】 1.掌握电磁感应中的图像问题的求解方法。 2.掌握双轻滑杆模型问题的求解方法 【合作探究】 1、电磁感应中的图像问题 例1、如图甲所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向内的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一直线上。若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i 随时间t 变化的图像是下图所示的( ) 例2、如图所示,在x ≤0的区域内存在匀强磁场,磁场的方向垂直于xy 平面(纸面)向里。具有一定电阻的矩形线框abcd 位于x y 平面内,线框的ab 边与y 轴重合。令线框从t =0的时刻起由静止开始沿x 轴正方向做匀加速运动,则线框中的感应电流I (取逆时针方向的电流为正)随时间t 的变化图线I —t 图可能是下图中的哪一个?( ) 思考:如何解决此类问题? 2、轻滑杆模型 例1、如图16所示,竖直放置的等距离金属导轨宽0.5 m ,垂直于导轨平面向里的匀强磁场的磁感应强度为B =4 T ,轨道光滑、电阻不计,ab 、cd 为两根完全相同的金属棒,套在导轨上可上下自由滑动,每根金属棒的电阻为1 Ω.今在ab 棒上施加一个竖直向上的恒力F ,这时ab 、cd 恰能分别以0.1 m/s 的速度向上和向下做匀速滑行.(g 取10 m/s2)试求: (1)两棒的质量; (2)外力F 的大小.

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

电磁感应双杆问题

电磁感应双杆问题(排除动量畴) 1.导轨间距相等 例3. (04)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。 解法1:设杆2的运动速度为v ,由于两杆运动时,两 杆间和导轨构成的回路中的磁通量发生变化,产生感 应电动势 )(0v v Bl E -= ① 感应电流 2 1R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([212 2202R R l B g m v g m P +- =μμ ⑤ 解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ① 对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③ 以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212 202R R l B g m v g m P g +- =μμ ⑤ 2. 导轨间距不等 例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11y x 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路上的热功率。 解:设金属杆向上运动的速度为υ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小υ)(21l l B E -= 回路中的电流R E I = 方向沿着顺时针方向 两金属杆都要受到安培力的作用,作用于杆11y x 的安培力为11BIL f =,方向向上;作用于杆22y x 的安培力为22BIL f =,方向向下。当金属杆作匀速运动时,根据牛顿第二定律有 0f f g m g m F 2121=-+-- 2 1 0v

《电磁感应现象》教学设计

《电磁感应现象》教学设计 一、教材分析 电磁感应现象实在学生学习了电学的初步知识和电流能够产生磁场的基础上编排的,是初中电与磁的重点,同时也是电磁学的基础,通过本节课的学习,不仅能加深对电能生磁的理解,同时让学生对电磁学有一个较全面的认识,为下面和以后有关电磁学的学习奠定了基础。此外,电磁感应知识与人们日常生活、生产技术有着密切的联系,因此,学习这部分知识有重要的现实意义。 二、学情分析 初中学生正处于发育、成长阶段,他们对事物存在好奇心,具有强烈的操作兴趣。而且通过前面的学习,已经初步掌握了科学探究的方法,分析问题、应用知识解决问题的能力也有所加强。 三、设计理念 本节课以新课程理念为指导,实施探究式教学,注重培养学生动手、动脑的良好习惯,让学生通过自主探究获得新知识,渗透科学探索的精神。 本节课利用日常生活中的“电”由何而来,引入新课,以激发学生的学习欲望,体现了从生活走向物理。在探究“磁生电”的过程中,采取了“逆向思维”、“科学探究”等方法,使学生始终处于积极的思索之中,把“教学过程”转变为“探究过程”,培养了学生良好的思维习惯和初步的科学实践能力。而在学习发电机的过程中,则以学生自主学习为主,结合图片和模型,解决有关问题,同时通过“三峡工程”和“磁记录”等内容,把所学知识应用与生产实际中,以培养学生的自学能力以及终生的探索乐趣。 四、设计思路 1、三维目标 (1)知识与技能 ①理解电磁感应现象。 ②了解感应电流的方向与导体运动的方向及磁场的方向有关。

③知道发电机的工作原理,知道发电机在工作时能量如何转化。 ④知道我们的生活用电是交流电。 (2)过程与方法 ①通过经历探究“磁生电”的过程,培养学生进行逆向思维和发散思维的能力。 ②通过制作发电机的过程培养学生的动手实践能力,鼓励学生积极开展小 发明、小制作活动。 (3)情感、态度与价值观: ①通过向学生介绍法拉第的生平,培养学生锲而不舍、坚忍不拔的思想品质。 ②通过介绍发电机的发明,是学生了解科技发展是人类社会进步的巨大推动力。 2、教学重点和难点 (1)教学重点:磁如何产生电。 (2)教学难点:电磁感应实验的设计方案和制作小发电机。 3、教学方法 观察实验法、科学猜想、实验探索法、讨论归纳法、多媒体演示、合作探究。 4、学法指导 现代的素质教育有一个更新的观念,就是培养学生的创新精神和实践能力,这其中最主要的因素就是懂得自己去发现问题而不是等别人来提问题,这也是我们以前教学过程中不太注意的,所以,现在我们要注意这些问题的发现。 对现时期的教学来讲,我们不仅要教学生知识,培养学生能力,传播学习的思想方法,重要的是通过这些手段,培养他们的学习能力,为他们今后继续教育或终身教育打下良好的基础。所以教学法部分有:(1)使学生学会发现问题,然后是分析、解决问题的能力。学生只有有了疑问,才有学习的动力,而问题的解决,恰好就是建立新的知识结构的过程,从而培养学生

《电磁感应的发现》导学案1.doc

《电磁感应的发现》导学案 [学习目标定位] 1?能理解什么是电磁感应现象?. 2 ?会使用线圈以及常见磁佚完成简单的实验. 3.能说出磁通量变化的含义. 4?会利用电磁感应产生的条件解决实际问题. 知侃?储备区温故追本溯源推陈方可知新 知识链接 1 ?磁通量的计算公式XBS的适用条件是______________ 且磁感线与平面__________ 若在匀强磁场B中,磁感线与平面不垂直,公式<P=BS中的S应为__________________________ 2.磁通量是标量,但有正、负之分.一般来说,如果磁感线从线圈的正面穿入,线圈的磁 通量就为“ + ”,磁感线从线圈的反面穿入,线圈的磁通量就为“ _________ ”. 3.由阿知,磁通量的变化有三种情况: (1)磁感应强度B不变,___________ 变化; (2) ______________ 变化,有效面积S不变; (3 ______________ 和___________ 同时变化. 新知呈现 一、奥斯特实验的启迪 1820年,__________ 从实验中发现了电流的磁效应,不少物理学家根据__________ 的思考,提出既然电能产生磁,是否也存在_____ 效应,即 ____________ 呢? 二、电磁感应现象的发现 1831年,英国物理学家________ 发现了电磁感应现象.他将“磁生电”现象分为五类:(1) 变化屮的电流;(2)变化中的________ ; (3)运动屮的____________ ;(4)运动屮的_______ : (5)运动中的__________ L 三、电磁感应规律的发现及其对社会发展的意义 1.电磁感应的发现,使人们发明了 ______ ,把_______ 能转化成能;使人们发明了_ ________ ,解决了___ 能远距离传输屮能量大量损耗的问题;使人们制造出了结构简单的. ________ ,反过来把_ 能转化成______________ 能. 2.法拉第在研究电磁感应等电磁现象中,从磁性存在的空间分布逐渐凝聚出“_________ ”的科学创新思想.在此基础上,__________ 建立了电磁场理论,并预言了_____________ 的存在.

高中物理电磁感应双杆模型

电磁感应双杆模型 学生姓名:年级:老师: 上课日期:时间:课次: 电磁感应动力学分析 1.受力情况、运动情况的动态分析及思考路线 导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→…周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动. 2.解决此类问题的基本思路 解决电磁感应中的动力学问题的一般思路是“先电后力”. (1)“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r; (2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力; (3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; (4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 3.两种状态处理 (1)导体处于平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零),列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件. (2)基本思路 注意当导体切割磁感线运动存在临界条件时: (1)若导体初速度等于临界速度,导体匀速切割磁感线; (2)若导体初速度大于临界速度,导体先减速,后匀速运动; (3)若导体初速度小于临界速度,导体先加速,后匀速运动. 1、【平行等间距无水平外力】如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为

电磁感应中的单杆和双杆问题(习题,问题详解)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度; (2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程过ab 的电荷量.关键:在于能量观,通过做功求位移。 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大? 例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下 穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、“双杆”滑切割磁感线型 a b C v 0

(推荐)自编电磁感应导学案

第四章 《电磁感应》 预习作业: 一、磁通量(阅读3-1 第三章磁场88页) 定义: 公式: 单位: 符号: 1、 理解S ? 2、 的量性? 3、 引起的变化的原因? 4、 定性讨论如何确定磁通量的变化? 磁通密度 推导:B=/S ,磁感应强度又叫磁通密度,用Wb/ m 2 表示B 的单位; 习题思考: 1、比较穿过线圈A 、B 磁通量的大小 2、线圈由此时位置向左穿过导线过程,磁通量如何变化? 二、4.1划时代的发现(阅读3-2第一节) 问题1:奥斯特在什么思想的启发下发现了电流的磁效应? 问题2:1803年奥斯特总结了一句话内容是什么? 问题3:法拉第在了奥斯特的电流磁效应的基础上思考对称性原理从而得出 了什么样的结论? 问题4:其他很多科学家例如安培、科拉顿等物理学家也做过磁生电的试验可他们都没有成功他们问题出现在那里? 问题5:法拉第经过无数次试验经历10年的时间终于领悟到了什么? C d b a

问题6:什么是电磁感应?什么是感应电流? 三、4.2探究感应电流产生的条件(阅读课本第二节) 1、初中学习过电磁感应现象产生的条件? 2、阅读实验,猜想实验现象? 演示:导体左右平动,前后运动、上下运动。猜想电流表的指针变化?导体棒的 运动 表针摆 动方向 导体棒的 运动 表针摆 动方向向右平动向后平动 向左平动向上平动 向前平动向下平动 结论: 开关和变阻器的状态线圈B中有无电 流 开关闭合瞬间 开关断开瞬间

演示:把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中,猜想电流表的指针变化? 演示:线圈A 通过变阻器和开关连接到电源上,线圈B 的两端与电流表连接,把线圈A 装在线圈B 的里面。猜想以下几种操作中线圈B 中是否有电流产生,记录在下表中。 开关闭合时,滑动变阻器不动 开关闭合时,迅速移动变阻器的滑片 结论: 导体棒的运动 表针摆动方向 导体棒的运动 表针摆动方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论:

电磁感应,杆,双杆模型(教师版)

第九章冲刺985深化内容 电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型) 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 模型一 单杆+电阻+导轨模型 [初建模型] [母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 [思路点拨] [解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+1 2mv m 2 又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θ B 4L 4。 [答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2 ,方向沿导轨平面向下 (2)1 2 mgx sin θ-m 3g 2R 2sin 2θ B 4L 4 [内化模型] 单杆+电阻+导轨四种题型剖析 杆以速度v 切割

电磁感应中的双杆运动问题

电磁感应中的双杆运动问题 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 例1.2006年高考重庆卷第21题 两根相距为L 的足够长的金属直角导轨如题21图所示放置, 它们各有一边在同一水平内,另一边垂直于水平面。质量均 为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆 与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电 阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上 的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下 以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀 速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为μmg +R V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ=1 222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断 1、因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg+R V L B 2122,A 正确; 2、因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =,或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为R V L B f 2122μ=,总之,B 错误; 3、因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为R BLV I 21=,C 错误; 4、根据B 中mg f =和R V L B f 2122μ=,得μ=1 222V L B Rmg ,所以D 正确。 本题答案为AD 。 【点评】ab 杆和cd 杆两杆在同一个金属直角导轨上都做匀速运动,因为ab 杆切割磁感线而cd 杆不切割磁感线,所以感应电动势是其中一个杆产生的电动势,即1BLV E =,而不是)(21V V BL E +=, 电流是R BLV I 21=,而不是R V V BL I 2)(21+=。

电磁感应的发现导学案2

《电磁感应的发现》导学案 1.法拉第把引起电流的原因概括为五类,它们都与变化和运动相联系,即:变化中的 电流、变化中的磁场、运动中的恒定电流、运动中的磁铁、运动中的导体.] 2.在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步,在对以() 下几位物理学家所做科学贡献的叙述中,不正确的说法是 A .库仑发现了电流的磁效应 B .爱因斯坦创立了相对论 C .法拉第发现了电磁感应现象 D .牛顿提出了万有引力定律奠定了天体力学的基础A 答案ABCD 项正确.、奥斯特发现电流的磁效应,解析、错误,3() .关于磁通量,下列说法中正确的是A .磁通量不仅有大小,而且有方向,所以是矢量B .磁通量越大,磁感应强度越大C .通过某一面的磁通量为零,该处磁感应强度不一定为零D .磁通量就是磁感应强度C 答案AΦBSΦBSΦ较大,有可知和解析磁通量是标量,故由不对;由两个因素决定,=⊥⊥SB Φ=可能是由于不对;由较大造成的,所以磁通量越大,磁感应强度越大是错误的,故⊥BSS0Φ0BC对;可知,当线圈平面与磁场方向平行时,,但磁感应强度=,不为零,故=⊥⊥D 不对.磁通量和磁感应强度是两个不同的物理量,故 【概念规律练】磁通量的理解及其计算知识点一 11100L0.20 m的正方形,放在磁匝的线圈,其横截面是边长为.如图所示,有一个=B0.50 T的匀强磁场中,线圈平面与磁场垂直.若将这个线圈横截面的形状由感应强度为=() ,在这一过程中穿过线圈的磁通量改变了多少?横截面的周长不变正方形改变成圆形

1 图 3-5.510 Wb ×答案 线圈横截面为正方形时的面积解析22222-. 4.010SL (0.20)m m×===1穿过线圈的磁通量22--ΦWb WbBS0.504.0102.010×===××11r4L/2π2L/π. =横截面形状为圆形时,其半径=422 mπ(2L/π)S==截面积大小25π2穿过线圈的磁通量2-Φ2.5510Wb. BS0.504/(25π) Wb ××=≈=22所以,磁通量的变化23--ΦΦΔ10Wb Wb5.510Φ(2.552.0)=×--×==12ΦBS 的计算有几点要注意:=点评磁通量(1)S 是指闭合回路中包含磁场的那部分有效面积;B 是匀强磁场中的磁感应强度.(2)磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数的影响.同理,磁通量ΔΦΦΦΦΔΦ时,不必去考虑也不受线圈匝数的影响.所以,直接用公式求的变化量-=、12n. 线圈匝数22θB,线.如图角,磁感线竖直向下,设磁感应强度为所示,线圈平面与水平方向成SΦ________. =圈面积为,则穿过线圈的磁通量

电磁感应教学设计

电磁感应教学设计 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉 提问:根据实验目的,本实验应选择哪些实验器材?为什么?

师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书: 〈实验表明:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。这种现象叫做电磁感应,产生的电流叫做感应电流。〉

4.5 电磁感应现象的两类情况 第1课时 导学案 (人教版选修3-2)

高二物理 (4.5 电磁感应现象的两类情况 第1课时)导学提纲 §4.2 探究感应电流的产生条件 ) 导学提纲 【自主学思】 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是 不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作 ,另外一种是 不动,由于磁场变化引起磁通量的变化而产生的电动势称作 。 1、感应电场:19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的 磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫 ,静电场的电场线是由 发出,到 终止,电场线 闭合,而感应电场是一种涡旋电场,电场线是 的,如图所 示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 感应电场是产生 或 的原因,感应电场的方向也可以由 来判断。感应电流的方向与感应电场的方向 。 2、感生电动势:(1)产生:磁场变化时会在空间激发 ,闭合导体中的 在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。(2)定义:由感生电场产生的感应电动势称为 。 (3)感生电场方向判断: 定则。 3、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢? 导体切割磁感线产生的感应电动势与哪些因素有关? 它是如何将其他形式的能转化为电能的? 动生电动势(1)产生: 运动产生动生电动势(2)大小:E= (B 的方向与v 的方向 ) 1、自主探究 一、电磁感应现象中的感生电场 常用电源的电动势是由非静电力移动电荷做功使电源两极分别带上异种电荷,电磁感应现象中的感应电动势又是怎样产生的呢? 1、感生电场:右图所示,一个闭合电路静止于磁场中,当磁场由弱变强时,闭合电路中产生了感应电动势与感应电流,这时又是什么力相当于非静电力促使电荷发生定向移动的? 2、阅读课本例题,回答下列问题: ①真空室内的磁场由谁提供?当电磁铁的电流恒定时,真空室内的电子受力如何? ②当电磁铁中通有图示方向均匀减小的电流时,所激发的磁场和感应电场怎样?真空室中的电子受力怎样?能使电 班级 姓名 小组 【学习目标】 1.知道电磁感应现象中的感生电场及共作用。 2.会用相关公式计算电磁感应问题。 3.了解电磁感应现象中的洛伦兹力及其作用。 【教学重、难点】 1.感生电动势和动生电动势产生的原因。 2.电磁感应问题的计算。 B E

【精品】自编电磁感应导学案

第四章《电磁感应》 预习作业: 一、磁通量(阅读3—1第三章磁场88页) 定义: 公式:单位:符号: 1、理解S? 2、的量性? 3、引起的变化的原因? 4、定性讨论如何确定磁通量的变化? 磁通密度 推导:B=/S,磁感应强度又叫磁通密度,用Wb/m2表示B的单位; 习题思考:

1、比较穿过线圈A、B磁通量的大小 2、线圈由此时位置向左穿过导线过程,磁通量 如何变化? 二、4.1划时代的发现(阅读3—2第一节) 问题1:奥斯特在什么思想的启发下发现了电流的磁效应? 问题2:1803年奥斯特总结了一句话内容是什么? 问题3:法拉第在了奥斯特的电流磁效应的基础上思考对称性原理从而得出了什么样的结论?问题4:其他很多科学家例如安培、科拉顿等物理学家也做过磁生电的试验可他们都没有成功他们问题出现在那里? 问题5:法拉第经过无数次试验经历10年的时间终于领悟到了什么? 问题6:什么是电磁感应?什么是感应电流?

三、4.2探究感应电流产生的条件(阅读课本第二节) 1、初中学习过电磁感应现象产生的条件? 2、阅读实验,猜想实验现象? 演示:导体左右平动,前后运动、上下运动。猜想电流表的指针变化? 演示:把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中,猜想电流表的指针变化? 演示:线圈A 通过变阻器和开关连接到电源上,线圈B 的两端与电流表连接,把线圈A 装在线圈B 的里面。猜想以下几种操作中线圈B 中是否有电流产生,记录在下表中。 导体棒的运动 表针摆动方向 导体棒的 运动 表针 摆动 方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论: 开关和变阻器的状态 线圈B 中有无电流 开关闭合瞬间 开关断开瞬间 开关闭合时,滑动变阻器不动 开关闭合时,迅速移动变阻器的滑片 结论: 导体棒的运动 表针摆动方向 导体棒的 运动 表针 摆动 方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论:

高中物理 4.4法拉第电磁感应定律导学案1(新人教版)选修

高中物理 4.4法拉第电磁感应定律导学案1(新 人教版)选修 法拉第电磁感应定律 【学习目标】 1、知道感应电动势,及决定感应电动势大小的因素; 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、; 3、知道E=BLvsinθ如何推导; 5、会用解决问题。 【重点、难点】 重点:理解法拉第电磁感应定律内容、数学表达式,知道公式E=BLvsinθ的推导过程;难点:知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、。预习案【自主学习】 1、在电磁感应现象中产生的电动势,叫做、产生感应电动势的那部分导体就相当于,导体的电阻相当于、 2、电路中感应电动势的大小,跟穿过这一电路的磁通量成正比,表达式E=(单匝线圈),E=n(多匝线圈)、当导体切割磁感线产生感应电动势时E= (

B、L、v两两垂直),E=(v⊥L但v与B夹角为θ)、3、关于感应电动势,下列说法中正确的是( ) A、电源电动势就是感应电动势 B、产生感应电动势的那部分导体相当于电源 C、在电磁感应现象中没有感应电流就一定没有感应电动势 D、电路中有电流就一定有感应电动势 4、穿过一个单匝线圈的磁通量始终保持每秒钟均匀地减少2 Wb,则( ) A、线圈中感应电动势每秒钟增加2 V B、线圈中感应电动势每秒钟减少2 V C、线圈中无感应电动势 D、线圈中感应电动势保持不变 5、一根导体棒ab在水平方向的匀强磁场中自由下落,并始终保持水平方向且与磁场方向垂直、如图1所示,则有( )图1 A、Uab=0 B、Ua>Ub,Uab保持不变 C、Ua≥Ub,Uab越来越大 D、Ua

电磁感应中的“双杆问题要点

问题3:电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。 由以上各式并代入数据得N (2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代 入数据得Q=1.28×10-2J。 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

3-2电磁感应导学案.docx

第一、二节划时代的发现探究电磁感应的产生条件 【学习过程】 1.到了18世纪末,人们开始思考不同自然现象之问的联系,一些科学家相信电与 磁之间存在着某种联系,经过艰苦细致地分析、试验,_________________ 发现了电生磁, 即电流的磁效应;__________ 发现了磁生电,即电磁感应现象。 2.____________________ 定义:的现象称为电磁感应现象。在电磁感应现象屮所产生的电流称为____________ □ 练习1: 1.发电机的基本原理是电磁感应。发现电磁感应现象的科学家是() A.奥斯特 B.赫兹 C.法拉第 D.麦克斯韦 2.______________________________ 发现电流磁效应现象的科学家是 ,发现通电导线在磁场中受力规律的科 学家是_________ ,发现电磁感应现象的科学家是_______________ ,发现电荷间相互作用 力规律的的科学家是__________ o 3.下列现象屮属于电磁感应现象的是() A.磁场对电流产生力的作用 B.变化的磁场使闭合电路屮产生电流 C.插在通电螺线管屮的软铁棒被磁化 D.电流周围产生磁场 3.产生感应电流的条件:_______________________________________________ 练习2: 题型一:电磁感应与电流磁效应 4.许多科学家在物理学发展中做出了重要贡献,下列表述中正确的是(). A.卡文迪许测出引力常数 B.法拉第发现电磁感应现象 C.安培提出了磁场对运动电荷的作用力公式 D.库仑总结并确认了真空中两个静止点电荷之间的相互作用规律

相关主题
文本预览
相关文档 最新文档