当前位置:文档之家› 几种常用板式换热器

几种常用板式换热器

几种常用板式换热器
几种常用板式换热器

混合式热交换器是依赖冷、密封垫。热流体直接接触而进行传热的,这种传热方式避免了传热间壁及其两侧的污垢热阻,只要流体间的接触情况良好,就有较大的传热速率。故凡答应流体相互混合的场合,都可以采用混合式热交换器,例如气体的洗涤与冷却、轮回水的冷却、汽-水之间的混合加热、蒸汽的冷凝等等。它的应用遍及化工和冶金企业、动力工程、空气调节工程以及其它很多出产部分中。

按照用途的不同,可将混合式热交换器分成以下几种不同的类型:

冷却塔(或称冷水塔)在这种设备中,用天然透风或机械透风的方法,将出产中已经进步了温度的水进行冷却降温之后轮回使用,以进步系统的经济效益。例如热力发电厂或核电站的轮回水、合成氨出产中的冷却水等,经由水冷却塔降温之后再轮回使用,这种方法在实际工程中得到了广泛的使用。

气体洗涤塔(或称洗涤塔)在产业上用这种设备来洗涤气体有各种目的,例如用液体吸收气体混合物中的某些组分,除净气体中的灰尘,气体的增湿或干燥等。但其最广泛的用途是冷却气体,而冷却所用的液体以水居多。空调工程中广泛使用的喷淋室,可以以为是它的一种特殊形式。喷淋室不但可以像气体洗涤塔一样对空气进行冷却,而且还可对其进行加热处理。但是,它也有对水质要求高、占地面积大、水泵耗能多等缺点:所以,目前在一般建筑中,喷淋室已不常使用或仅作为加湿设备使用。但是,在以调节湿度为主要目的的纺织厂、卷烟厂等仍大量使用!

喷射式热交换器在这种设备中,使压力较高的流体由喷管喷出,形成很高的速度,低压流体被引入混合室与射流直接接触进行传热,并一同进入扩散管,在扩散管的出口达到统一压力和温度后送给用户。

混合式冷凝器这种设备一般是用水与蒸汽直接接触的方法使蒸汽冷凝。

ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐

/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式换热器板片和垫片。全球约有1/5的板式换热器正在使用ARD艾瑞德板式换热器(江阴)有限公司提供的换热器配件或接受ARD艾瑞德板式换热器(江阴)有限公司的维护服务(包括定期清洗、维修及更换配件等维护服务)。

无论您身在何处,无论您有什么特殊要求,ARD艾瑞德板式换热器(江阴)有限公司都能为

您提供板式换热器领域的系统解决方案。

板式换热器在线清洗方案及操作步骤

板式换热器维护保养得必要性 板式热交换器虽说经久耐用,但长期使用后,由于密封圈发生劣化、污渍附着等原因难以维持原有的性能,有时会发生漏液等各种问题。为了使板式热交换器更加长久地、安定地、在最佳状态下能够得以使用,定期进行维修保养是不可或缺的。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德在保证密封圈等各种更滑零部件库存的同时,还根据客户的需要,提供各种丰富的服务,例如,派遣熟练的技术人员进行上门维修保养以及“取回厂检查整修”的“全套餐服务”等等。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德公司积累了丰富的技术经验,并将最先进的传热板技术传播到了全世界。这样的 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德才能够提供“放心”和“信赖”的维修保养服务。若长期不注意维护保养...

拆解清洗服务方案 为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当 地服务”等丰富的服务菜单,开展维修保养服务。 维修保养服务以“取回厂检查整修”和“现场清洗维护”为主,“取回厂检查整修”将客户的板式热交换器主机取回保养,在恢复最佳状态后送返。“现场清洗维护” 是公司专业工程师携带专业设备到用户现场进行作业,时间短,效率高,不会耽误客户生产经营。此外,还提供咨询等各种服务菜单,帮助客户维持板式热交换器的最佳状态。 客户可以根据使用条件和状况选择服务种类,因此可以通过多种方式维护机器的最佳运转状态。 拆卸清洗维护步骤:

板式换热器在线清洗方案 清洗工艺方式有:循环、喷淋等、浸泡。 清洗工艺步骤及操作标准 一.首先根据换热器的换热面积及结垢厚度,计算出需要准备的清洗剂 原液数量。 二. 根据换热器的管路容积,准备好盛清洗剂的容器,能满足循环需要 即可,容器内表面要求干净无氧化层或者使用非金属材质的容器。 三. 根据换热器内部循环压力要求,准备好可供循环的工业离心泵,准 备好泵与换热器及容器的连接管路,必要时要制作法兰连接。 四. 根据垢层厚度或者是清洗时间来确定是否需要对清洗剂原液进行稀 释,稀释比例根据情况不同可控制在 1:1~1:5 之间。 五. 在容器内倒入足够量的清洗剂并连接好管路,开启关对换热设备进 行循环清洗。换热设备不用拆卸,可在线清洗。 六. 循环清洗过程中由于清洗剂与垢质发生化学反应,在溶液槽内可发现有明显溶解的垢质杂质及泡沫。 七. 清洗一段时间后,在溶液内加入清洗剂原液提高溶液浓度继续清洗。 八. 清洗一段时间后,把循环管路的进、出口调换进行反循环清洗。 九. 清洗过程中要时刻对溶液进行测试,保持溶液浓度在有效范围之内,直到溶液浓度长时间再没有变化时,说明换热设备已经清洗干净。 十. 在容器内换入清水进行循环清洗置换,把残留在设备内的已经剥离的垢质和其它杂质冲洗干净,清洗过程也需要调换进、出口管路进行反复冲洗。 十一.使用清洗剂也可对设备进行浸泡清洗。

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修) 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器是液—液、液—汽进行热交换的理想设备。它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。本课件由暖通南社独立完成整合编辑,欢迎转载,但请注明出处。 板式换热器基本结构及运行原理 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹

板、水平平直波纹板和瘤形板片三种。 钎焊换热器结构 板式换热器主要结构 ⒈板式换热器板片和板式换热器密封垫片 ⒉固定压紧板 ⒊活动压紧板 ⒋夹紧螺栓 ⒌上导杆 ⒍下导杆 ⒎后立柱 由一组板片叠放成具有通道型式的板片包。两端分别配置带有接管的端底板。 整机由真空钎焊而成。相邻的通道分别流动两种介质。相邻通道之间的板片压制成波纹。型式,以强化两种介质的热交换。在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。

图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。 板式换热器所有备件都是螺杆和螺栓结构,便于现场拆卸和修复。 运行原理 板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。

板式换热器反冲洗清洗方法的原理

板式换热器反冲洗清洗方法简介 通过对板式换热器换热原理,结垢、堵塞原因的分析,我们提出一种换热器反冲洗清洗维护方法。该方法是利用系统高压水所产生的能量,对换热面上的垢层进行反向冲击,使之脱离换热器板片,排出循环系统。经过长期实践,事实这种方法效果十分明显。 板式换热器反冲洗清洗方法操作过程 板式换热器一次侧排污操作方法: A、关闭换热器一次侧接口处供回水球阀1、2,打开一次侧排污球阀4,和一次侧排气阀3,使换热器内一次侧留存的水全部泄空; B、关闭一次侧排污阀4,迅速打开换热器一次侧回水球阀2,当排气阀3见水后,关闭换热器一次侧回水球阀2; C、打开换热器一次侧排污球阀4,泄空换热器一次侧存水,迅速打开一次供水球阀1,进行排污,待排出的液体澄清后,关闭排污球阀,上述操作连续进行2次; D、打开换热器排气阀3,同时开启一次回水球阀2,待换热器内充满水后,打开供水球阀1,恢复正常运行,换热器一次侧反冲洗清洗完成。

板式换热器二次侧排污操作方法 A、关闭换热器二次侧接口处供回水球阀5、6,打开二次侧排污球阀8,和二次侧排气阀7使换热器内二次侧的存水全部泄空; B、关闭二次侧排污阀8,迅速打开换热器二次侧回水球阀6,当排气阀7见水后,关闭换热器二次侧回水球阀6; C、打开换热器二次侧排污球阀8,泄空换热器内的水,迅速打开二次供水球阀5,进行排污,待排出的液体澄清后,关闭排污球阀,上述操作连续进行3-5次; D、打开换热器排气阀7,同时开启二次回水球阀6,待换热器内充满水后,打开供水球阀5,换热器一次侧恢复正常运行。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

板式换热器结垢的清洗方法

板式换热器结垢的清洗方法 板式换热器结垢的原因及其危害进行了分析,着重阐述了集中供热生产运行中,板式换热器结垢后的处理方式,并提出了相应的解决措施 近年来,板式换热器以其重量轻、占地面积小、投资少、换热效率高、组装灵活、结垢易于清除等特点,及其在供热工作中所起的作用,越来越受到供热企业的高度重视,并逐步推广使用,以取代原有的管壳式换热器。但由于板式换热器流通截面较小,结垢后容易产生堵塞,使板式换热器的换热效率降低,影响了设备的安全和用户的正常用热。因此,解决板式换热器的清洗,防止水垢的形成,将成为确保安全生产和经济运行的重要课题。 1.板式换热器结垢堵塞的主要原因及其危害 板式换热器在使用过程中,由于水处理设备运行不当,水质控制不达标,将不合格的软化水注人供热系统中,使水中的钙、镁、碳酸盐遇热后分解为碳酸钙和氢氧化镁沉淀物钻结在换热器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成了换热器换热效率的降低以及热能的严重浪费,从而影响了供热的效果,给供热单位造成了严重的负面影响。 2 板式换热器结垢的清洗方式 2.1 清洗剂的选择

清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。根据换热器结垢和工艺、材质和水垢成分分析得出:. 1) 换热器流通面积小,内部结构复杂,清洗液若产生沉淀不易排放。 2) 换热器材质为镍钦合金,使用盐酸为清洗液,容易对板片产生强腐蚀,缩短换热器的使用寿命。 通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加人缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。 通过对水垢样本的化学试验研究表明,甲酸能够有效地清除水垢。通过酸液浸泡试验,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。 2.2 清除水垢的基本原理 1) 溶解作用:酸溶液容易与钙、镁、碳酸盐水垢发生反应,生成易溶化合物,使水垢溶解。

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

换热器基本知识

一、换热器的结构型式有哪些? 换热器是很多工业部门广泛应用的一种常见设备,通过这种设备进行热量的传递,以满足生产工艺的需要。可按用途、换热方式、结构型式三种不同的方法进行分类。按结构型式分类如下: 换热器分为管式换热器、板式换热器、新型材料换热器和其他型式的换热器。 管式换热器又分为:套管式换热器、管壳式换热器、沉浸式换热器、喷淋式换热器和翅片管式换热器。 板式换热器又分为:夹套式换热器、平板式换热器、伞板式换热器、螺旋板式换热器、板翅式换热器和板壳式换热器。 新型材料换热器分为:石墨换热器、聚四氟乙烯换热器、玻璃换热器和钛材及其他稀有金属材料换热器。 其他形式的换热器包括回转式换热器和热管。 二、换热器管为什么会结垢?如何除垢? 因为换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高时从水中结晶析出,附着于换热管表面,形成水垢。在冷却水中加入聚磷酸盐类缓冲剂,当水的PH值较高时,也可导致水垢析出。初期形成的水垢比较松软,但随着垢层的生成,传热条件恶化,水垢中的结晶水逐渐失去,垢层即变硬,并牢固地附着于换热管表面上。 此外,如同水垢一样,当换热器的工作条件适合溶液析出晶体时,换热管表面上即可积附由物料结晶形成的垢层;当流体所含的机械杂质有机物较多、而流体的流速又较小时,部分机械杂质或有机物也会在换热器内

沉积,形成疏松、多孔或胶状污垢。 换热器管束除垢的方法主要有下列三种。 一、手工或机械方法 当管束有轻微堵塞和积垢时,借助于铲削、钢丝刷等手工或机械方法来进行清理,并用压缩空气,高压水和蒸汽等配合吹洗。当管子结垢比较严重或全部堵死时,可用管式冲水钻(又称为捅管机)进行清理。 二、冲洗法 冲洗法有两种。第一种是逆流冲洗,一般是在运动过程中,或短时间停车时采用,可以不拆开装置,但在设备上要预先设置逆流副线,当结垢情况并不严重时采用此法较为有效。 第二种方法是高压水枪冲洗法。对不同的换热器采用不同的旋转水枪头,可以是刚性的,也可以是绕性的,压力从10MPa至200MPa自由调节。利用高压水除污垢,无论对管间、管内及壳体均适用。高压水枪冲洗换热器效果较好。应用广泛。 三、化学除垢 换热器管程结垢,主要是因为水质不好形成水垢及油垢的结焦沉淀和粘附两种形式,用化学法除垢,首先应对结垢物质化验分析,搞清结垢物性质,就可以决定采用哪种溶剂清洗。一般对硫酸盐和硅酸盐水垢采用碱洗(纯碱、烧碱、磷酸三钠等),碳酸盐水垢则用酸洗(盐酸、硝酸、磷酸、氟氢酸等)。对油垢结焦可用氢氧化钠、碳酸钠、洗衣粉、液体洗涤剂、硅酸钠和水按一定的配比配成清洗液进行清洗。采用化学清洗的办法,现场需要重新配管,比较花费时间。

板式换热器换热量的计算

板式换热器例题 1、换热器换热量的计算 w t Gc Q 1046750)2065(41873600 20000=-??=?= 2、外网进入热水供应用户的水流量 s kg t c Q G /10) 7095(418710467500=-=?= 3、加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。 200206.02 .9705.010m w G f r r r =?==ρ 4、被加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。 201868.02 .9913.0360020000m w G f l l l =??==ρ 5、选型 初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。 6、实际流速 加热水流道数为 2810 72.00206.03=?==-d r r f f n 被加热水流道数为 261072.001868.03=?== -d l l f f n 取流道数为28。 加热水实际流速 s m f n G w r d r r /5.02 .9701072.0281030=???==-ρ 被加热水实际流速 s m f n G w l d l l /28.02 .9911072.02856.53=???==-ρ 7、传热系数 查图知传热系数为3600w/m 2.K 。 8、传热温差

()()()()℃396595207065952070) ()() ()(112 21122=-----=-----=?In t t In t t t p ττττ 9、传热面积 246.739 36001046750m t K Q F p =?=?= 10、需要的片数 6212 .046.7===d F F N 11、实际片数 考虑一个富裕量。 62×1.25=78

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

板式换热器清洗方式与注意事项

板式换热器清洗方式与注意事项 板式换热器是用薄金属板(一般为不锈钢)压制成具有一定形状波纹的换热板片,然后加密封胶垫叠装而成的一种换热器。主要由传热片、密封胶垫、夹紧螺栓、压紧板、整机框架等零部件组成。冷热介质通过相邻换热板片流经各自通道,中间通过一层薄换热板片进行换热,因此高效节能,换热系数高,使用安全可靠,结构紧凑,体积小,占地少,组合灵活,调整维修方便。 板式换热器是一种结构紧凑、高效的换热设备,但其换热温度高、内部流通孔径小,极易结垢,造成板式换热器换热效率降低,从而影响生产的正常进行和设备的安全,所以需采用化学清洗法除垢。 板式换热器的垢样以水垢为主,比较坚硬,和传热片结合牢固,难以用物理方法清除,所以选择用化学清洗中的酸清洗方法除垢。根据板式换热器的结垢情况、老化程度和用户的要求,板式换热器的化学清洗可分为拆卸清洗和不拆卸清洗两种方法。拆卸清洗除垢比较彻底,效果好,但劳动量大、工序复杂,且容易造成换热器渗漏、零配件损坏等不良影响;不拆卸清洗除垢不够彻底,但劳动量小、工序简单,且不容易造成换热器渗漏、零配件损坏等不良影响。当板式换热器结垢情况严重、换热效率低下,甚至堵塞时,必须采取拆卸清洗;当板式换热器结垢较轻或老化严重时,可采取不拆卸清洗。

板式换热器板片清洗注意事项 (1)请勿使用盐酸或含氯化物浓度超过300×10-6的水洗涤不锈钢板片。 (2)不要使用磷酸或硫酸清洗钛板。 (3)通常清洗溶液的浓度应在4%以下(特殊情况除外),清洗溶液的温度不应超过60℃。 就地清洗(CIP) 就地清洗是清洗板片的首选方式,尤其是当SUPERCHANGER 装置中的工艺液体带有腐蚀性时。在完成一个作业周期后,应通过排液管将残留的液体排尽,以免腐蚀板片。 清理换热器时,遵照下列步骤进行。 (1)将换热器两边进出管口内的液体排尽。如果排尽不了,可用水将工艺液体强行冲出。 (2)用大约43℃的温水从换热器的两边冲洗,直到流出的水变得澄清且不含工艺流体。 (3)将冲洗的水排出换热器,连接就地清洗泵。(见上述“板片清洗注意事项”的清洁剂选用建议)

板式换热器清洗与维护的一般流程

1一般情况下可不解体清洗,用水、以与介质流动反方向冲洗,可冲出杂物,但压力不得高于工作压力,也可用对不锈钢无腐蚀性的化学清洗剂清洗。 2如果长时间使用,板片会有一定的沉积物结垢而影响换热效果,因此须定期拆洗。拆洗时将换热器解体,用棕刷洗刷板片表面污垢,也可用无腐蚀性的化学清洗剂洗刷。注意不可用金属刷洗刷,以免损伤板片影响防腐能力。 3拆装方法: A普通式换热器:松开压紧螺栓,按顺序解体清洗后,严格按工艺流程顺序用工艺螺栓组装压紧,再换上定位螺栓均匀压紧到不泄漏,压紧尺寸应等于拆装前折尺寸。 B悬挂式换热器:松开螺栓后,将活动压紧板向支架一端移去。然后将每块板片移开分别洗刷后照原样装回压紧至不泄漏。 4换热器使用一定时间后,如有楹动泄露,可再均匀压紧螺栓至不泄露,但如压紧到小于尺寸A(厂家规定的最小压紧尺寸)时或密封垫老化,则必须对密封垫进行更换。 5更换密封垫的方法:如果是挂垫直接拉下旧垫片,再挂上新的胶垫就可以了。如果是粘垫应拉下旧垫片,用汽油浸泡密封槽内剩余胶水,清洗干净,干燥后,再在槽内和密封垫背面薄薄涂上一层强力胶或其它专用胶水,将密封垫嵌入槽内,四周均匀压紧,1小时后方可组装使用。

建议由板式换热器厂家来进行相关的清洗与维修比较安全可靠。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片

板式换热器知识大全

板式换热器知识大全 板式换热器原理 板式换热器是由许多波纹形的传热板片,按一定的间隔,通过橡胶垫片压紧组成的可拆卸的换热设备。板片组装时,两组交替排列,板与板之间用粘结剂把橡胶密封板条固定好,其作用是防止流体泄漏并使两板之间形成狭窄的网形流道,换热板片压成各种波纹形,以增加换热板片面积和刚性,并能使流体在低流速成下形成湍流,以达到强化传热的效果。板上的四个角孔,形成了流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 其特点:(1)体积小,占地面积少;(2)传热效率高;(3)组装灵活;(4)金属消耗量低;(5)热损失小;(6)拆卸、清洗、检修方便;(7)板式换热器缺点是密圭寸周边较长,容易泄漏,不能承受高压。 板式换热器有哪几部分组成?有什么作用? 板式换热器主要由传热板片、密封垫片、两端压板、夹紧螺栓、支架等组成。 各部件作用如下: 一、传热板片 传热板片是换热器主要起换热作用的元件,一般波纹做成人字形,按照流体介质的不同,传热板片的材质也不一样,大多采用不锈钢和钛材制作而成。 二、密封垫片 板式换热器的密封垫片主要是在换热板片之间起密封作用。材质有:丁腈橡胶,三元乙丙橡胶,氟橡胶等,根据不同介质采用不同橡胶。 三、两端压板 两端压板主要是夹紧压住所有的传热板片,保证流体介质不泄漏。 四、夹紧螺栓 夹紧螺栓主要是起紧固两端压板的作用。夹紧螺栓一般是双头螺纹,预紧螺栓时,使固定板片的力矩均匀。 五、挂架 主要是支承换热板片,使其拆卸、清洗、组装等方便。 换热器的安装和使用方法 板式换热器按照有无鞍式支架分为两种安装方式。第一种,对于没有鞍式支架的板式换热器,应把换热器安装在砖砌的鞍形基础上,安装后的板式换热器此刻不用与基础固定,整个板换可随着膨胀的改变自由移动。 第二种,对于有鞍式支座的板换,应首先在基础上平铺混凝土,待完全干透后用地脚螺栓将鞍式支座与地面混凝土完全固定起来。

板式换热器清洗方法

板式换热器清洗方法 点击次数:252 发布时间:2009-5-9 18:45:59 近年来,板式换热器以其重量轻、占地面积小、投资少、换热效率高、组装灵活、结垢易于清除等特点,及其在供热工作中所起的作用,越来越受到供 热企业的高度重视,并逐步推广使用,以取代原有的管壳式换热器。但 由于板式换热器流通截面较小,结垢后容易产生堵塞,使板式换热 器的换热效率降低,影响了设备的安全和用户的正常用热。因此,解决板式 换热器的清洗,防止水垢的形成,将成为确保安全生产和经济运行的重要课题。 1.板式换热器结垢堵塞的主要原因及其危害板式换热器在使用过程中,由于水处理设备运行不当,水质控制不达标,将不合格的软化水注人供热系统中,使水中的钙、镁、碳酸盐遇热后分解为碳酸钙和氢氧化镁沉淀物钻结在换热器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成了换热器换热效率的降低以及热能的严重浪费,从而影响了供热的效果,给供热单位造成了严重的负面影响。 2 板式换热器结垢的清洗方式 2.1 清洗剂的选择 清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。根据换热器结垢和工艺、材质和水垢成分分析得出:. 1)换热器流通面积小,内部结构复杂,清洗液若产生沉淀不易排放。 2)换热器材质为镍钦合金,使用盐酸为清洗液,容易对板片产生强腐蚀,缩短换热器的使用寿命。 通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加人缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。 通过对水垢样本的化学试验研究表明,甲酸能够有效地清除水垢。通过酸液浸泡试验,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。 2.2 清除水垢的基本原理

板式换热器操作规程

板式换热器操作规程 1.启动之前的检查 1.1 启动之前检查管线连接是否符合要求。 1.2 排水(污)阀门是否关闭。 2.运行 2.1先缓慢打开冷介质进出口阀门后再缓慢打开热介质进出口阀门,均应缓慢升压升温。为了稳定系统操作,可同步调节两侧流体的量(如有中间隔板应包括隔板两侧)。 2.2 在充液时必须非常仔细的排气。 2.3 根据进出口压力和温度的指示,调整阀门达到设定的工艺参数。 2.4 在运行过程中,压力应稳定,避免忽高忽低。 2.5 仔细观察换热器的运行情况,如温度、压力、向外泄漏等。 2.6 在运行过程中,若发现有轻微泄漏,可在卸压状态下将压紧尺寸减小2~3mm后再运行。 2.7 如果换热器运行完全按照计划运行,那么此换热器可以进入正常使用。 3.停运 3.1 先关闭热介质进口阀门,然后再关闭冷介质进口阀门,所有阀门的关闭均应快速进行。 3.2 如果长时间停运,应打开管道最低处的阀门,将设备

内的残液排放干净。 4.维护与保养 4.1 故障的检测与处理 4.1.1 渗漏、泄漏 板片间渗漏、泄漏部位:泄漏槽;板片与压紧板之间渗漏,泄漏部位:压紧板内侧面。 4.1.2 串液 打开低压侧出口放空,检验是否混有第二种液体。主要原因是板片可能产生裂纹或穿孔。 4.1.3 发现以上问题时,在渗漏区域作上标记,然后拆开换热器检查,详见下表。 4.1.4 传热效果下降主要症状:压降增高,传热能力下降

检查管线上所有阀门是否打开,板式换热器进出口的压力、温度与所规定的值是否一致,详见下表。 4.2 板式换热器装卸的注意事项 4.2.1 严禁使B值小于最小值。 4.2.2 拆卸板片时应避免划伤密封垫片。 4.2.3 操作者应戴手套,以防划伤。 4.2.4 升压时应先排放设备内空气。 4.2.5 不得进行超压试验(新安装的或经过拆卸维修或更换板片的板式换热器,均应重新进行液压试验,具体规定为:液压试验介质一般采用水,水温≥5℃,其中奥氏体不锈钢板片组装的板式换热器,水的氯离子含量不得超过25ppm;试验时应在换热器管线高处设排汽管,试验过程应保持板式换热器观察面的干燥;板式换热器两侧分别进行单侧液压试

板式换热器清洗方法

板式换热器的清洗方式 1 板式热交换器结垢的主要原因及其危害 板式热交换器在使用过程中,使水中的钙、镁及碳酸盐遇热后分解为碳酸钙和氢氧化钙沉淀物结在热交换器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成热交换器热交换效率的降低以及热能的严重浪费。 2 板式热交换器结垢的清洗方法 1)机械清洗(因为垢硬,必须用铁刷刷)是最简单的清洗方法,但弊端是: ①对板片有划伤,而且刷后更易挂垢。 ②工人在冷水中作业,劳动条件差。 ③清洗时必须将热交换器拆开,对板片及胶条有损害,劳动强度大。 2)化学方法清洗:目前采用的是酸洗,通过试验发现,选择甲酸及草酸作为清洗液效果较好,又不腐蚀热交换器板片。 (1)甲酸清洗。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。 ①清除水垢的基本原理 a溶解作用:酸溶液容易与钙、镁、碳酸盐水垢发生反应,生成易溶化合物,使水垢溶解。 b剥离作用:酸溶液能溶解金属表面的氧化物,破坏与水垢的结合,从而使附着在金属氧化物表面的水垢剥离,并脱落下来。 c气掀作用:酸溶液与钙、镁、碳酸盐水垢发生反应后,产生大量的CO2.CO2气体在溢出过程中,对于难溶或溶解较慢的水垢层,具有一定的掀动力,使水垢从热交换器受热表面脱落下来。 d疏松作用:对于含有硅酸盐和硫酸盐混合水垢,由于钙、镁、碳酸盐和铁的氧化物在酸溶液中溶解,残留的水垢会变得疏松,很容易被流动的酸溶液冲刷下来。

②清洗水垢的工艺要求 a酸洗温度:提升酸洗温度有利于提高除垢效果,如果温度过高就会加剧酸洗液对热交换器板片的腐蚀,酸洗温度扼制在60℃为宜。 b酸洗液浓度:根据试验,酸洗液应按甲酸81.0%、水17.0%、缓冲剂1.2%、表面活性剂0.8%的浓度配制,清洗效果极佳。 c酸洗方法及时间:酸洗方法应以静态浸泡和动态循环相结合的方法进行。酸洗时间为先静态浸泡2h,然后动态循环3h~4h.在酸洗过程中应经常取样化验酸洗浓度,当相邻两次化验浓度差值低于1.2%时,即可认为酸洗反应结束。 d钝化处理:酸洗结束后,板式热交换器表面的水垢和金属氧化物绝大部分被溶解脱落,暴露出崭新的金属,极易腐蚀,因此在酸洗后,对热交换器板片应进行钝化处理。 ③清洗水垢的具体步骤 a冲冼:酸洗前,先对热交换器进行开式冲洗,使热交换器内部没有泥、垢等杂质,这样既能提高酸洗的效果,也可降低酸洗的耗酸量。 b将清洗液倒入清洗设施,然后再注人热交换器中。 c酸洗:将注满酸溶液的热交换器静态浸泡2h,然后连续动态循环3h~4h,其间每隔0.15h进行正反交替清洗。 酸洗结束后,若酸液PH值大于2,酸液可重复使用,否则,应将酸洗液稀释中和后排掉。 d碱洗:酸洗结束后,用磷酸三钠,软化水按一定的比例配制好,利用动态循环的方式对热交换器进行碱洗,达到酸碱中和,使热交换器板片不再腐蚀。 e水洗:碱洗结束后,用清洁的软化水,反复对热交换器进行冲洗0.15h,将热交换器内的残渣彻底冲洗干净。 (2)草酸清洗。首先,根据板片材质及垢的颜色等进行分析,通过实验草酸既能与垢发生反应,对板片又没有腐蚀。 1)试验过程

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

固定管板式换热器压力容器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称: 021000 EQUIPMENT 图号: 00000000000001 DWG NO。 设计单位:神雕是的发放神雕爱疯阿斯蒂芬艾丝凡 DESIGNER

设计计算条件 壳程管程 设计压力p 4 MPa设计压力p t 1 MPa s 设计温度t 120 ?C设计温度t t70 ?C s 壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称20(GB8163) 材料名称20(GB8163) 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

计算所依据的标准 GB 150.3-2011 计算条件 椭圆封头简图 计算压力 P c 1.00 MPa 设计温度 t 70.00 ? C 外径 D o 325.00 mm 曲面深度 h o 83.00 mm 材料 Q235-B (板材) 设计温度许用应力 [σ]t 114.12 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm 焊接接头系数 φ 1.00 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P c t ] [][σσ= 1.0000 (或由用户输入) MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.90 σs = 211.50 MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 24.45 MPa 校核条件 σT ≤ [σ]T 校核结果 合格 厚度及重量计算 形状系数 K = ??? ? ???????? ? ?--+2 o )(22261nh o h n h D δδ = 1.0406 计算厚度 δh = ()c t o c 5.02][2P K D KP -+φσ = 1.47 mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量 8.16 Kg 压 力 计 算 最大允许工作压力 [P w ]= ()e o e t 5.02][2δφδσ--K KD = 4.66810 MPa 结论 合格

板式换热器清洗剂及清洗方法

1、减少能源消耗,密封垫。降低生产成本工业清洗除以上诸方面都可以降低成本以外广还可以减少原材料及能源的消耗,提高生产效率以降低生产成本。 2、维持正常生产,延长设备寿命,清除原材料表面酌污垢可保持材料的表面性质,保证后续生产工序的实施。定期或不定期清理生产设备的污垢,可达到维持设备酌正,正常运行,控制设备腐蚀,延长使用寿命与运行周期的目的。 3、改善设备外观,净化和美化环境清除设备心厂房、建筑物、运输工具的内外表面的污垢,还其本来面目,可达到改善其外观,净化环境的目的。 4、减少生产事故,有利人体健康清洗污垢可以减少因生产工艺与设备原因卧起的各种事故以及对环境与人身的伤害。清洗杀菌、消毒、清除放射性污染等,有利人体健康。 5、提高生产能力,改善产品质量清除原材料表面的污染物小可达到保持其良好的后加工性能,提高产品质量灼目的。设备的定期清铣,可以维持其应有的生产

能力,减少污垢对产品的污染。 为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当地服务”等丰富为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当地服务”等丰富的服务菜单,开展维修保养服务。 维修保养服务以“取回厂检查整修”和“现场清洗维护”为主,“取回厂检查整修”将客户的板式热交换器主机取回保养,在恢复最佳状态后送返。“现场清洗维护”是公司专业工程师携带专业设备到用户现场进行作业,时间短,效率高,不会耽误客户生产经营。此外,还提供咨询等各种服务菜单,帮助客户维持板式热交换器的最佳状态。 客户可以根据使用条件和状况选择服务种类,因此可以通过多种方式维护机器的最佳运转状态。

板式换热器常见知识

换热器是合理利用与节约能源、开发新能源的关键设备。据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。由于在生产中存在的热交换千变万化,因此所需的换热器必然各式各样,但从承受高温、高压、超低温及耐腐蚀能力上看,管壳式换热器的数量和使用场所在20世纪80、90年代仍居主要地位。随着全焊、钎焊、板壳式等新型结构板式换热器的发展,以及新技术、新工艺、新材料在板式换热器中的应用,板式换热器在进一步发展自身的传系数高、对数平均温差大、占地面积小、重量轻、价格低、末端温差小和污垢系数低等优越性之外,还将它的承压能力从2.5MPa提高到8.0MPa,耐温能力从150℃提高到了1000℃,为其在许多应用领域取代管壳式换热器创造了条件。 板式换热器的特点: 1.对数平均温差大。 2. 占地面积小,结构紧凑,清洗方便。 3. 重量轻,板片的厚度一般在0.4-0.7mm。 4. 传热系数高,板片的波纹能使流体在较小的流速下产生湍流。 5. 可改变换热面积或流程组合,增加或减少板片数量即可达到所需的换热面积,改变板片的排港列,可适用于不同的换热器。 6. 价格低。 板式换热器的工作原理 板式换热器是由许多波纹形的传热板片,按一定的间隔,通过橡胶垫片压紧组成的可拆卸的换热设备。板片组装时,两组交替排列,板与板之间用粘结剂把橡胶密封板条固定好,其作用是防止流体泄漏并使两板之间形成狭窄的网形流道,换热板片压成各种波纹形,以增加换热板片面积和刚性,并能使流体在低流速成下形成湍流,以达到强化传热的效果。板上的四个角孔,形成了流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并

基于ANSYS的固定管板式换热器的热应力分析及评定_陈满儒

基于ANS YS的固定管板式 换热器的热应力分析及评定 陈满儒,孙文迪 (陕西科技大学设计与艺术学院,陕西西安 710021) 摘要:应用ANS YS有限元分析软件对固定管板式换热器进行热应力分析及评定。由应力强度云图可知最大应力强度发生在管板锻件的管程侧过渡圆角处。设定3条应力评定路径,进行线性化处理,在内压与热载荷作用下,对各路径上的一次加二次应力进行评定,得到应力评定结果。关键词:ANS YS;换热器;应力分析;应力评定 中图分类号:TH222 文献标识码:A 文章编号:1672-1616(2011)05-0040-03 换热器是石油、化工、冶金、电力、轻工、食品等行业普遍应用的一种换热工艺设备[1]。换热器设计的好坏直接影响其工艺过程,为了有效地利用能源,对换热器性能进行分析和研究是非常有意义的。 固定管板式换热器是由管箱、壳体、管板、管子等零部件组成的。管板与壳体通过焊接固定在一起,而管板与管子要通过胀接、焊接或胀焊结合连接在一起。由于管内流体与壳程流体存在温差,因此换热器中必定存在温差应力,这种温差应力将与管壳程流体压力造成的机械应力叠加。当应力较高时则会在换热器的不同部位造成不同形式的失效,如壳体强度或稳定性破坏、管子的强度或稳定性破坏、管子与管板之间拉脱、管板与壳体连接部位的破坏、管板强度破坏等,当温差应力太大时还应考虑使用膨胀节[2]。因此,换热器应力分析应包括不同危险工况并对不同部位进行分析与评定,才能保证其安全可靠的运行。 1 固定管板式换热器参数及热应力分析模型 1.1 工作条件及结构参数 某固定管板式换热器结构示意图如图1所示,管板为带凸肩的整锻件,凸肩高度为35mm,壳程侧凸肩计算壁厚为17mm,管程侧凸肩计算壁厚为18mm,凸肩与管板连接处锻造圆角半径为15m m,管板外直径为840mm,管板计算厚度为100mm。壳程金属设计温度下的设计应力强度S m= 183M Pa,管程金属设计温度下的设计应力强度S m=118MPa,壳程设计压力为0.58MPa,管程设计压力为2.00MPa,壳程操作温度为140.5℃,管程操作温度为250.0℃,空气环境温度设为20.0 ℃。 图1 固定管板式换热器结构简图 1.2 热应力分析模型 建立如图2所示的热应力分析模型,其中与管板锻件连接的壳程筒体及管程筒体的长度足够长,远大于2.5倍的边缘应力衰减长度,一般而言,当不必考虑两侧管板轴向差异时,才可利用轴向对称性建模,而壳程分析长度应为壳程总长度的一半。由于主要讨论管板及其与两端筒体连接区的应力分布规律,因而忽略开孔接管、管箱封头及支座等。考虑到结构和载荷的对称性,沿换热器的纵向对称面切开取其1/4作为分析模型体。结构纵向对称面约束了法向位移,壳程筒体横截面约束了轴向位移,管箱筒体端面施加相应的轴向平衡力。 收稿日期:2011-01-08 作者介绍:陈满儒(1957-),男,陕西西安人,陕西科技大学教授,硕士,主要研究方向为包装工程。 402011年3月 中国制造业信息化 第40卷 第5期

相关主题
文本预览
相关文档 最新文档