当前位置:文档之家› 红外遥控器的接收解调模块设计

红外遥控器的接收解调模块设计

红外遥控器的接收解调模块设计
红外遥控器的接收解调模块设计

红外遥控器的接收解调模块设计

---------------小型应用系统综合设计

姓名:。。。

班级:通信1121

学号:1130119121 1130119122 1130119130

指导老师:刘传洋

时间:11月3日~11月14日

项目设计环境使

用(20分)

设计任务功能

理解与分析

(10分)

功能模块设计

(编程及外围电

路考虑)(30分)

功能仿真与实

现(10分)

设计报告及

提问(30

分)

合计

(100分)

得分

设计要求

1,设计制作一个接收红外遥控器信息的功能模块。具体设计内容包括:

2,红外遥控器的编码原理,脉宽调制码基本原理如下:

3,设计二进制数0/1的脉宽调制的解调模块;

4,设计接收32比特信息解调的控制模块;

5,设计基于LCD1602的接收数据显示模块;

方案设计及硬件电路设计

1, 红外遥控电路的工作原理红外遥控作为一种单向红外通讯技术,因其具有性能稳定、使用方便以及成本低廉等特点,已经在消费电器中得到了普遍的应用。随着对电器产品智能化和使用便利性要求的进一步提高,红外遥控的应用已经从传统家电领域向智能设备等新领域扩展。由于集成电路制造工艺的设计水平的不断提高,将此类分立电路功能集成到嵌入式系统中已成为可能。本文设计脉冲信号调制采用了PPM方式,红外遥控系统采用了AHDL语言编写,来实现该电路的功能。市场上的红外遥控器种类繁多,一般有这些类型uPD6121、TC9012、M50560-001、SA3010等等不管遥控器的种类如何,其编码方式大多类似,本文以比较典型的uPD6121为例,要想用可编程逻辑器件编写其内部电路模块,首先得了解整个电路的工作原理,以下是uPD6121红外遥控器的主要原理。载波波形如图3.1所示。

使用455kHZ晶体,经内部分频电路、信号被调制在37.91kHZ的频率上,占空比为: 1/3,1/3的占空比有助于提高红外线的发射效率。数据格式:数据格式包括了引导码、用户码、数据码和数据反码,编码总占32位。数据反码是数据码反向后的编码,编码时可用于对数据纠错。(注:第二段用户码也可以在遥控应用电路中被设置成第一段用户码的反码。)

使用455kHZ晶体时各代码所占用的时间

位定义:用户码或者数据码中的每一位可以是位‘0’,也可以是位‘1’。区分‘0’和‘1’是利用脉冲的时间间隔来区分,这种编码方式称为脉冲位置调制方式,英文简称PPM

uPD6121G按键输出波形有两种方式:一种是每次按键都输出完整的一帧数据;另一种是按键按下相同的按键后每发送完整的一帧数据后,再发送重复码,直到按键松开。重复码波形如图3.5所示。

单一按键波形如图3.6所示。

连续按键波形如图3.7所示。

2红外遥控器模块的原理图红外遥控模块的硬件部分原理图较为简单,该电路主要由键盘扫描电路和红外发射部分组成,而编码调制部分由软件部分负责。

图3.8 红外遥控发射电路图

由于ALTERA公司的3.3V/2.5V的MAX3000A芯片的IO脚兼容5V,所以键盘扫描电路的上拉电阻可以接5V电源。D1为红外发射管,D2为红外发射指示灯。3,红外遥控编码原理与设计

由于EPM3128A芯片的宏单元数量的有限性,在编写红外编码发射电路时,不得不考虑芯片资源的节约问题,所以本设计编写的红外遥控编码原理与uPD6121稍微有所差别,uPD6121格式中数据码和用户码均为8bit,这样编码或者解码时会占用很多的寄存器,及占用CPLD内部很多的可编程触发器。而本文设计的遥控器只有16个按键,没有那么多种数据要编码发射,且EPM3128A芯片资源也是有限的,所以对用户码和数据码均设定义为4bit。本文设计的红外编码采用PPM 编码方式,下面是其编码信息。载波信号:f=38khz;占空比1/3; 位定义:a为一个时间单位时间长度是38kHZ的16个时钟周期,即a=1÷38kHZ×16=0.421ms

(这样有助于时钟分频,减少触发器使用的数量)

图3.9 位定义

数据格式:数据格式中包含了引导码、数据码、数据反码、用户码、用户码,

除引导码外其余均为4bit,编码总占16bit。其中引导码的高电平6.74ms=16a,低电平3.37ms=8a。

图3.10 编码前数据格式

每按一次按键发送一帧数据

图3.11 编码后数据格式

红外遥控编码的主要电路有,键盘扫描电路、PPM编码电路、时钟分频电路、以及调制电路等组成。

时钟分频电路:产生整个电路所需要的所有时钟频率;

键盘扫描电路:产生4位键值信号;

PPM编码电路:对要发送的数据进行编码后发送;

调制电路:38kHZ的频率与PPM编码后的串行输出信号进行相与即可。

很明显电路的关键是对要发送的数据进行PPM编码,为了充分利用EPM3128A 有限的宏单元,选择一个良好的PPM编码的实现方式显的非常的重要。

下面是两种PPM编码方式:有PPM编码的位定义可知,

原码 1—〉1000 0—〉10

红外遥控解码原理与设计

红外接收器接收到的红外信号后,输出电平与信号的有无一般是反向的,但是在硬件电路连接时,在其输出脚接了PNP管,信号从三极管的集电极输出至CPLD。所以,CPLD需要解码的数据与其发射时数据的相位是同相的。一般文献在介绍红外解码时,选用VHDL语言的有限状态机对红外信号进行解码,用有限状态机解码的优点有很多,本文不再冗述。本文主要是基于寄存器或者计数器的状态对整个电路的解码流程进行详细的数据流描述,这样可以更好了解电路的硬件结构以节约整个电路资源。下面就以其发射时的波形对红外解码电路进行阐述。

图3.12 编码后数据格式

解码流程结构图如图3.13所示。

图3.13 红外解码流程图

解码电路:输入信号 Din、时钟信号38khz和输出信号code[7..0]。流程1:当红外信号的第一个上升沿来临时,锁存器锁存输出至‘1’,开始起始码解码过程,当起始码解码完成后,对输出标志位至‘1’,启动数据码解码过程。(起始码电路后面详细阐述)流程2:当红外信号的第二个上升沿来临时,位地址加‘1’。流程3:当红外信号的第二个下降沿(及数据码的第一个下降沿),延时计数器复位,开始倒计时计数(实际为下降沿后一个很短的低电平信号对延时计数器复位)。流程4:延时计数器为模值为24的倒计时计数器,当计数器为1是,输出为‘1’,即产生clk脉冲。延时计数器的模值计算:当数据码的下降沿来临时开始延时,延时的时间宽度最好在1.5a,a是数据码最小脉冲的宽度。也就是说,当下一位数据为0时,延时后的脉冲信号要对准下一位数据码的高电平的中间部分,这样即使编码器的晶振时钟与解码器的晶振时钟有所误差也不会产生解码错误。至于延时计数器的时钟频率,最好远远高于红外信号的数据传输速率。当然,频率越高,计数器的模值就越大,适当就好。38k频率时钟的周期t=1/16a,所以选择了模值为24的倒计时计数器。流程5:clk时钟根据位地址将Din反向后装载于code[7],上升沿触发. 流程6:再重复整个数据解码过程7次,解出所有数据码及其反码。后八位在实际测试时未解码,读者可以适当修改电路后再解码。当完成整个解码过程后要产生一个使能信号,一个脉冲沿,

还有四位有效数据。解起始码部分如图3.14所示

图3.14 起始码解码框图

起始码部分由16a的高电平和8a的低电平组成,用38khz的频率对红外信号

Din进行采样。起初,当采样信号为1时累加器1加一处理,如果其中有一次为

0,则对累加器清零。直到采满15次连续的‘1’信号后,再对Din信号的低电

平采样,同理采满连续7个‘0’信号后,输出起始码有效信号。如果连续的‘0’

信号中出现一个或者多个高电平信号,则对累加器1和累加器2全部清零,恢复

初始解码状态。比较器的大小并无固定的值,根据采样时钟而定,允许累加器的

数值有所偏差,采样频率越高,越是能够采得比较精确的起始码,但频率越高,

累加器位数也越多,适可而止即可。

程序设计

本程序主要功能是接收红外,并且解码,然后在四个数码管上显示出来(32

位码)。主程序分为以下几个模块:分频和计数、状态机、数码管显示。分频

计数部分主要实现50Mz与采样频率的同步问题,使得采样频率满足红外接收器

的要求,同频率输入存储;

状态机部分主要依据红外编码规则,实现红外编码的解码,利用状态转换方式

区分不同区域的红外编码,从而实现相应的译码。数码管显示部分主要是将接

受并解码后的编码转换成七段码由数码管进行显示,此处利用了DE2 底层函数

实现,具体函数参加DE2光盘。

程序如下:

module IR(clk,rst_n,IR,led_cs,led_db);

input clk;

input rst_n;

input IR;

output [7:0] led_cs;

output [7:0] led_db;

reg [3:0] led_cs;

reg [7:0] led_db;

reg [7:0] led1,led2,led3,led4;

reg [15:0] irda_data; // save irda data,than send to 7 segment led reg [31:0] get_data; // use for saving 32 bytes irda data reg [5:0] data_cnt; // 32 bytes irda data counter

reg [2:0] cs,ns;

reg error_flag; // 32 bytes data期间,数据错误标志

------------

reg irda_reg0; //为了避免亚稳态,避免驱动多个寄存器,这一个不使用。

reg irda_reg1; //这个才可以使用,以下程序中代表irda的状态reg irda_reg2; //为了确定irda的边沿,再打一次寄存器,以下程序中代表irda的前一状态

wire irda_neg_pulse; //确定irda的下降沿

wire irda_pos_pulse; //确定irda的上升沿

wire irda_chang; //确定irda的跳变沿

always @ (posedge clk) //在此采用跟随寄存器

if(rst_n)

begin

irda_reg0 <= 1'b0;

irda_reg1 <= 1'b0;

irda_reg2 <= 1'b0;

end

else

begin

irda_reg0 <= IR;

irda_reg1 <= irda_reg0;

irda_reg2 <= irda_reg1;

end

assign irda_chang = irda_neg_pulse | irda_pos_pulse; //IR接收信号的改变,上升或者下降

assign irda_neg_pulse = irda_reg2 & (~irda_reg1); //IR接收信号irda下降沿

assign irda_pos_pulse = (~irda_reg2) & irda_reg1; //IR接收信号irda上升沿

//---------------------------------------------------------------------------- //设计分频和计数部分:从PT2222的规范中我们发现最小的电平持续0.56ms,而

//我们在进行采样时,一般都会对最小电平采样16次。也就是说要对0.56ms最少采样

//16次。

// 0.56ms/16=35us

//DE2开发板信号频率为50MHz,即时钟周期为20ns,所以我们需要的分频次数为:

// 35000/20=1750

//在设计中我们利用了两个counter,一个counter用于计1750次时钟主频;

//一个counter用于计算分频之后,同一种电平所scan到的点数,这个点数最后会用来判断

//是leader的9ms 还是 4.5ms,或是数据的0 还是1。

------------ reg [10:0] counter; //分频1750次

reg [8:0] counter2; //计数分频后的点数

wire check_9ms; // check leader 9ms time

wire check_4ms; // check leader 4.5ms time

wire low; // check data="0" time

wire high; // check data="1" time //----------------------------------------------------------------

------------ //分频1750计数

always @ (posedge clk)

if (rst_n)

counter <= 11'd0;

else if (irda_chang) //irda电平跳变了,就重新开始计数

counter <= 11'd0;

else if (counter == 11'd1750)

counter <= 11'd0;

else

counter <= counter + 1'b1;

//---------------------------------------------------------------------------- always @ (posedge clk)

if (rst_n)

counter2 <= 9'd0;

else if (irda_chang) //irda电平跳变了,就重新开始计点

counter2 <= 9'd0;

else if (counter == 11'd1750)

counter2 <= counter2 +1'b1;

assign check_9ms = ((217 < counter2) & (counter2 < 297)); //257 为了

增加稳定性,取一定范围

assign check_4ms = ((88 < counter2) & (counter2 < 168)); //128 assign

low = ((6 < counter2) & (counter2 < 26)); // 16 assign high

= ((38 < counter2) & (counter2 < 58)); // 48 //-----------------------------------------------------------------

-----------

// generate statemachine 状态机

parameter IDLE = 3'b000, //初始状态

LEADER_9 = 3'b001, //9ms LEADER_4

= 3'b010, //4ms DATA_STATE = 3'b100; //

传输数据

always @ (posedge clk)

if (rst_n)

cs <= IDLE;

else

cs <= ns; //状态位

always @ ( * )

case (cs)

IDLE:

if (~irda_reg1)

ns = LEADER_9;

else

ns = IDLE;

LEADER_9:

if (irda_pos_pulse) //leader 9ms check begin

if (check_9ms)

ns = LEADER_4;

else

ns = IDLE;

end

else //完备的if---else--- 防止生成latch ns

=LEADER_9;

LEADER_4:

if (irda_neg_pulse) // leader 4.5ms check begin

if (check_4ms)

ns = DATA_STATE;

else

ns = IDLE;

end

else

ns = LEADER_4;

DATA_STATE:

if ((data_cnt == 6'd32) & irda_reg2 & irda_reg1) ns

= IDLE;

else if (error_flag)

ns = IDLE;

else

ns = DATA_STATE;

default:

ns = IDLE;

endcase

//状态机中的输出,用时序电路来描述

always @ (posedge clk)

if (rst_n)

begin

data_cnt <= 6'd0;

get_data <= 32'd0;

error_flag <= 1'b0;

end

else if (cs == IDLE)

begin

data_cnt <= 6'd0;

get_data <= 32'd0;

error_flag <= 1'b0;

end

else if (cs == DATA_STATE)

begin

if (irda_pos_pulse) // low 0.56ms check

begin

if (!low) //error

error_flag <= 1'b1;

end

else if (irda_neg_pulse) //check 0.56ms/1.68ms data 0/1 begin

if (low)

get_data[0] <= 1'b0;

else if (high)

get_data[0] <= 1'b1;

else

error_flag <= 1'b1;

get_data[31:1] <= get_data[30:0];

data_cnt <= data_cnt + 1'b1;

end

end

always @ (posedge clk)

if (rst_n)

irda_data <= 16'd0;

else if ((data_cnt ==6'd32) & irda_reg1)

begin

led1 <= get_data[7:0]; //数据反码

led2 <= get_data[15:8]; //数据码

led3 <= get_data[23:16];//用户码

led4 <= get_data[31:24];

end

//---------------------------------------------------

//四个数码管共用一个8位数据线,所以采用四个数码管快速轮流显示的方

//initial led_cs = 4'b0001;

integer i="0";

always @(posedge clk) begin if(rst_n)

begin

if(rst_n)

begin

led_cs <= 4'b0001;

end

else if(i==2000)

begin

if (led_cs==4'b1000)

begin

led_cs<=4'b0001;

i<=0;

end

else

begin

led_cs<=led_cs <<1;

i<=0;

end

end

else i<=i+1;

end

//-------------------------------------------------- //四个数码管分别显示不用的数

//initial led_db = 8'hff;

always @(posedge clk)

if(rst_n)

begin

led_db <= 0'hff;//共阳数码管复位

end

else

begin

if (led_cs==4'b0001) led_db<= led1;//

if (led_cs==4'b0010) led_db<= led2; //

if (led_cs==4'b0100) led_db<= led3; //

if (led_cs==4'b1000) led_db<= led4; //

end

endmodule

编译及仿真、下载调试

其仿真图如图4.1所示。

图4.1 红外遥控信号接收仿真图

图4-2仿真了发射部分端口OUT输出编码调制信号的脉宽选择为A和B时,一体化红外接收头SM0038的端口3将解调后的信号输入到接收部分CPLD的端口CLRN,经解码识别后,输出端口LAMP1和LAMP2将会有相应的不同脉冲信号输出。

结果分析

基于CPLD的红外遥控发射接收设计不仅具有结构简单、外围电路少、抗干扰能力强、功耗小、可靠性高、速度快、反应时间短等优点,而且由于采用了AHDL 语言和EDA工具强大的仿真功能,使大部分的电路设计工作在计算机上完成,这样就大幅度地缩短了相应产品的开发时间,提高了工作效率。又由于CPLD的最大特点是可通过软件编程对器件的结构和工作方式进行重构,因此可随时进行设计调整而满足更多功能的需要。

设计总结

进行红外编码解码设计,首先就是要充分了解红外编码的规则。我们查阅了很多资料,了解到在两大类编码的基础上,红外编码根据不用的芯片,又分为很多小的具体的规则。虽然规则很多,编码的具体规则不用,但是一条红外信号的主题划分还是形同的,这为实现不同规则的红外编码的解码提供了实现的可能。红外解码器的设计大多是基于单片机的,但是我们由于条件限制,无法利用单片机来进行本次设计,只好用手边的DE2教学开发板在FPGA的平台上利用Verilog 语言设计该解码程序。这个代码的编写也是根据单片机实现的思想进行移植得到的。 Verilog语言和C语言的区别很大,虽然在逻辑上有相近之处,但是要具体实现,在语法上还有很多要注意的地方。通过本次红外编码解码器程序的设计过程,我们了解到了红外编码的规则,认识到身边小小的一个红外遥控器,竟有如此多的学问在。利用FPGA平台设计红外解码器也是一次尝试,虽然结果可能不是很理想,由于时间和器材使用的限制,无法进行充分地调试校正工作,也没能实现对遥控器全部按键功能的解码。但是毕竟整个过程我们尝试了很多,收获了很多,希望在今后有条件的情况下,继续相关的设计调试工作,充分完成本次设计。

基于单片机的红外遥控小车设计

单片机系统设计实例 红外遥控小车 专业:信息对抗技术 姓名:吴志飞 学号:1411050121 指导教师:张东阳

目录 1 绪论 (1) 2 系统分析 (2) 2.1系统框架 (2) 2.2电机驱动模块 (3) 2.3 LCD显示模块 (4) 3 系统硬件设计 (5) 3.1主控模块的电路设计 (6) 3.1.1AT89C51单片机的简介 (8) 3.1.2AT89C51管脚功能 (8) 3.2红外遥控模块的电路设计 (9) 3.2.1红外遥控的实现原理 (10) 3.2.2红外发射器 (11) 3.2.3红外接收器 (12) 3.3电机驱动模块的电路设计 (12) 3.4显示模块的电路设计 (13) 4 系统软件设计 (14) 4.1程序代码 (14) 4.2软件流程图 (17) 5 调试与仿真 (18) 5.1在keil中进行调试 (18) 5.2在Proteus中进行仿真 (19) 6 总结 (21) 参考文献 (22) I

沈阳理工大学课程设计说明书 1 绪论 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,,智能化程度越来越高,应用范围也越来越广,包括海洋开发、宇宙探测、工农业生产、军事、社会服务、娱乐等各个领域。智能电动小车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科。主要由路径识别、角度控制及车速控制等功能模块组成。同时,当今机器人技术发展的如火如荼,其在国防等众多领域的应用广泛开展。神五、神六升天、无人飞船等等无不得益于机器人技术的迅速发展。一些发达国家已把机器人制作比赛作为创新教育的战略性手段,参加者多数为学生,目的在于通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识。从某种意义上来说,机器人技术反映了一个国家综合技术实力的高低,而智能电动小车是机器人的雏形,它的控制系统的研制将有助于推动智能机器人控制系统的发展,同时为智能机器人的研制提供更有利的手段。 本次课设设计的红外遥控智能小车可以分为四大组成部分:红外遥控部分、显示部分、执行部分、控制部分。智能小车可以实现按遥控指示前行,后退,左转和右转。该设计主要通过对系统硬件电路的设计,软件设计和程序的编写,然后通过后期软硬件调试达到设计初衷。 1

基于单片机的红外遥控智能小车毕业设计报告

毕业设计(论文)题目:基于单片机的红外遥控智能小车

西安邮电学院 毕业设计(论文)任务书 学生姓名指导教师职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 任务与要求 任务:以51单片机为控制核心,实现具有自动避障、加速、减速等功能的红外遥控智能小车。 要求:1 搜集资料,熟悉单片机开发流程;熟悉红外传感器等相关器件; 掌握单片机接口和外围电路应用;具备一定的单片机开发经验。 2 学会电路设计、仿真等相关软件的使用; 3 具备一定的硬件调试技能。 4 学会查阅资料; 5 学会撰写科技论文。 开始日期2010年3月22日完成日期2010年6月27日主管院长(签字) 年月日

西安邮电学院 毕业设计 (论文) 工作计划 学生姓名赵美英指导教师崔利平职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 工作进程

主要参考书目(资料) 1、何立民,单片机应用系统设计,北京:航天航空大学出版社; 2、李广弟,单片机基础,北京:北京航空航天大学出版社,2001; 3、何立民,MCS-51系列单片机应用系统设计系统配置与接口技术,北京航 空航天大学出版社,1990.01; 4、赵负图,传感器集成电路手册,第一版,化学工业出版社,2004; 5、Atmel.AT89S51数据手册.https://www.doczj.com/doc/7618437075.html, 主要仪器设备及材料 1.普通计算机一台,单片机开发环境; 2.电路安装与调试用相关仪器和工具。 (如示波器、万用表、电烙铁、镊子、钳子等)。 论文(设计)过程中教师的指导安排 每周四进行交流与总结;其余时间灵活安排,及时解决学生问题。 对计划的说明 依学生实际情况,适当调整工作进度。

基于51单片机的红外遥控器设计

天津职业大学 二○一五~二○一六学年第1学期 电子信息工程学院 通信系统综合实训报告书 课程名称:通信系统综合实训 班级:通信技术(5)班 学号:1304045640 1304045641 1304045646姓名:韩美红季圆圆陈真真指导教师:崔雁松 2015年11月17日

一、任务要求 利用C51单片机设计开发一套红外线收发、显示系统。 具体要求: ●编写相关程序(汇编、C语言均可); ●用Proteus绘制电路图并仿真实现基本功能; ●制作出实物 二、需求分析(系统的应用场景、环境条件、参数等) 现在各种红外线技术已经源源不断进入我们的生活中,在很多场合发挥着作用。 机场、宾馆、商场等的自动门,会在人进出时自动地开启和关闭。原来,在自动门的一侧有一个红外线光源,发射的红外线照射到另一侧的光电管上,红外线是人体察觉不到的。当人走到大门口,身体挡住红外线,电管接收不到红外线了。根据设计好的指令,触发相应开关,就把门打开了。等人进去后,光电管又可以接到红外线,恢复原来的线路,门又会自动关闭。因此这种光电管被称为“电眼”,在许多自动控制设备中大显身手。 在家庭中,许多电子设备如彩色电视、空调、冰箱和音响等,都使用了各种“红外线遥控器”。利用它我们可以非常方便的转换电视频道或设定空调的温度档次。 三、概要设计(系统结构框图/系统工作说明流程图) 红外线收发、显示系统硬件由以下几部分组成:红外遥控器,51单片机最小系统,接收放大器一体集成红外接收头,LED灯显示电路。 红外线接收是把遥控器发送的数据(已调信号)转换成一定格式的控制指令脉冲(调制信号、基带信号),是完成红外线的接收、放大、解调,还原成发射格式(高、低电位刚好相反)的脉冲信号。这些工作通常由一体化的接收头来完成,输出TTL兼容电平。最后通过解码把脉冲信号转换成数据,从而实现数据的传输。 红外遥控系统电路框图

单片机的红外遥控器解码设计

第1章红外解码系统分析 第1节设计要求 整个控制系统的设计要求:被控设备的控制实时反应,从接收信号到信号处理及对设备控制反映时间应小于1s;整个系统的抗干扰能力强,防止误动作;整个系统的安装、操作简单,维护方便;成本低。 红外载波、编码电路设计要求:单片机定时器精确产生38KHz红外载波;根据控制系统要求能对红外控制指令信号精确编码并迅速发送。 红外解码电路设计要求:精确接收红外信号,并对所接收信号进行解码、放大、整形、解调等处理,最后输出TTL电平信号;对非红外光及边缘红外光抗干扰能力强。 设备扩展模块设计要求:直流控制交流;抗干扰能力强;反应迅速不产生误动作;能承受大电流冲击。 第2节总体设计方案 2.1方案论证 驱动与开关 方案一:采用晶闸管直接驱动。 其优点是体积小,电路简单,外围元件少。但控制电流小,大电流晶闸管成本高,并且隔离性能差。 方案二:采用三极管驱动继电器。 其体积大,外围元件多。优点是控制电流大,隔离性能好。 根据实际情况,拟采用方案二。 2.2总体设计框图 经过上述方案的分析选择,得出系统硬件由以下几部分组成:电视红外遥控器,51单片机最小系统,接收放大于一体集成红外接收头,1602液晶显示驱动电路。 整体设计思路为:根据扫描到不同的按键值转至相对应的ROM表读取数据。确认设备及菜单选择键后AT89S2将从ROM读取出来的值,按照数据处理要求从P2.5输出控制脉冲与T0产生的38KHz的载波(周期是26.3μs)进行调制,经NPN三极管对信号放大驱动红外发光管将控制信号发送出去。红外数据接收则是采用HS0038一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端INT0检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。然后根据所得的指令去操作相应的用电器件工作,如图1-1所示。

红外遥控发射和接收系统课程设计

红外遥控发射和接收系统设计 摘要 本设计是以红外技术为基础,可以实现无线遥控,摆脱了信息传递需要导线的限制,而且红外实现方式灵活,得到了广泛的应用。特别是随着芯片技术的发展,红外集成芯片价格的降低,更加扩展了红外的应用范围。现在在我们的日常生活中都能感受到红外的应用,以及它给我们带来的便利。本设计充分利用能够很容易买到的普通电视机遥控器,通过编码发射红外线,然后由通用红外接收芯片sw0038实现对红外的接收,但是因为考虑到题目的要求仅仅是实现对一个开关的简单开管控制,所以舍弃了依靠单片机来对遥控器发出的红外进行解码实现多种控制的方案。本方案简洁可行,充分利用现有的资源进行开发,取得比较好的效果,并且具有良好的移植性,可以通过简单的修改就应用到其他领域。 关键字:红外遥控红外解码双稳态 Abstract This design is take the infrared technology as a foundation, realizing the wireless remote control, getting rid of the the limit of wire information transmission. Beacause infrared technology is easy to be realized,it is widely used in many fields. Specially ,with the chip technology development, infrared integrated chip price reducing, even more expanded the infrared application scope . Now in our daily life ,we can feel the application of the infrared, and the convenience it has brought us.In this design,I take ordinary television remote control device to realize coding and Infrared Emission,then it is received by the general infrared receive chip sw0038 .what the topic requests is merely the realization of a simple switch control,so I give up the program on the MCU. The program is simple and feasible, making full use of the existing resources for development, and achieve fairly good results.It has a good portability,so only after a little change,it can be transplanted to other fields. Key word: infrared remote control infrared decode bistability

基于单片机的红外遥控系统设计

课程设计 基于单片机的红外遥控系统设计 学院:计算机与通信工程学院 专业:通信工程 班级:通信11-3班 姓名: 学号:

天津理工大学 摘要 本设计采用51单片机作为遥控发射接收芯片,HS003B作为红外一体化接收发射管,在此基础上设计了一个简易的智能红外遥控系统。系统包括接收和发射两大部分,发射部分有16个按键,接收部分含有8盏彩色LED灯、一片二位数码管和蜂鸣器系统。发射部分通过键盘扫描判断哪个键被按下,经过单片机编码程序进行编码,控制红外发射电路发送信号。接收部分解码信号,实现相应的输出。本设计方案结合红外遥控设计简单、作方便、成本低廉等特点。 关键字:红外遥控信号调制编码解码

天津理工大学 目录 摘要................................................................................................................................................... I I 1.绪论 (1) 1.1课题目的和意义 (1) 1.2红外线简介 (1) 1.3红外遥控系统简介 (1) 2 课题方案和设计思路 (2) 2.1总体方案 (2) 2.2红外发射器设计 (3) 2.2.1红外发射器原理 (3) 2.2.2红外编码 (3) 2.3红外接收端设计 (4) 3硬件结构设计与介绍 (5) 3.1AT89C51系列单片机功能特点 (5) 3.1.1主要特性 (5) 3.1.2管脚说明 (5) 3.1.3基本电路 (7) 3.2红外发射电路 (8) 3.3红外接收电路设计 (9) 3.3.1红外接收模块 (9) 3.3.2数码管 (9) 3.3.3彩灯系统 (10) 3.3.4蜂鸣器系统 (11) 3.3.5红外接收端电路图 (12) 4 软件设计 (12) 4.1定时/计数器功能简介 (12) 4.2遥控码的发射 (13) 4.3红外接收 (14) 5.课程设计总结和心得 (15) 参考文献 (16) 附录 (17) 附录1P ROTEUS仿真图 (17) 附录2发射程序 (17) 附录3接收程序 (20)

红外遥控器设计(方案)(1)

毕业实践环节毕业设计(典型性项目)说明书红外遥控器设计(方案)

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

注意事项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档

红外遥控课程设计

单片机与接口技术课程设计 题目: 基于单片机红外线遥控控制 LED灯显示系统设计与制作班级:电子科学与技术1101 姓名:李婷 学号:110803025 2013年12月11日

目录 第一章设计要求 (3) 第二章硬件系统设计 (3) 2.1基于单片机红外线遥控控制LED灯显示系统框架图 (3) 2.2单片机控制系统及其基本电路 (4) 2. 2.1 单片机最小系统 (4) 2.2.2时钟电路 (5) 2.2.3复位电路 (5) 2.3基于单片机红外遥控控制LED系统的设计原理 (6) 2.3.1单片机红外遥控控制LED显示系统原理 (6) 2.3.2单片机红外遥控控制LED系统码分制原理 (7) 2.4红外遥控发射系统电路设计 (8) 2.4.1指令按键电路 (8) 2.4.2 发射电路 (9) 2.4.3 显示模块 (9) 2.5红外遥控接收系统电路设计 (11) 2.5.1接收电路 (11) 2.5.2 LED灯显示电路 (11) 2.6硬件原理图 (12) 第三章软件系统设计 (12) 3.1 红外线发射电路程序流程图设计 (13) 3.2 红外线接收电路程序流程图设计 (13) 第四章系统测试与分析 (14) 4.1 利用Proteus和keil进行仿真调试 (14) 4.2 仿真图 (16) 第五章总结 (18) 附录1 (18) 附录2 (22) 参考文献 (25)

赣南师范学院 2013 — 2014 学年第_1_学期课程论文行政班级:电子科学与技术1101 学号:110803025 姓名:李婷

图2-1 系统的设计总框图 2.2单片机控制系统及其基本电路 2.2.1单片机最小系统 单片机晶振电路:对于MSC-51一般的晶振频率可以在1.2MHz—12MHz 之间选择,这是电容C可以对应的选择10pF—30pF。当使用89C55时晶振频率可以提高到24MHZ。对于本设计的电容C用30pF,晶振选用11.0592MHz。晶振电路如下图3-1所示,一条引脚接在XTAL1,另一条接在XTAL2。单片机的复位电路:为了防止程序执行过程中失步或运行紊乱,此处采用了上电复位及手动复位电路,电路图如下图2-1所示: 图2-2-1 单片机最小系统图

万能学习型红外遥控器制作(毕业设计)

学号 密级 ××大学本科毕业论文 万能学习型红外遥控器设计 院(系)名称:×××× 专业名称:×××× 学生姓名:×××× 指导教师:×××× 二○○九年五月

BACHELOR'S DEGREE THESIS OF ×××× UNIVERSITY Design of Universal IR Learning Remote Controller College :×××× Subject :×××× Name :×××× Directed by :×××× May 2009

摘 要 随着家用电器种类的增加和无线遥控产品的普及,红外遥控器的使用频率越来越高,针对国内红外遥控学习技术成熟,但产品化程度低的特点,本文自主设计一种具有红外学习和触屏显示功能的红外遥控器,借此促进红外遥控学习技术在国内市场的产品化推广。 在红外解码方面,传统方法采用单片机中断或者查询方式采集红外信号,环境不理想情况下可能需要多次解码,本文借助电脑辅助记录全波形,通过相关软件优化波形,解码一次即可成功;在红外发射方面,本文通过实验发现红外发射距离受载波占空比和红外二极管贯通电流影响,通过调试将38KHz载波红外信号发射距离提高到10米;在红外接收方面,进行了红外干扰测试;在触屏校验方面,通过实验获取触屏数据,利用matlab参数估计lsqcurvefit函数求得校正参数,解决了触屏漂移问题;在彩屏显示方面,将遥控器所有按键简化为方向键和确认键,虚拟数码管显示按键位置,避免了单片机片上资源紧张的问题,此外,彩屏仅支持16位R5G6B5格式数据,一张176*220图片占用72. 6KB空间,造成极大浪费,本文借此讨论了适合本系统的图片压缩技术,给出了一种具体的图片压缩格式。 按照由简单到复杂的顺序,本文先后制作了遥控接收解码装置、遥控编码发射装置、万能学习型红外遥控器,以SAA3010遥控器作为典型代表(遵循飞利浦RC-5编码协议),成功的实现了红外编解码、发射接收、按键触屏双输入、彩屏显示等基本功能,最终制作的万能学习型遥控器在功能上可以完全代替SAA3010遥控器。 关键词:红外学习;红外解码;单片机控制;声卡采样;触屏校验

红外遥控器信号接收和显示的设计1

电子电路综合设计总结报告 题目:红外遥控器信号接收和显示的设计 摘要: 随着电子技术的发展,红外遥控器越来越多的使用到电器设备中,但各种型号遥控器的大量使用带来的遥控器大批量多品种的生产,使得检测成为难题,因此智能的红外遥控器检测装置成为一种迫切的需要。在该红外遥控器信号的接收和显示电路以单片机和一体化红外接收器为核心技术,具体由单片机最小系统、单片机和PC机间的通信模块、红外接收模块、数码管显示模块和流水灯模块组成。在本系统的设计中,利用红外接收器接收遥控器发出的控制信号,并通过软件编程将接收信号存储、处理、比较,并将数据处理送至数码管显示模块。总之,通过对电路的设计和实际调试,可以实现红外遥控器信号的接收和显示功能。根据比较接收信号的不同,在数码管显示电路及流水灯电路上显示相应的按键数字或闪烁变化功能,并可实现单片机及PC机之间的通信功能,使得控制信号能在PC机上显示。

关键词:单片机红外接收器HS0038 解码串口调试

设计任务 结合单片机最小电路和红外线接收接口电路共同设计一个基于单片机的红外遥控信号接收和转发系统,用普通电视机遥控器控制该系统,使用数码管显示信号的接收结果。 1、实现单片机最小系统的设计。 2、当遥控器按下数字键时,在数码管上显示其键值。如按下数字键1,则在数码管上显示 号码01。 3、当遥控器按下音量△及音量▽时,用两位数码的周围段实现顺时针或者逆时针旋转的流 水灯功能。(为使得音量的增减清晰显示,试验中在单片机的P1口外接一排流水灯,具体功能的实现见方案的可行性论证) * 运用串口调试助手,在遥控器有按键按下时,将其键值显示在PC机上。 * 当遥控器按下频道△及频道▽时,在数码管上显示加1或减1后的数值。 一、系统方案比较和论证 1、方案比较和选择 为了实现系统整体功能,红外解码部分是核心,红外解码是指将遥控发射器所产生的红外遥控编码脉冲所对应的键值翻译出来的过程。下面将系统方案做一论证,通常有硬件解码和软件解码两种方案。 方案一:此方案中,使用专用遥控器作为控制信号发出装置,当按下遥控器的按键后,一体化红外接收装置接收到遥控器发出的设置控制信号,然后将信号送到专用的解码芯片中进行解码,解码后将信号送到单片机,由单片机查表判断这个信号是按键数值信号或控制音量、频道等信号,当确认是何种信号后,启动子程序,然后进行查询。每次红外接收头接收到红外信号传到解码器中,解码器解码完毕后送到单片机,单片机再通过查表确定这些数值并进行相应功能的控制。设计原理图如图1所示。 图1、方案一设计原理图 方案二:此方案中,采用普通的家用遥控器作为控制信号发出装置,当按下遥控器的按键后,一体化红外接收装置接收到遥控器发出的红外线控制信号,然后把这个信号转换成电信号,传到单片机中,利用单片机对这个信号进行解码,解码完成后查表确定是按键数值信号或控制音量、频道等信号,启动子程序,进行相应的显示数字等功能。然后查询,重复上述流程。设计原理图如图2所示。

(完整版)红外遥控电路设计

引言 随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段在各级各类学校都得到了广泛应用。近年来,在多媒体教学系统的使用、开发和研制中,经常遇到同时使用多种设备,如:数字投影机、DVD、VCD、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得使用多种遥控器,给使用者带来了诸多不便。本次毕业设计的主题就是红外遥控电路设计。红外遥控的特点是利用红外线进行点对点通信的技术,不影响周边环境,不干扰其他电器设备。室内近距离(小于10米),信号无干扰、传输准确度高、体积小、功率低的特点,遥控中得到了广泛的应用。通过基于单片机的控制指令来对多种设备进行远程控制,可以选择不同的按键来控制不同的设备。从而方便快捷的实现远程控制。 常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。 接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外发光二极管一般有圆形和方形两种。由于红外发光二极管的发射功率一般都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。 红外接收头的引脚排列因型号不同而不尽相同,红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。

基于单片机的红外遥控系统设计

单片机红外遥控系统设计 随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。 本设计主要应用了AT89C51单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点,设计了一个红外线遥控系统。本系统包含发射和接收两大部分,利用编码/解码芯片来进行控制操作。发射部分包括键盘矩阵、编码调制、LED 红外线发射器;接收部分包括红外线接收芯片、光电转换器、调解电路。其优点硬件电路 简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。 关键词:单片机AT89C51;LED红外线发射器

目录 目录 (2) 1 绪论 (2) 1.1研究背景 (2) 1.2国内外研究现状 (3) 1.3研究目的与意义 (3) 2系统方案设计论证 (5) 2.1单片机红外遥控发射器设计原理 (5) 2.2单片机红外遥控接收器设计原理 (5) 2.3方案选择和论证 (6) 3红外解码硬件电路设计 (8) 3.1红外解码系统设计 (8) 3.2单片机及其硬件电路设计 (8) 3.3红外发射电路设计 (10) 3.4红外接收电路设计 (11) 3.5本章小结 (13) 4红外解码程序设计 (14) 4.1红外接收电路主程序流程图 (14) 4.2红外接收电路子程序流程图 (14) 4.3本章小结 (15) 5 联机与调试 (16) 结论和展望 (23) 附录A:系统原理图 (24) 附录B:系统PCB图 (25) 附录C:系统仿真图 (26) 附录D:系统源程序 (27) 1 绪论 1.1研究背景 目前市场上采用的一般是遥控编码及解码集成的电路。此方案的特点是制作简单、容

红外遥控器信号接收和显示的设计实现

电子电路综合设计实验报告 题目:红外遥控器信号接收和显示的设计实现(选题十四)班级:08-0441 姓名:简杰 学号:2008044127 日期:2011.4.6—2011.4.13 成绩:

摘要:随着电子技术的发展,红外遥控器越来越多的用到电器设备中,为电器用户提供了极大的方便。但是,对于电器生产厂家来说,各种型号的遥控器的大量使用带来的遥控器的大批量多品种的生产检测却是一个难题。目前市场上对遥控器的检测还是使用比较落后的手动方式逐一进行,使得一线的检测工人既费时费力而又效率低下;另外,在电器产品的调试过程中,当出现控制故障时,很难判断到底是遥控器的发射故障还是电器上的接收故障。因此,研制一种智能红外遥控器检测装置,以改变生产一线的这种状况成为一种迫切的需要。本实验中的红外遥控器信号的接收和显示电路以单片机和一体化红外接收器为核心技术,具体由单片机最小系统、单片机与PC机间的通信模块、红外接收模块、数码管显示模块和流水灯模块组成。在实验的设计中,采用HS0038塑封一体化红外线接收器,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而且体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。整个电路分为四个模块:单片机最小系统、通信模块、红外接收模块以及数码管显示模块。根据输入信号的不同,在数码管显示电路上显示相应的按键数字或音量调节表现出的流水灯功能,并通过串口调试助手,在遥控器有按键按下时,将其键值显示在PC机上。

一.设计任务与要求: 结合单片机最小电路和红外线接收接口电路共同设计一个基于单片机的红外遥控信号接收与转发系统,用普通电视机遥控器控制该系统,使用数码管显示信号的接收结果。 1.当遥控器重复按下某数字键时,数码管显示不变。 2.当遥控器按下某数字键时,在数码管上显示其键值。如按下数字键1,则在数码管上显示号码“01”。 3.当遥控器按下音量加减键时,用两位数码的周围段实现顺时针或者逆时针旋转的流水灯功能。 4.运用串口调试助手,当遥控器有按键按下时,将其键值显示在PC机上。 二.系统概述 1 设计方案 为了实现系统整体功能,红外解码部分是核心,红外解码指将遥控发射器所产生的红外遥控编码脉冲所对应的键值翻译出来的过程。下面将系统方案做一论证,通常有硬件解码和软件解码两种方案。 方案一: 硬件解码 此方案中,使用专用遥控器作为控制信号发出装置,当按下遥控器的按键后,一体化红外接收装置接收到遥控器发出的设置控制信号,然后将信号送到专用的解码芯片中进行解码,解码后将信号送到单片机,由单片机查表判断这个信号是按键数值信号或控制音量、频道等信号,当确认是何种信号后,启动子程序,然后进行查询。每次红外

智能红外遥控器的设计-(毕业论文)

摘要 随着家用电器种类的增加和无线遥控产品的普及,红外遥控器的使用频率越来越高,针对国红外遥控学习技术成熟,但产品化程度低的特点,本文自主设计一种具有红外学习和触屏显示功能的红外遥控器,借此促进红外遥控学习技术在国市场的产品化推广。 在红外解码方面,传统方法采用单片机中断或者查询方式采集红外信号,环境不理想情况下可能需要多次解码,本文借助电脑辅助记录全波形,通过相关软件优化波形,解码一次即可成功;在红外发射方面,本文通过实验发现红外发射距离受载波占空比和红外二极管贯通电流影响,通过调试将38KHz 载波红外信号发射距离提高到10 米;在红外接收方面,进行了红外干扰测试;在触屏校验方面,通过实验获取触屏数据,利用matlab 参数估计lsqcurvefit 函数求得校正参数,解决了触屏漂移问题;在彩屏显示方面,将遥控器所有按键简化为方向键和确认键,虚拟数码管显示按键位置,避免了单片机片上资源紧的问题,此外,彩屏仅支持16 位R5G6B5 格式数据,一176*220 图片占用72. 6KB 空间,造成极大浪费,本文借此讨论了适合本系统的图片压缩技术,给出了一种具体的图片压缩格式。 按照由简单到复杂的顺序,本文先后制作了遥控接收解码装置、遥控编码发射装置、万能学习型红外遥控器,以SAA3010 遥控器作为典型代表(遵循飞利浦RC-5编码协议),成功的实现了红外编解码、发射接收、按键触屏双输入、彩屏显示等基本功能,最终制作的万能学习型遥控器在功能上可以完全代替SAA3010 遥控器。 关键词:红外学习;红外解码;单片机控制;声卡采样;触屏校验

Abstract In the electronic world, the infrared remote control technology is widely used in our lives. Various appliances on the market have the technology of infrared remote control system with maturity and low cost. However, to avoid different brands and between different types of equipment malfunction, people use different devices in different transport rules or identification number, which makes various types of remote control apply only to their remote objects and easy causes confusing results that the actual use of the remote control are many and complex. The design requirements is to achieve an intelligent learning IR remote control implementations. By studying infrared codec, infrared transmitting and receiving, MCU control, LCD display technology, remote control of other learning and learning sent successfully restored infrared remote control system.Key and core part of the design is that through software decoding it can achieve the self-study function of the infrared signal and be controlled by MCU to make the learned signal in store and forward. Keywords: Infrared remote controller;The 38KHZ carrier;Self-study;Infrared remote receiver;Infrared remote transmitter

红外遥控实验报告

红外遥控开关 小组成员: 指导教师:

掌握电子电路设计的基本方法; 了解各种红外收发器件; 掌握红外遥控的收发方式; 掌握红外遥控的编码、解码方式; 掌握开关量信号对强电设备的控制方式 设计要求及技术指标: 基本部分: [1]红外遥控器采用现成的家用电器的红外遥控器,遥控距离不小于5米; [2]遥控开关接收端的工作电源为220V交流电; [3]遥控开关使用发光二极管指示有无220V交流电源及遥控开关的开关状 态; [4]遥控开关能够控制台灯、电扇等家用电器,输出功率不超过200W。 发挥部分: [1]自制红外遥控器,包括至少4路遥控按键; [2]遥控开关能够控制至少4路家用电器 设计任务 [1]设计、安装、调试所设计的电路; [2]画出完整电路图,详细说明电路原理,写出设计总结报告 设计思路 红外遥控→红外接收→信号处理→开关驱动及显示

红外遥控器的发射端具有键盘矩阵,每按下一个键,即产生具有不同的编码的数字脉冲,这种代码指令信号调制在38kHZ的载波上,激励红外光二极管产生具有脉冲波串的红外波,通过空间的传送送到受控机内的遥控接收器。在接收过程中红外波信号通过滤波器和光电二极管转换为38kHZ的电信号,此信号经过放大、检波、整形、解调,送到解码器与接口电路,从而完成相应的遥控功能。“红外线遥控器”设计方案 直流稳压电源部分 直流稳压电源的基本结构 设计电路

整流电路虽然已经把交流电转换成直流电, 但是整流出来的电压还不是平稳的直流电电压, 所以在整流电路的后边还要有滤波电路, 来改善整流输出电压的平滑程度, 这个工作由电容器来完成。 电路的核心是集成稳压电路LM317, 它有三个端点, 一个输入端, 一个输出端, 还有一个调节端。调节端接地 在实际的焊接过程中,我们采用芯片7805代替了芯片LM317,由7805的OUT端输出直流的稳定的电压。 三端稳压集成电路7805 功能框图:

STM32单片机对红外接收系统的设计

STM32单片机对红外接收系统的设计 4.23.1概述 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛。 4.23.1.1红外接收头工作原理 红外接收头一般是接收、放大、解调一体头,一般红外信号经接收头解调后,数据“0”和“1”的区别通常体现在高低电平的时间长短或信号周期上,单片机解码时,通常将接收头输出脚连接到单片机的外部中断,结合定时器判断外部中断间隔的时间从而获取数据。重点是找到数据“0”与“1”间的波形差别。 3条腿的红外接收头一般是接收、放大、解调一体化,接收头输出的是解调后的数据信号,单片机里面需要相应的读取程序。具体详细的使用参数和时序请参考官方技术手册。 4.23.1.2在STM32实验系统中红外系统的组成 在我们是试验中使用的是红外线遥控器。因为红外线遥控器已经被广泛的使用在各类型的家电产品上,它的出现给使用电器提供了很多的便利。红外线系统一般由红外发射装置和红外接收设备两大部分组成。红外发射装置又可由键盘电路、红外编码芯片、电源和红外发射电路组成。红外接收设备可由红外接收电路、红外解码芯片、电源和应用电路组成。通常为了使信号更好的被发射端发送出去,经常会将二进制数据信号调制成脉冲信号,通过红外发射管发射。常用的有通过脉冲宽度来实现信号调制的脉宽调制(PWM)和通过脉冲串之间的时间间隔来实现信号调制(PPM)两种方法。 1、常用的红外发光二极管其外形和发光二极管LED相似,发出红外光。管压降约1.4v,工作电流一般小于20mA。为了适应不同的工作电压,回路中常常串有限流电阻。 一些彩电红外遥控器,其红外发光管的工作脉冲占空比约为1/3-1/4;一些电器产品红外遥

基于单片机的红外线遥控器设计

毕业设计 姓名: 专业: 班级: 指导教师:

课程设计任务书 姓名:钟思 专业:自动化 班级:1301班 设计课题:基于单片机的红外线遥控器设计指导教师: 电子信息工程系印制 二○一五年十二月 目录

第一章红外发射部分 (1) 1、设计要求与指标 (1) 2、红外遥感发射系统的设计 (1) 3、红外发射电路的设计 (2) 4、调试结果及其分析 (3) 第二章红外接受部分 (4) 1、红外遥控系统的设计 (4) 2、系统的功能实现方法 (9) 3、红外接受电路图 (10) 4、软件设计: (10) 5、调试结果及分析: (10) 6、结论: (11) 参考文献 (11)

第一章红外发射部分 1.设计要求与指标 红外遥控是目前使用较多的一种遥控手段。功能强、成本低等特点。系统。设计要求利用红外传输控制指令及智能控制系统,借助微处理器强大灵活的控制功能发出脉冲编码,组成的一个遥控系统。本设计的主要技术指标如下: (1) 遥控围: 0 — 1 米 (2) 显示可控制的通道 (3) 灵敏可靠,抗干扰能力强 (4) 控制用电器电流最高为 2 A 红外遥控的特点是不影响周边环境的、不干扰其他电器设备。由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;多路遥控。 红外遥控系统由发射和接收两大部分组成,系统采用编 / 解码专用集成电路和单片机芯片来进行控制操作。设计的电路由几个基本模块组成:直流稳压电源,红外发射电路,红外接收电路及控制部分。发射电路,利用遥控发射利用键盘,这种代码指令信号调制在 40KH z 的载波上,激励红外光二极管产生具有脉冲串的红外波,通过空间的传送到受控机的遥控接收器。 2.红外遥感发射系统的设计 红外遥控系统由发射和接收两大部分组成,系统采用编/解码专用集成电路和单片机芯片来进行控制操作。发射系统设计的电路由如下的几个基本模块组成:直流稳压电源,红外发射电路。 系统框图如图所示。

红外遥控控制系统设计

河南科技学院机电学院单片机课程设计报告 题目:红外遥控控制系统设计 专业班级:电气工程及其自动化103 姓名:张明军 时间:2012.12.15 ~2012.12.28 指导教师:田丰庆邵锋张素君完成日期:2012年12月28 日

红外遥控控制课程设计任务书 1.设计目的与要求 设计出一个用于红外遥控控制的控制器。准确地理解有关要求,独立完 成系统设计,要求所设计的电路具有以下功能: (1)有效遥控距离大于10米。 (2)遥控控制的路数在5路以上。 (3)采用数码管显示当前工作的控制电路。 (4)通过遥控器可以任意设置用户密码(1-16位长度),只有合法用户才能有修改电路控制的功能,同时系统掉电后能自动记忆和存储密码在系统中。 (5)密码的输入时间超过12秒或者连续3次输入失败,声音报警同时锁定系统,不让再次输入密码。此时只有使用管理员密码方能对系统解锁。 2.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4.答辩 在规定时间内,完成叙述并回答问题。 论文结构清晰,层次分明,理论严谨

目录 1引言 (1) 2总体设计方案 (2) 2.1 设计思路 (2) 2.2设计方框图 (3) 3设计原理分析 (4) 3.1发射电路设计 (4) 3.2接收电路设计 (7) 3.3 软件设计 (9) 4 结束语 (12) 参考文献 (13) 附录一 (14) 附录二 (15)

红外遥控控制系统 摘要:本设计由发射器和接收器两部分组成。指令键、指令信号产生电路、调制电路、驱动电路及红外线发射器组成。当指令键被按下时,指令信号产生电路便产生所需要的控制信号,控制指令信号经调制电路调制后,最终由驱动电路驱动红外线发射器,发出红外线遥控指令信号。 接收器由红外线接收器件、前置放大电路、解调电路、指令信号检出电路、记忆及驱动电路、执行电路组成。当红外接收器件收到发射器的红外指令信号时,它将红外光信号变成电信号并送到前置放大电路进行放大,再经过解调器后,由信号检出电路将指令信号检出,最后由记忆电路和驱动电路驱动执行电路,实现各种操作。 控制信号一般以某些不同的特征来区分,常用的区分指令信号的特征是频率和码组特征,即用不同的频率或者编码的电信号代表不同的指令信号来实现遥控。所以红外遥控系统通常按照产生和区分控制指令信号的方式和特征分类,常分为频分制红外线遥控和码分制红外线遥控。 关键词:4×4矩阵键盘;AT89C51;接收器件;震荡特性 1 引言 红外线遥控是目前使用很广泛的一种通信和遥控技术。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可*而且能有效地隔离电气干扰。 远程遥控技术又称为遥控技术,是指实现对被控目标的遥远控制,在工业控制、航空航天、家电领域应用广泛。红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备广泛采用,并越来越多的应用到计算机系统中。红外线又称红外光波,在电磁波谱中,光波的波长范围为 0.01um~1000um 。根据波长的不同可分为可见光和不可见光,波长为0.38um~0.76um 的光波可为可见光,红外线遥控是利用近红外光传送遥控指令的,波长为0.76um~1.5um 。用近红外作为遥控光源,是因为目前红外发射器件( 红外发光管 ) 与红外接收器件 ( 光敏二极管、三极管及光电池 ) 的发光与受光峰值波长一般为 0.8um~0.94um ,在近红外光波段内,二者的光谱正好重合,可获得较高的传输效率及较高的可靠性。随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段各级各类学校都得到了广泛应用。但经常会遇到同时使用多种设备,如: DVD 、 VCD 、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得用多种控器,给使用者带来了诸多不便。基于单片机的控制指令来对多种设备进行远程控制,从而方便快捷的实现远程控制。红外遥控的特点是不影响周边环境的、于10 米)遥控中得到了广泛的应用。

相关主题
文本预览
相关文档 最新文档