当前位置:文档之家› 条件概率知识点、例题、练习题(1)

条件概率知识点、例题、练习题(1)

条件概率知识点、例题、练习题(1)
条件概率知识点、例题、练习题(1)

件概率专题

一、知识点

① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质

② 在古典概型中 --- ③ 在几何概型中 --- 条件概率及全概率公式

3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ).

答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能

P (A )≤P (A |B ), 下面举例说明.

在0,1,…,9这十个数字中, 任意抽取一个数字,令

A ={抽到一数字是3的倍数};

B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么

P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>P (A |B 1), P (A )<

P (A |B 2).

3.2.以下两个定义是否是等价的.

定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为

P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A )

自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故

P (AB )=P (A )P (B ).

因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.

3.3.对任意事件A 、B , 是否都有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B ). 答:是的.由于 P (A +B )=P (A )+P (B )-P (AB ) (*) 因为 P (AB )≥0, 故 P (A +B )≤P (A )+P (B ). 由P (AB )=P (A )P (B |A ), 因为0≤P (B |A )≤1,故 P (AB )≤P (A ); 同理P (AB )≤P (B ), 从而 P (B )-P (AB )≥0, 由(*)知 P (A +B )≥P (A ). 原命题得证.

3.4.在引入条件概率的讨论中, 曾出现过三个概率: P (A |B ), P (B |A ), P (AB ). 从事件的角度去考察, 在A 、B 相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?

答:概率的不同主要在于计算时所取的样本空间的差别: P

(A|B)的计算基于附加样本空间ΩB;

P(B|A)的计算基于附加样本空间Ω

A

;

P(AB)的计算基于原有样本空间Ω.

3.5.在n个事件的乘法公式:

P(A

1A

2

…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1)

中,涉及那么多条件概率, 为什么在给出上述乘法公式时只提及P(A1A2…A n-1)>0呢?

答:按条件概率的本意, 应要求P(A

1

)>0, P(A1A2)>0, …,P(A1A2…A n-2)>0, P(A1A2…A n-1)>0.

事实上, 由于A 1A2A3…A n-2A1A2A3…A n-2A n-1, 从而便有P(A1A2…A n-2) ≥P(A1A2…A n-1)>0. 这样, 除P(A1A2…A n-1)>0作为题设外, 其余条件概率所要求的正概率, 如

P(A

1A

2

…A n-2) >0, …,P(A1A2) >0, P(A1)>0便是题设条件P(A1A2…A n-1)>0的自然结论了.

3.6.计算P(B)时, 如果事件B的表达式中有积又有和, 是否就必定要用全概率公式.

答:不是. 这是对全概率公式的形式主义的认识, 完全把它作为一个”公式”来理解是不对的. 其实, 我们没有必要去背这个公式, 应着眼于A1,A2,…,A n的结构. 事实上, 对于具体问题, 若能设出n个事件A i, 使之满足

(*)

就可得

.

(**)

这样就便于应用概率的加法公式和乘法公式.

因此, 能否使用全概率公式, 关键在于(**)式, 而要有(**)式, 关键又在于适当地对Ω进行一个分割, 即有(*)式.

3.7.设P(A)≠0,P(B)≠0, 因为有

(1)若A、B互不相容, 则A、B一定不独立.

(2)若A、B独立, 则A、B一定不互不相容.

故既不互不相容又不独立的事件是不存在的. 上述结论是否正确.

答:不正确. 原命题中的结论(1)(2)都是正确的. 但是由(1)(2)(它们互为逆否命题, 有其一就可以了)只能推出在P(A)≠0,P(B)≠0的前提下, 事件A、B既互不相容又独立是不存在的, 并不能推出“A、B既不独立又不互不相容是不存在的”. 事实上, 恰恰相反, 既不互不相容又不独立的事件组是存在的, 下面举一例.

5个乒乓球(4新1旧), 每次取一个, 无放回抽取三次, 记A i={第i次取到新球}, i=1, 2, 3. 因为是无放回抽取, 故A1、A2、A3互相不独立, 又A1A2A3={三次都取到新球}, 显然是可能发生的, 即A1、A2、A3可能同时发生, 因此A1、A2、A3不互不相容.

3.8.事件A、B的“对立”与“互不相容”有什么区别和联系? 事件A、B“独立”与“互不相

容”又有什么区别和联系?

答:“对立”与“互不相容”区别和联系, 从它们的定义看是十分清楚的, 大体上可由如下的命题概括: “对立” →“互不相容”,反之未必成立.

至于“独立”与“互不相容”的区别和联系, 并非一目了然.

事件的互不相容性只考虑它们是否同时发生,是纯粹的事件的关系, 丝毫

未涉及它们的概率, 其关系可借助图直观显示.

事件的独立性是由概率表述的, 即当存在概率关系P(A|B)=P(A)或

P(B|A)=P(B)时, 称A、B是相互独立的.

它们的联系可由下述命题概括: 对于两个非不可能事件A、B, 则有“A、B互不相容” →“A、B不独立”.其等价命题是: 在P(A)>0与P(B)>0下, 则有“A、B独立” →“A、B不互不相容”(相容). 注意, 上述命题的逆命题不成立.

3.9.设A、B为两个事件,若

0

则A、B相互独立, A、B互不相容, , 这三种情形中的任何两种不能同时成立.

答:在条件(*)下

当A、B相互独立时, 有P(AB)=P(A)P(B);

当A、B互不相容时, 有P(AB)

当时, 有P(AB)>P(A)P(B).

在条件(*)下, 上述三式中的任何两个不能同时成立. 因此, A、B相互独立, A、B互不相容,这三种情形中的任何两种不能同时成立.

此结论表明: 在条件(*)下,若两个事件相互独立时, 必不互不相容,也不一个包含另一个,而只能是相容了.

3.10.证明: 若P(A)=0或P(A)=1, 则A与任何事件B相互独立.

答:若P(A)=0, 又, 故0≤P(AB)≤P(A)=0.

于是P(AB)=0=P(A)P(B),所以A与任何事件B相互独立.

若P(A)=1, 则.由前面所证知,与任何事件B相互独立. 再由事件独立性的性质知, 与B相互独立, 即A与B相互独立.另种方法证明: 由P(A)=1知, 进而有.

又且AB与互不相容, 故

.

即A与B相互独立.

3.11.设A、B是两个基本事件, 且00, , 问事件A与B

是什么关系?

[解1]由已知条件可得.

由比例性质, 得.

所以P(AB)=P(A)P(B).因此事件A与B相互独立.

[解2]由得

.

因而.

又,

所以P(B|A)=P(B).

因此事件A与B相互独立.

3.12.是不是无论什么情况, 小概率事件决不会成为必然事件.

答:不是的. 我们可以证明, 随机试验中, 若A为小概率事件, 不妨设P(A)=ε(0<ε<1为不论多么小的实数 ), 只要不断地独立地重复做此试验, 则A迟早要发生的概率为1.

事实上, 设A k={A在第k次试验中发生}, 则P(A k)=ε,, 在前n次试验中A 都不发生的概率为:

.

于是在前n次试验中, A至少发生一次的概率为

.

如果把试验一次接一次地做下去, 即让n→∞, 由于0<ε<1, 则当n→∞时, 有p n→1.

以上事实在生活中是常见的, 例如在森林中吸烟, 一次引起火灾的可能性是很小的, 但如果很多人这样做, 则迟早会引起火灾.

3.13.只要不是重复试验, 小概率事件就可以忽视.

答:不正确. 小概率事件可不可以忽视, 要由事件的性质来决定, 例如在森林中擦火柴有1%的可能性将导致火灾是不能忽视的, 但火柴有1%的可能性擦不燃是不必在意的.

3.1

4.重复试验一定是独立试验, 理由是: 既然是重复试验就是说每次试验的条件完全相同, 从而试验的结果就不会互相影响, 上述说法对吗?

答:不对. 我们举一个反例就可以证明上述结论是错误的.

一个罐子中装有4个黑球和3个红球, 随机地抽取一个之后, 再加进2个与抽出的球具有相同颜色的球, 这种手续反复进行, 显然每次试验的条件是相同的. 每抽取一次以后, 这时与取出球

有相同颜色的球的数目增加,而与取出球颜色不同的球的数目保持不变,从效果上看,每一次取出的球是什么颜色增加了下一次也取到这种颜色球的概率,因此这不是独立试验,此例是一个如同传染病现象的模型,每一次传染后都增加再传染的概率.

3.15.伯努利概型的随机变量是不是都服从二项分布.

答:不一定. 例如某射手每次击中目标的概率是p,现在连续向一目标进行射击,直到射中为止. 此试验只有两个可能的结果:A={命中}; ={未命中},且P(A)=p.并且是重复独立试验,因此它是伯努利试验(伯努利概型),设X k={第k次射中},X k显然是一个随机变量,但

P(X

=k)=q k-1p,k=1,2,…,其中q=p-1,

k

可见X k是服从参数为p的几何分布,而不是二项分布.

3.16.某人想买某本书, 决定到3个新华书店去买, 每个书店有无此书是等可能的. 如有, 是否卖完也是等可能的. 设3个书店有无此书, 是否卖完是相互独立的. 求此人买到此本书的概率.

答:(37/64).

3.17.在空战中, 甲机先向乙机开火, 击落乙机的概率是0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率是0.3, 则再进攻乙机, 击落乙机的概率是0.

4. 在这几个回合中,

(1) 甲机被击落的概率是多少?

(2) 乙机被击落的概率是多少?

答:以A表示事件“第一次攻击中甲击落乙”, 以B表示事件“第二次攻击中乙击落甲”, 以C表示事件“第三次攻击中甲击落乙”.

(1)甲机被击落只有在第一次攻击中甲未击落乙才有可能, 故甲机被击落的概率为

.

(2)乙机被击落有两种情况. 一是第一次攻击中甲击落乙, 二是第三次攻击中甲击落乙, 故乙机被击落的概率是

=0.2+(1-0.2)(1-0.3)×0.4=0.424.

3.18.某个问题, 若甲先答, 答对的概率为0.4; 若甲答错, 由乙答, 答对的概率为0.5. 求问题由乙答出的概率.

答:(0.3)

3.19.有5个人在一星期内都要到图书馆借书一次, 一周内某天借书的可能性相同, 求

(1)5个人都在星期天借书的概率;

(2)5个人都不在星期天借书的概率;

(3)5个人不都在星期天借书的概率.

答:(1)(1/75);

(2)(65/77);

(3)(1-1/75).

1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 二、例题

解.设事件A表示“甲取到的数比乙大”,

设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).

根据公式

而P(B)=3/15=1/5 ,

,

∴P(A|B)=9/14.

2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数

都不一样”.

则显然所要求的概率为P(A|B).

根据公式

,

,

P(A|B)=1/2.

3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N)

则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知:

P(A1A2)=P(A2|A1)P(A1)=1/3.

而P(A3|A1A2)=3/4 ,

P(A1A2A3)=P(A3|A1A2)P(A1A2)=1 /4 .

由数学归纳法可以知道

P(A1A2…

A N)=1/(N+1).

4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,

事件B表示“最后取到的是白球”.

根据题意: P(B|A)=5/12 ,

,

P(A)=1/2.

.

5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 .

事件B表示“从乙袋中取到的是白球”.

显然A0, A1, A2构成一完备事件组,且根据题意

P(A

)=1/10 , P(A1)=3/5 ,

P(A

2

)=3/10 ;

P(B|A

)=2/5 , P(B|A1)=1/2 ,

P(B|A

2

)=3/5 ;

由全概率公式

P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)

=2/5×1/10+1/2×3/5+3/5×3/10=13/25.

6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”;

事件B表示“最后取到的是2号球”.

显然P(A)=1/N,

,

且P(B|A)=1/(N-1),

;

=1/(N-1)×1/N+1/N×(N-1)/N

=(N2-N+1)/N2(N-1).

7. 袋中装有8只红球, 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.

(1)取出的两只球都是红球;

(2)取出的两只球都是黑球;

(3)取出的两只球一只是红球,一只是黑球;

(4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,

设事件A2表示“第二次取到的是红球”.

(1)要求的是事件A1A2的概率.

根据题意P(A1)=4/5,

,

P(A2|A1)=7/9,

∴P(A1A2)=P(A1)P(A2|A1)=4/5×7/9=28/45.

(2)要求的是事件的概率.

根据题意:,

,

∴.

(3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件的概率.

,,

,

,

∴.

(4)要求第二次取出红球,即求事件A2的概率.

由全概率公式:

=7/9×4/5+8/9×1/5=4/5.

8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解.设事件A表示“射手能通过选拔进入比赛”,设事件B i表示“射手是第i级射手”.(i=1,2,3,4)

显然, B1、B2、B3、B4构成一完备事件组,且

P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20;

P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2.

由全概率公式得到

P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4) =0.9×4/20+0.7×8/20+0.5×7/20+0.2×1/20=0.645.

9.轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、0.1 .求目标被命中的概率为多少?

解.设事件A1表示“飞机能飞到距目标400米处”,

设事件A2表示“飞机能飞到距目标200米处”,

设事件A3表示“飞机能飞到距目标100米处”, 用事件B表示“目标被击中”.

由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,

且A1、A2、A3构成一完备事件组.

又已知P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1.

由全概率公式得到:

P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)

=0.01×0.5+0.02×0.3+0.1×0.2=0.031.

10. 加工某一零件共需要4道工序,

设第一﹑第二﹑第三﹑第四道工序

的次品率分别为2%﹑3%﹑5%﹑

3%, 假定各道工序的加工互不影响,

求加工出零件的次品率是多少?

解.设事件A i表示“第i道工序出次

品”, i=1,2,3,4

因为各道工序的加工互不影响,

因此A i是相互独立的事件.

P(A1)=0.02, P(A2)=0.03,

P(A3)=0.05, P(A4)=0.03,

只要任一道工序出次品,则加工

出来的零件就是次品.

所以要求的是

(A1+A2+A3+A4)这个事件的概率.

为了运算简便,我们求其对立事

件的概率

= (1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876.

P(A1+A2+A3+A4)=1-0.876=0.124.

11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求

(1)射击三次皆中目标的概率;

(2)射击三次有且只有2次命中目标的概率;

(3)射击三次至少有二次命中目标的概率. 解.设事件A i表示“第i次命中目标”, i=1,2,3

根据已知条件P(A i)=0.8,,i=1,2,3

某人每次射击是否命中目标是相互独立的,因此事件A i是相互独立的.

(1)射击三次皆中目标的概率即求P(A1A2A3).

由独立性:

P(A1A2A3)=P(A1)P(A2)P(A3)=0.83=0.512.

(2)“射击三次有且只有2次命中目标”这个事件用B表示.

显然,

又根据独立性得到:

.

(3)“射击三次至少有2次命中目标”这个事件用C表示.

至少有2次命中目标包括2次和3次命中目标,所以C=B+A1A2A3 P(C)=P(B)+P(A1A2A3)=0.384+0.512=0.896.

12. 三人独立译某一密码, 他们能译出的概率分别为

1/3, 1/4, 1/5, 求能将密码译出的概率. 解.设事件A i表示“第i人能译出密码”, i=1,2,3.

由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P(A1+A2+A3).

已知P(A1)=1/3, P(A2)=1/4, P(A3)=1/5,

=(1-1/3)(1-1/4)(1-1/5)=0.4.

∴P(A1+A2+A3)=1-0.4=0.6.

13. 用一门大炮对某目标进行三次独立射

击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 解.设事件A i表示“第i次命中目标”, i=1,2,3.

设事件B i表示“目标被命中i弹”, i=0,1,2,3.

若命中此目标一、二、三弹, 该目标被摧毁的概

率分别为0.2、0.6和

0.8, 试求此目标被摧毁的概率.

设事件C 表示“目标被摧毁”. 由已知P (A 1)=0.4, P (A 2)=0.5, P (A 3)=0.7; P (C |B 0)=0, P (C |B 1)=0.2, P (C |B 2)=0.6, P (C |B 3)=0.8. 又由于三次射击是相互独立的,所以

,

=0.6×0.5×0.7+0.6×0.5×0.3+0.4×0.5×0.3=0.36, =0.6×0.5×0.7+0.4×0.5×0.3+0.4×0.5×0.7=0.41,

.

由全概率公式得到

P (C )=P (C |B 0)P (B 0)+P (C |B 1)P (B 1)+P (C |B 2)P (B 2)+P (C |B 3)P (B 3)

=0×0.09+0.2×0.36+0.6×0.41+0.8×0.14=0.43.

三、练习题

1.已知P(B|A)=

103,P(A)=5

1

,则P(AB)=( ) A .21 B.23 C .32 D.503

2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( )

A.21

B.31

C.41

D.8

1 3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为15

2

,既刮风又下雨的概

率为10

1

,则在下雨天里,刮风的概率为( )

A.225

8 B.21

C.83

D.43

4.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 . 5.一个口袋内装有2个白球,3个黑球,则

(1)先摸出1个白球后放回,再摸出1个白球的概率? (2)先摸出1个白球后不放回,再摸出1个白球的概率?

6.某种元件用满6000小时未坏的概率是43

,用满10000小时未坏的概率是2

1,现有一个此种元

件,已经用过6000小时未坏,求它能用到10000小时的概率

7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。如果要在班内任选一人当学生代表

(1)求这个代表恰好在第一小组内的概率 (2)求这个代表恰好是团员代表的概率 (3)求这个代表恰好是第一小组内团员的概率

(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率

8.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品合格率是95%,乙厂合格率

是80%,则(1)市场上灯泡的合格率是多少?

(2)市场上合格品中甲厂占百分之几?(保留两位有效数字)

9.一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是女孩的概率?(每个小孩是男孩和女孩的概率相等)

10.在一批电子元件中任取一件检查,是不合格品的概率为0.1,是废品的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少?

初三数学九上概率初步所有知识点总结和常考题型测验题

概率初步知识点 一、 概率的概念 某种事件在某一条件下可能发生, 也可能不发生, 但可以知道它发生的可能性的大小, 我们把刻划 (描述) 事件发生的可能性的大小的量叫做概率 . 2、事件类型: ①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件 . ②不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件 . ③不确定事件: 许多事情我们无法确定它会不会发生,这些事情称为不确定事件 . 3、概率的计算 一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都 相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 ( 1) 列表法求概率 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通 常采用列表法。 ( 2) 树状图法求概率 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。 4、利用频率估计概率 ①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某 个常数,可以估计这个事件发生的概率。 ②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模 拟实验。 ③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的 数据称为随机数。 概率初步练习 一、选择题 1、下列成语所描述的事件是必然事件的是( ) A .瓮中捉鳖 B .拔苗助长 C .守株待兔 D .水中捞月 2、在一个不透明的口袋中,装有 5 个红球 3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到 红球的概率为( ) A . 1 B . 1 C . 5 D . 3 5 3 8 8 3、小伟掷一个质地均匀的正方体骰子,骰子的六个面分别刻有 1 到 6 的点数。则向上的一面的点数大于 1 / 3

最新七年级一元一次方程经典题型计算题100道

经 典 题 型 一、解方程(等式的性质)20分 1、x x 232-=- 2、463127.253.13?-?-=-+-x x x x 3、x x 21-=- 4、x 355-= 5、15=-x 6、1835+=-x x 7、x x 237+= 8、x x x 58.42.13-=-- 9、26473-=+-x x x 10、x x x 910026411-=-+ 11、x x x x 43987--=+- 12、x x x 25.132-=+- 13、x x 3.15.67.05.0-=- 14、3.05.064-=-+-x x x 15、15 2+-=-x x 16、35 36+-=-x x 17、3 223=x 18、168421x x x x x ++-+ = 19、4 32214+=-x x

20、x x x 3 212-=- 二、解方程(去括号)30分 1、4)1(2=-x 2、5)1(10=-x 3、95)3(+=--x x 4、)12(1)2(3--=+-x x x 5、)15(2)2(5-=+x x 6、)4(3)2()1(2x x x -=+-- 7、1)1(234+-=+x x 8、x x x 31)1(2)1(-=--+ 9、)1(3)14(6)2(2x x x -=--- 10、)1(9)15(3)2(4x x x -=--- 11、)12(3)32(21+-=+-x x 12、x x x 31)1(2)1(-=--+ 13、)9(76)20(34x x x x --=-- 14、)3()2(2+-=-x x 15、)1(72)4(2--=+-x x x 16、)43(23)165(2--=+-x x x 17、)12(41)2(3--=+--x x x 18、)4(12)2(24+-=-+x x x 19、)1(9)14(3)2(2x x x -=--- 20、)1(9)14(3)2(2y y y -=--+ 21、)9(76)20(34x x x x --=-- 22、17}20]8)15(4[3{2=----x 23、2)]}4(8[2{3]5)4(3[2----=-+--x x x x x x 24、)1(3 2)1(2121-=??????--x x x

初一一元一次方程练习题(一)

初一一元一次方程练习 题(一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 初一一元一次方程练习题(一) 一、 基础训练: 1、x 比它的一半大6,可列方程为 。 2、 若22172a b b a n m n ++-与 是同类项,则 n = , m =_ 。 3、 若已知方程6521=+-n x 是关于x 的一元一次方程,则 n= 。 4、 方程5x-4=4x-2变形为5x-4x=-2+4的依据是 。 5、 方程-5x=6变形为 x=56-的依据是 。 6、 若253=-a ,则a = ;若y x 124-=,则x = ; 7、 若x%=2.5,则x= 。 8、 日历中同一竖列相邻三个数的和为63,则这三个数分别 为 。 (用逗号隔开) 9、 1,-2,21三个数中,是方程7x +1=10-2x 的解的是 。 10、 某件商品进价100元,售价150元,则其利润是 元,利润率是 。 11、 下列方程中,是一元一次方程的是( ) 。 A. ;342=-x x B. ;0=x C. ;32=+y x D. .11x x =- 10、 方程356+=x x 的解是( ) 。 A. 3-=x B. 2-=x C. 3=x D. 无解

3 11、 下列变形正确的是( ) 。 A. 4x – 5 = 3x+2变形得4x –3x = –2+5 B. 32x – 1 = 2 1x+3变形得4x –6 = 3x+18 C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6 D. 3x = 2变形得 x =32 12、 已知2是关于 x 的方程 ;03=+a x 的一个解,则a 的值是( ) 。 A. 5- B. 3- C. 4- D. 6- 13、 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3 分,要得到34分必须答对的题数是( ) 。 A. 6 B. 7 C. 9 D. 8 14、下列判断错误的是( ) A.若a=b,则ac-5=bc-5 B.若a=b,则1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b 15、关于x 的方程)()(m x m k x k -=-有唯一解,则k,m 应满足的条件是( ) A.k ≠0,m ≠0 B. k ≠0,m=0 C.k=0,m ≠0 D. k ≠m 二、解下列方程(基础训练) 16、 4485-=+y y 17、 191 =-x

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

2019年七年级数学下册第六章概率初步知识点归纳(新版)北师大版

第六章概率初步 必然事件 事件不可能事件 不确定事件 概率等可能性游戏的公平性 概率的定义 概率几何概率 设计概率模型 一、事件 1、事件分为必然事件、不可能事件、不确定事件。 2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。 3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。 4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。 5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件。 6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确定事件是指有可能发生,也有可能不发生的事件。 7、表示事件发生的可能性的方法通常有三种: (1)用语言叙述可能性的大小。 (2)用图例表示。 (3)用概率表示。 二、等可能性 1、等可能性:是指几种事件发生的可能性相等。 2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性。 (1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的; (2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的。 (3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可。 三、概率 1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不可能事件发生的概率为0,记作P(不可能事件)=0; 4、不确定事件发生的概率在0∽1之间,记作0

一元一次方程总复习经典练习题(供参考)

一元一次方程板块 1.已知等式2(2)10a x ax -++=是关于x 的一元一次方程(即x 未知),则这个方 程的解为______ 2.方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( ) A. -5 B . -3 C. 3 D. 5 3.若关于x 的方程a x x -=+332的解是2x =-,则代数式21a a -的值是_________ 4.关于x 的方程729+=-kx x 的解是自然数,则整数k 的值为 5.当m 取什么整数时,关于x 的方程1514()2323 mx x -=-的解是正整数? 6、关于x 的方程143+=+x ax 的解为正整数,则a 的值为( ) A 、2 B 、3 C 、1或2 D 、2或3 7.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解 2-=x ,则原方程的解为___________________________. 8. 解方程 (1)x x 325.2]2)125.0(32[23=-++ (2)13 5467221--=---x x x (3)14 3)1(2111=-+-x (4)、200320042003433221=?++?+?+?x x x x 9.某公司向银行贷款40万元,用来生产某种产品,已知该贷款的利率为15%(不 计复利,即还贷款前两年利息不计算),每个新产品的成本是2.3元,售价是4元, 应纳税款是销售额的10%,如果每年生产该种产品20万个,并把所得利润(利 润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清? 10.(2009年牡丹江)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾 卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共 节省2800元,则用贵宾卡又享受了 折优惠. 11.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程 所需天数为( ) A.1x y + B.11x y + C.1xy D.1 11x y +

解一元一次方程习题及答案

可编辑 解一元一次方程专项训练 1、721231x x -=++ 2、32 2 331=-++x x 3、()()3216325=+--x x 4、3x+3=2x+7 5、()[]153525--++=x x x 6、13 41573--=-x x 7、521321x x -=++ 8、13269-=+--x x x 9、22.15.15 +-=-x x 10、()()13.024.12.153--=+-x x 11、()12321---=-x x 12、4 3 412332-=-x x 13、()()[]2414256-=--+-x x x 14、19.01.02.02.01.0=--x x 15、()()2 7 2315321=-+-x x 16、521=--x x 17、168421x x x x x -+-+= 18、10 8 756232-=++-x x x 19、()()03.534.02.0546.0=++--x x 20、()()11625.0235.0=-++x x 21、3 1 341-=- x x

可编辑 22、8212=--x x 23、()8.01.02.025.0=--x x 24、25 3 6+=-x x 25、 . 26、()()43231652--=+-x x x 27、27 931x x x x - +- = 28、373212+=+x x 29、()[]1784 3 69+-=-x x 30、()()1067234+=+-+x x x 31、()()164 1331 =+--x x 32、()()[]{}11253=+-+--x x x 33、[3(x ﹣)+]=5x ﹣1 34、()[]{}2253671234=-+++x 35、. 36、 37、232151413121=??? ???-??????-??? ??-x 38、432214+=-x x 39、23312+=-x x 40、14126110312-+=+--x x x 41、32635213-=--+x x x 42、325 3 3151231-=??? ??+-x x x

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率初步知识点总结

概率初步知识点总结 一、可能性: 1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件; 2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件; 3.确定事件:必然事件和不可能事件都是确定的; 4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。 5.一般来说,不确定事件发生的可能性是有大小的。. 二、概率: 1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0 3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程(含答案) 1、71 2=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ; 解:(移项) (合并) (化系数为1) 5、914211-= -x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ; 解:(移项) (合并) (化系数为1) 9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32 1 41+=-x x 解:(移项) (合并) (化系数为1 13、1623 +=x x 14、253231+=-x x ;15、152+=--x x ; 16、23 312+=--x x 解:(移项) (合并) (化系数为1) . 17、 4 75.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号) (移项) (合并) (化系数为1) 21、)12(5111+=+x x ; 22、32034)=-(- x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号) (移项) (合并) (化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、3 232 36)=+(-x ; 解:(去括号) (移项) (合并) (化系数为1) 29、x x 2570152002+)=-( ; 30、12123)=+(x .31、452x x =+; 32、3 4 23+=-x x ; 解:(去分母) (去括号) (移项) (合并) (化系数为1)

一元一次方程练习题(提高)

一元一次方程练习题(提高) 一、 解下列方程 (1)12(31)6x --= (2)43(20)67(11)y y y y --=-- (3)215436x x -+= (4)()112 2(1)1223 x x x x ??---=-???? (5)()22462133x x ?? --=+???? (6)432.4 2.55x x --= (7)12225y y y -+-=- (8)2123 134 x x ---= (9)21101211364x x x --+-=- (10)0.10.2130.020.5 x x -+-=

二、 思考?运用 (11)代数式1322 y y +-的值与1互为相反数,试求y 的值。 (12)当3x =时,代数式()54x a +的值比()4x a -的值的2倍多1,求a 的值。 (13)若6x =是关于x 的方程2()136 ax x a -=-的解,求代数式221a a ++的值。 三、 列一元一次方程解决应用问题 (14)某校七年级共有65名同学在植树节活动中担任运土工作,现有45根扁担,请你安排一下有多少人抬土,多少人运土,可使扁担和人数恰好相配 (15)某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女生人数就占全组人数的2 3 ,求这个课外活动小组的人数。

(16)食堂有煤若干,原来每天烧煤3t,用去15t后,改进设备,耗煤量为原来的一半,结果多烧了10天,求原来存煤量。 (17)徐程的舅舅来看他,徐程问舅舅多少岁,舅舅说:“我像你这么大时,你才3岁;等你到了我这么大时,我就36岁了。”问徐程和舅舅现在各几岁 (18)一个邮递员骑自行车在规定时间内把特快专递送到单位,他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。求原来的时间是多少 (19)用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢 (20)体育馆入场券3元一张,若降价后观众增加一半,收入增加1 4 ,那么每张入场券降 价多少元

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

一元一次方程练习题

一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. y x -=-5 4121 B. 835-=-- C. 3+x D. 1465 34+=-+x x x 2、方程x x 23 1=+-的解是( ) A. 31- B. 3 1 C. 1 D. -1 3、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( ) A. 10 B. 8 C. 10- D. 8- 4、下列根据等式的性质正确的是( ) A. 由y x 3 231=- ,得y x 2= B. 由2223+=-x x ,得4=x C. 由x x 332=-,得3=x D. 由753=-x ,得573-=x 5、解方程16 110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x 6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a 元 C. 21 .1a 元 D. 81.0a 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A .不赚不亏 B .赚8元 C .亏8元 D . 赚8元 9、下列方程中,是一元一次方程的是( ) (A );342=-x x (B );0=x (C );12=+y x (D ).11x x =- 10、方程212= -x 的解是( ) (A );41-=x (B );4-=x (C );4 1=x (D ).4-=x 11、已知等式523+=b a ,则下列等式中不一定... 成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3 532+=b a 12、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).8

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

初三数学 概率初步知识点归纳

概率初步知识点归纳 1、事件类型: ○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件. ○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件. (2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

《概率初步》知识点+例题+习题(含答案)

概率初步 一、事件的有关概念 1.必然事件 在现实生活中__________发生的事件称为必然事件. 2.不可能事件 在现实生活中__________发生的事件称为不可能事件. 3.随机事件 在现实生活中,有可能__________,也有可能__________的事件称为随机事件. 4.分类 事件??? 确定事件? ?? ?? 必然事件 不可能事件随机事件 二、用列举法求概率 1.定义 在随机事件中,一件事发生的可能性__________叫做这个事件的概率. 2.适用条件 (1)可能出现的结果为__________多个; (2)各种结果发生的可能性__________. 3.求法 (1)利用__________或__________的方法列举出所有机会均等的结果; (2)弄清我们关注的是哪个或哪些结果; (3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率. 列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举. 三、利用频率估计概率 1.适用条件 当试验的结果不是有限个或各种结果发生的可能性不相等. 2.方法 进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率. 四、概率的应用 概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策. 自主测试

1.下列说法正确的是( ) A .打开电视机,正在播放新闻 B .给定一组数据,那么这组数据的中位数一定只有一个 C .调查某品牌饮料的质量情况适合普查 D .盒子里装有2个红球和2个黑球,搅匀后从中摸出两个球,一定一红一黑 2.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) A .14 B .316 C .3 4 D . 3.有一箱规格相同的红、黄两种颜色的小塑料球共1 000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________. 4.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案; (2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A ,B ,C ,…或①,②,③,…等符号来代表可简化解答过程) 典例 考点一、事件的分类 【例1】下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100 ℃沸腾 B .明天我市最高气温为56 ℃ C .中秋节晚上能看到月亮 D .下雨后有彩虹 触类旁通1 下列事件中,为必然事件的是( ) A .购买一张彩票,中奖 B .打开电视,正在播放广告 C .抛掷一枚硬币,正面向上 D .一个袋中只装有5个黑球,从中摸出一个球是黑球 考点二、用列举法求概率 【例2】在一个不透明的口袋中装有4张形状、大小相同的纸牌,它们分别标有数字1,2,3,4.随机地摸出一张纸牌,记下数字,然后放回,洗匀后再随机摸出一张纸牌并记下数字. (1)计算两次摸出的纸牌上的数字之和为6的概率; (2)甲、乙两个人玩游戏,如果两次摸出纸牌上的数字之和为奇数,则甲胜;如果两次摸出纸牌上的数字之和为偶数,则乙胜.这个游戏公平吗?请说明理由.

一元一次方程典型例题(用)

一元一次方程典型例题 类型一、有关概念的识别和应用 什么是方程?什么是一元一次方程?等式有哪些性质? 1. 下列算式: y y 4)1(= 2 1 41) 2(-=-x x 5)3(=+y x 72)4(22=++y xy x 7142)5(-=-? 21 ) 6(=x 其中是方程的是_____________,一元一次方程方程的是_______。 若方程(m-4)x |m-3|-2=0是一元一次方程,则m=_______。 2. 下列方程中,是一元一次方程的是( ) (A )2 43x x -= (B )0=x (C )12=+y x (D )x x 11= - 3. x 比它的一半大6,可列方程为 。 4. 类型二、解一元一次方程 解方程的一般步骤:去分母→去括号→移项→合并同类项→两边同除以未知数的系数 5. 解方程21101 1510 x x +--=时,去分母后正确的是〔 〕 A 、4x+1-10x+1=1 B 、4x+2-10x-1=1 C 、4x+2-10x-1=10 D 、 4x+2-10x+1=10 6. 将下列各式中的括号去掉: (1) a+(b-c)= ; (2) a-(b-c)= ; (3) 2(x+2y-2)= ; (4)-3(3a-2b+2)= 。 7. 将方程4x+1=3x-2进行移项变形,正确的是〔 〕 A 、4x -3x=2-1 B 、4x+3x=1-2 C 、4x -3x=-2-1 D 、4x+3x=-2-1 8. 下列变形不正确的是〔 〕 A 、若2x -1=3,则2x = 4 B 、若3x =-6,则x =2 C 、若x+3=2,则x =-1 D 、若-1/2x=3,则x=-6 9. 当代数式-4x+7与代数式2x+6的值互为相反数时, x=_____;相等时,x=_____。 10. 若x=5是3x+2a=5x+2的解,则a=______。 11. 下列方程中,解为1/2的是〔 〕 A 、5(t -1)+2=t -2 B 、1/2x -1=0 C 、3y -2=4(y -1) D 、3 (z -1) =z -2 12. 解方程: (1) 5(x+2)=2(2x+7) (2) 3(x -2)=x -(7-8x) (3) 9232344=---x x (3) 15 .08 402.013.0=---x x 类型三、应用题 列一元一次方程解应用题的一般步骤: 1) 审题:;

相关主题
文本预览
相关文档 最新文档