当前位置:文档之家› 数学思想方法的几次重大转折

数学思想方法的几次重大转折

数学思想方法的几次重大转折
数学思想方法的几次重大转折

数学思想方法的几次重大转折

历史表明,数学的发展,不仅表现为量的积累,而且还表现为质的飞跃。数学思想方法在历史上经历了四次重大转折:从算术到代数,从常量数学到变量数学,从必然数学到或然数学,从明晰数学到模糊数学,就充分说明这一点。回顾、总结和分析这四次重大转折,将有助于我们全面了解数学思想方法演变的历史及其规律。

1.从算术到代数

算术和代数,作为最基础而又最古老的两个分支学科,有着不可分割的亲缘关系。算术是代数产生的基础,代数是算术发展到一定阶段的必然产物。从算数发展到代数,是人们对数及其运算在认识上的突破,也是数学在思想方法上的一次重大转折。

在算术解题法中,未知数是不允许作为运算的对象的,它们没有参加运算的权利。而在代数解题法中,所列出的方程作为一种条件等式,已是由已知数和未知数构成的有机统一体。在这个统一体中,未知数和已知数有着同等的权利,即未知数在这里也变成了运算的对象,它们不再是消极、被动地静等在等式的一边,而是和已知数一样,可以接收各种运算指令,并可以依照某种法则从等式的一边移到另一边。解方程的过程,实质上就是未知数和已知数进行重新组合的过程,也是未知数向已知数转化的过程。

解方程是古典(经典)代数最基本的内容。方程在数学中占有重要的地位,它的出现不仅极大地扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对整个数学的进程产生巨大的影响。特别是数学中的许多重大发现都与它密切相关,例如,?对二次方程的求解,导致虚数的发现;

?对五次和五次以上方程的求解,导致群论的诞生;

?对一次方程组的研究,导致线性代数的建立;

?应用方程解决几何问题,导致解析几何的形成;

?等等。

显然,代数解题法(相对于算术解题法)更具有新奇性和简单性(算术解题法需要更强的技巧)

2.从常量数学到变量数学

算术、初等代数、初等几何和三角,构成了初等数学的主要内容。它们都以常量即不变的数量和固定的图形为其研究对象,因此这部分内容,也称为常量数学。运用常量数学可以有效地描述事物和现象相对稳定的状态。

可是,对于描述运动和变化,却是无能为力的,于是便产生了从量上描述事物的运动和变化规律的数学部分-变量数学。从常量数学到变量数学,是数学在思想方法上的又一次重大转折。

自然科学中研究变量的几个典型问题。

数学的发展始终受着自然科学的影响。特别是,自然科学通过向数学提出各种重大的问题,在一定程度上推动着数学的发展。变量数学就是在回答十六、十七世纪自然科学提出的大量数学问题过程中,酝酿和创立起来的。古希腊的阿基米德(Archimedes,公元前287-212)等人在解答数学内部的某些问题时,已经十分接近了微分和积分的计算,这些计算

实际上给出了微积分的原始雏型。但是,微积分理论却没能在阿基米德的时代确立,一直到十七世纪才得以完成。其原因之一,就是十七世纪以前生产和自然科学所提出的问题,常量数学大都可以解决,对变量数学的需求缺乏迫切性。然而,到了十七世纪,随着欧洲封建社会开始解体和资本主义工场手工业向机器大生产的过渡,自然科学从神学的桎梏下解放出来,开始大踏步地前进。这时,生产和自然科学部门,向数学提出一系列必须从运动变化和发展观点来研究事物的新问题。这些新问题,大体可以分为以下五种类型:第一,描述非匀速运动物体的轨迹。开普勒在总结大量观测资料的基础上,发现行星围绕太阳运动的轨迹是椭圆;伽利略(G.Galilei,1564一1642)明确提出,各种抛射物体诸如炮弹和石头的运动轨迹是抛物线。他们的工作引起了人们对圆锥曲线重新研究。圆锥曲线本来早在古希腊时代就被阿波罗尼(Apollonius,约公元前262-190)等人认真研究过,不过在十六世纪之前人们只是出自纯数学的兴趣,而且是用静态的观点来研究图形的性质,即把它们看作是由平面从不同角度截锥体而来的。行星绕日运动和抛体运动则要求人们用运动和变化的观点来研究圆锥曲线,即把曲线看成是经物体运动而生成且随时间而变化着的轨迹。

第二,求变速运动物体的速度或路程。已知变速运动的物体在某段时间内经过的路程,求物体在任意时刻的速度和加速度:反过来,已知物体运动的速度或加速度,求某段时间内经过的路程。求物体运动的速度或路程是一个古老问题,但以前人们处理的大都是匀速运动的情况,对于变速运动,只能采用求平均速度的方法给出问题的近似解。自然科学的发展则要求精确地求出变速运动的物体在某一时刻的瞬时速度,或在某一段时间内所经过的路程。这就使传统的数学方法完全不适用了。

第三,求曲线在任一点的切线。这个问题主要来源于光学和力学的需要。在光学中,要研究光线在不同介质的通道,这就涉及到光线在曲面上的反射角或进入另一个介质的折射角,而这些角是光线同曲线的法线所夹的角,法线又是垂直于切线的,所以问题就归结于求出曲线的切线;在力学中,运动物体在它轨迹上任一点的运动方向,实质上就是轨迹上这一点的视线方向。

第四,求变量的极值,即求变量在某种条件下所能达到的最大值或最小值。力学和天文学涉及到的这类问题较多。例如,炮弹运行的水平距离是一个随发射角的变化而变化的变量,求发射角为多大时这个水平离最大。再如,行星运动与太阳距离是个变量,求这个变量所能达到的最大值和最小值等等。

第五,计算曲线长度、曲边形面积、曲面体体积、物体的重心、变密度物体的重量以及大质量物体之间的引力等,求积问题也是一个古老的问题。古希腊学者为解决这类问题曾创立穷竭法,但这个方法缺乏一般性,只能解决某些特殊问题。求物体的重心、变密度物体的重量以及大质量物体之间的引力,就其思想方法而言,也属于这一类问题。

不难看出上述五类问题有一个共同的特征;就是要求把“变量”作为其研究象。这些问题成为十六、十七世纪数学研究的中心课题,正是对这个中心课题的深入研究,导致了变量数学的产生。

变量数学的产生及其意义

变量数学产生于十七世纪。它大体上经历了两个具有决定性的重大步骤。第一个步骤是解析几何的产生。1637年,法国数学家笛卡儿发表《方法论》一书,书后有三篇附录,其中一篇叫做《几何学》。在这篇附录中,他首次明确提出了点的坐标和变数的思想,并借助坐标系用含有变数的代数方程来表示和研究曲线。这篇附录的问世,是解析几何产生的重要标志。和笛卡儿同时代的法国业余数学家费尔马,对解析几何的创立也作出了突出功

贡献,在数学史上和笛卡儿一起分享着解析几何创立者的荣誉。但他关于这方面的文章直到1679年,即他去世两年之后,才发表出来。

变量数学产生的第二个决定性步骤是微积分的创立。十七世纪许多著名数学家、天文学家和物理学家都参与了这一发明的研究工作。其中贡献最大的要属牛顿(I.Newton,1642一1727)和莱布尼茨(G,W.Leibniz,1646-1716)两个人。牛顿主要是从运动学来研究和建立微积分的。他的微积分思想最早出现在1665年5月20日的一页文件中。这一天可做为微积分诞生的日子。他写了《曲线求积论》(1704年出版)和《流数术方法和无穷级数》(1736年出版)两部专论.微积分的著作。这两部著作集中体现了他在微积分方面的研究成果。他称连续变量为“流动量”,用符号v、x、y、z等表示。把它们的导数称为“流数”(或“流动率”’“速度”,“迅度”),并用加小点的字母如表示。他还使用了术语“刹那”(或“瞬”),相当于表示变量的微分dx、dy等。

莱布尼茨是一个多才多艺的学者,一生中突出的贡献之一是独立地完成微积分学的创立工作。他创立微积分主要是从几何角度出发。他的微积分思想最初体现在1675年的手稿之中。1864年,他在《学艺》杂志上发表的论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》,是历史上最早公开发表的关于微积分学的文章。1686年,他在该杂志上又发表了历史上第一篇关于积分学的文章。他还是历史上最杰出的符号创造家之一。他所发明的微积分符号,远远优于牛顿的符号,对微积分的发展有重大的影响。现今通用的符号dx、dy、等,就是由莱布尼茨精心创造的。

变量数学产生的两个主要步骤都是在十七世纪完成的,因此十七世纪也就成了常量数学向变量数学转变的时期。变量数学的产生,有着极其重要的意义,其具体表现可概括为以下三个方面。

首先,变量数学的产生,使数学自身在思想方法上发生了重大的变革,由此带来整个数学面貌的根本性改观。通过这次变革,常量数学的许多分支学科,诸如代数、几何、三角和数论等,由于变量数学的渗透而在内容上得到了极大的丰富,在思想方法上发生了深刻的变化。例如可把解方程理解为求函数的零点,借助分析的方法给出了代数基本定理的严格证明等等。通过这次变革,新的数学分支学科雨后春笋般地涌现出来,诸如解析数论、微分几何、常微分方程论、偏微分方程论、积分方程论、级数论、差分学、实变函数论和复变函数论等。总之,从变量数学产生后,变量数学的思想方法很快就在整个数学中占据了主导地位,长时期内规定和影响着数学发展的方向。

其次,变量数学的产生,使自然科学描述现实物质世界的运动和变化过程成为可能。在现实世界中,“静”和“常”总是暂时的、相对的,“动”和“变”则是永恒的、绝对的。这正如恩格斯所描述的:“整个自然界,从最小的东西到最大的东西,从沙粒到太阳,从原生生物到人,都处于永恒的产生和消灭中,处于不断的流动中,处于无休止的运动和变化中。”自然科学的对象是运动变化着的物质世界,变量数学的产生,为自然科学定量地描述和研究物质世界的运动.变化规律提供了强有力的工具。恩格斯十分重视微积分在自然科学中的作用,他指出:“只有微分学才能使自然科学有可能用数学来不仅仅表明状态,并且也表明过程:运动。”自变量数学产生以后,数学在自然科学各部门的应用范围得到了空前的扩展。

第三,变量数学的产生具有重大的哲学意义。变量数学的基本概念变量、函数、极限、导数和微分,以及微分法和积分法,从本质上看,不外是辩证法在数学上的运用。恩格斯曾对此明确指出:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学”.可以说,变量数学的产生,是辩证法在数学中取得的一次根本性胜利。正象恩格斯所指出的:“在一切理论成就中,未必且有什么象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了。随着变量数学的思想与方法在数学中的全面渗

透,数学日益成为“辩证的辅助工具和表现方式。”这不仅为后来数学的健康发展提供了正确的思维方法,而且又为辩证法的普适性从数学上提供了生动的例证。

3.从必然数学到或然数学

从必然数学到或然数学,是数学思想方法的又一次重大转折。所谓必然数学,是指描述和研究现实世界的必然现象及其规律的那部分数学,它包括通常的算术、三角、几何、代数、微积分、微分方程论、积分方程论和函数论等分支学科。必然数学在科学技术、社会实践以及日常生活中有着广泛的应用,成为人们认识和改造世界的有力工具。然而,在研究和解决现实世界大量存在的偶然现象中的量及其关系问题上,必然数学就无能为力了,需要创造新的数学方法。于是,一个新的数学领域-或然数学便被开拓出来了。

由于随机现象在现实世界中大量存在着,因此随着科学技术和社会实践的发展,以概率论为基础的或然数学很快地蓬勃发展起来,并越来越显示出它的巨大威力。

首先,或然数学与必然数学、自然科学与社会科学相互作用产生出许多新的学科,如平稳随机过程理论、马尔科夫过程论、多元分析、试验分析、统计物理学、统计生物学、统计医学和概率逻辑等。

其次,或然数学的理论和方法,在科学技术、国防、工农业和经济各部门得到广泛的应用,特别是在电子技术、自动控制、气象预报、地震预报、地质勘探、企业管理、公共事业以及国防中的防空、巡逻搜索等部门已经取得明显的社会效益。

容易理解,以概率论为基础的或然数学其方法与必然数学相比是新奇的,相对所要研究、考察的数学对象,其方法又是简单的。

4.从明晰数学到模糊数学

人们在社会实践和科学研究中遇到的各种量,依其界限是否分明可分为这样两类:一类是明晰的,另一类是模糊的。用于描述明晰量及其关系的变化规律的数学称为明晰数学。

明晰数学是研究明晰量的有力工具,但对模糊的量它就不适用了。人们在寻找处理模糊量及其关系变化规律的数学方法过程中,创立了一门新的数学分支学科-模糊数学。模糊数学的产生,是数学思想方法的又一次重大转折。

模糊数学决不是把已经很精确的数学变得模模糊糊,而是用精确的数学方法来处理过去无法用数学描述的模糊事物,因为在现实世界里如果要想绝对地精确是办不到的,而我们也只能是把事物的不精确程度降低到无关紧要的水平罢了。模糊数学的出现,给我们研究那些复杂的,难以用精确的数学描述的问题带来了方便而又简单的方法。国际上有人说它是“异军突起”。也正是因为这点,模糊数学才能渗透到各个领域里去,并且显示出强大的生命力。模糊数学虽然只有二十多年的历史,从理论上还远远谈不到完善,但对于它的研究,无论基础理论还是实际应用,仍然得到了很大的发展。

在理论研究方面,首先,模糊集合概念本身不断得到扩展,产生出许多不同类型的模糊集合,如L一模糊集合、R一模糊集合、Z型集合和n级模糊集合等。其次,模糊数学的内容日渐丰富。所研究的课题已涉及到广泛的范围,如模糊数、模糊关系、模糊图、模糊向量、模糊关系方程、模糊映射及变换、模糊概率、模糊判断、模糊规划、模糊逻辑、模糊语言、模糊识别和模糊控制等等。

在应用研究方面,模糊数学的思想与方法正在广泛渗透到科学和技术的各个领域,如物理、化学、生物学、医学、心理学、气象学、环境科学、管理学、经济学、情报学、语言学、逻辑学、系统论、信息论、控制论以及人工智能等。同时,在农业、林业、建筑、

采矿、冶金、地质、机器检修等许多国民经济领域都已取得初步的成果。模糊数学的理论和应用研究相结合,是模糊数学发展的一个重要课题。

人类对现实世界“量”规律的探索,是一个永无完结的认识过程。在未来数学发展的进程中,还会出现新的重大转折。特别是当代电子计算机的发展,给数学的思想方法带来了

巨大的冲击,传统的单纯“人脑”支配“手工操作”的数学研究,开始由“人-机”系统来代替,数学机械化的思想已初露端倪。可以预想,由于电子计算机的进一步发展,必将使数学在思想方法上发生根本变革,并由此引起数学新的重大转折。

中小学数学很重要的20种常见思想方法

中小学数学很重要的20种常见思想方法 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

数学建模方法大全

数学中国国赛专题培训(一) 《数学建模思想方法大全及方法适用范围》 主讲人:厚积薄发(冰强,Bruce Jan) 第一篇:方法适用范围 一、统计学方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决) (2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等) 1.2聚类分析 1、方法概述 该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。 这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1)Q型聚类:即对样本聚类; (2)R型聚类:即对变量聚类;

《小学数学与数学思想方法》读后感

《小学数学与数学思想方法》读后感 读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。 数学思想方法如此严重,从这本书中还知道了教师如何进行数学思想方法的教学: 重视思想方法目标的落实。 教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。 2.在知识形成过程中体现数学思想方法。 现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要 求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的详尽情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种严重的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

中学数学涉及的主要的数学思想方法

中学数学涉及的主要的数学思想方法 中学数学涉及的主要的数学思想 一、函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透5,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 二、数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。 三、分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 四、化归与转化思想 所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题。 中学数学常用解题方法 1、配方法

论数学建模思想教学(1)

论数学建模思想教学 1在线性代数教学中融入数学建模思想的意义 1.1激发学生的学习兴趣,培养学生的创新水平 教育的本质是让学生在掌握知识的同时能够学以致用。但是当前的线性代数教学重理论 轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不但能够激发学生学习线性代数的兴趣,而且能够调动学生使用线性代数的知识解决实际问题的积极性,使学生理解到线性代数的真正价值,从而改变线性代数无用的观点,同时还能够培养学生的创新水平。 1.2提升线性代数课程的吸引力,增加学生的受益面 数学建模是培养学生使用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这能够大大改善线性代数课堂乏味沉闷的现状,从而提升线性代数课程的吸引力。由数学建模的教学现状能够看到学生的受益面很小,不过任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。 1.3促动线性代数任课教师的自我提升 要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不但要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的水平,这就迫使线性代数任课教师要持续学习新知识和新技术,促动自身知识的持续更新,进而达到提升教 学和科研水平的效果。 2在线性代数教学中融入数学建模

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

小学数学常见数学思想方法归纳与整理

小学数学常见数学思想方法归纳与整理 1、对应思想方法 对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。 2、转化思想方法: 这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。 3.符号化思想方法: 数学的思维离不开符号的形式(图、表),这样可大大地简化和加速思维的进程。符号化语言是数学高度抽象的要求。如定律a.b=b.a,公式S=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言。所以说,符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。 4、分类思想方法: 分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。 5、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 6、类比思想方法

小学数学中常见的几种数学思想方法

小学数学中常见的几种数学思想方法 我们的教学实践表明:小学数学教育的现代化,主要不是内容的现代化,而是数学思想及教育手段的现代化,加强数学思想的教学是基础数学教育现代化的关键。所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段。以上合称为数学思想方法。一、小学数学教学中渗透数学思想方法的必要性小学教学教材是数学教学的显性知识系统,数学思想方法是数学教学的隐性知识系统。许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。虽然数学知识本身是非常重要的,但是它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。二、在小学数学课堂中如何运用数学思想方法 1.符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。例1:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbc aaabbc aaabbc……从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的。这是符号思想的具体体现。 2.化归思想化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求

中学数学中四种重要思想方法

中学数学中四种重要思想方法 一、函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想. 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想. 二、数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合. 1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短. 2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂. 3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质. 4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系. 5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现. 6.我们要抓住以下几点数形结合的解题要领: (1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用; (3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的. 三、分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答. 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的; (2)运用的数学定理、公式、或运算性质、法则是分类给出的;

读小学数学与数学思想方法心得体会

读《小学数学与数学思想方法》心得 体会 读《小学数学与数学思想方法》心得体会 一、教学进一步的升华 读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这样才能更好地落实“四基”目标。这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。 全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,

让教师感悟如何传授数学思想,具有实践指导意义。 二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得 此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。 在这教学过程中,只有引导学生感受从直观操

数学建模中常用思想和方法

数学建模中常用思想和方法 系统分类:科研笔记|关键词:模型目标数学建模回归分析 matlab 在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。 拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1. 计算n个样本两两之间的距离 2. 构成n个类,每类只包含一个样品 3. 合并距离最近的两类为一个新类

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、

初中数学建模思想的策略研究定稿版

初中数学建模思想的策略研究精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

初中数学建模思想的策略研究 勐海县布朗山乡九年制学校雷鑫 一.什么是数学建模 1.1 数学建模( Mathematical Modeling )是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: ( 1 )、普通高中数学课程标准 [4] 中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容 . ( 2 )、叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling) 就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“ 规律” 建立起变量、参数间的确定的数学问题 ( 也可称为一个数学模型 ) ,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。

什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”( Mathematic Model )是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。 一般地,数学建模的过程可用下面的框图表示: 1.2 什么是中学数学建模 这里的“中学数学建模”有两重含义, 一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。 二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过

小学数学思想方法

小学数学思想方法 教育 2009-12-16 23:07 阅读32 评论0 字号:大中小 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。 8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。 9、数形结合思想方法 数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。 10、统计思想方法: 小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。 11、极限思想方法: 事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。 12、代换思想方法: 它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少? 13、可逆思想方法: 它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

把数学建模的思想和方法融入到大学数学教学中去

把数学建模的思想和方法 融入到大学数学教学中去 北京理工大学叶其孝 一.数学和数学建模的重要性 二.为什么要把数学建模的思想和方法融入 大学的主干数学课程? 三.怎样融入? A.融入的几个原则 B.具体做法: 两个例子 1. 复利和抵押贷款买房问题 2. 易拉罐问题—一个想法改变了可 口可乐易拉罐的形状 四. 几个值得注意的问题 五. 困难和可能的解决办法 一.数学和数学建模的重要性 高技术本质上是数学技术. 戴维(E. David, 1972年曾任尼克松总统的科学顾问,1966年入选美国工程院院士)在1984年说的一段话:

“…对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价,显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。” ... the low levels of support for mathematics research can only flow from a totally inadequate preciation of the benefits it confers. Apparently, too few people recognize that the "high technology" that is so celebrated today is essentially mathematical technology. E. E. David Jr., Notices of American Mathematical Society, v. 31(1984), no. 2, p. 142. ********************************** 21世纪是科学和工程数学化的世纪. 美国科学基金会数学部主任Eisenstein在评述 该基金会把数学科学列为2002-2006该基金会 五大创新项目(其他四个分别为: 环境中的生物复杂性,信息技术研究,纳米科学和工程,以及 21世纪的劳动力)之首时所说的,“该重大创新 项目背后的推动力就是一切科学和工程领域的数学化(Mathematization).” "The driving force behind the initiative is the 'mathematization' of all areas of science and

相关主题
文本预览
相关文档 最新文档