当前位置:文档之家› 240T循环流化床锅炉设计说明书

240T循环流化床锅炉设计说明书

240T循环流化床锅炉设计说明书
240T循环流化床锅炉设计说明书

240T循环流化床锅炉设计说明书

一、锅炉简介

本产品是采用循环流化床洁净燃烧技术的240 t/h高温高压蒸汽锅炉,具有燃烧效率高、低污染和节约燃料、便于调节等特点。

锅炉设计燃料为烟煤。采用循环流化床燃烧方式,可通过向炉内加石灰石粉脱硫。

锅炉汽水系统采用自然循环,在炉膛外布置集中下降管。过热器分Ⅲ级布置,中间设Ⅱ级喷水减温器,便于过热蒸汽温度大幅度的调节,保证额定蒸汽参数。

锅炉采用“П”型布置,框架支吊结构。炉膛为膜式水冷壁。尾部设顶棚管受热面和多组蛇形管受热面(过热器、省煤器)及一、二次风空气预热器。物料循环燃烧系统由炉膛、绝热式旋风分离器,水冷料腿,U型返料器和床下点火装置等组成。

锅炉采用室内布置,按当地海拔高度1150米进行设计修正。锅炉构架为双排柱全钢结构,运转层标高为8米,按8度地震烈度设防,当使用于地震烈度>8度的地区,应对锅炉钢结构进行加固。

二、设计规范及技术依据

——1996版《蒸汽锅炉安全技术监察规程》

——JB/T6696-1993《电站锅炉技术条件》

——DL/T5047-1995《电力建设施工及验收技术规范》(锅炉机组篇)

——GB/T12145-2008《火力发电机组及蒸汽动力设备水汽质量》

——DL/T964-2005 《循环流化床锅炉性能试验规程》

——GB10184-1988《电站锅炉性能试验规程》

——GB/T13223-2003《火电厂大气污染物排放标准》

——TSG G0002-2010《锅炉节能技术监督管理规程》

等有关国家标准最新版。

其中设计技术依据:

——锅炉热力计算按《锅炉机组热力计算标准方法》

——烟风阻力计算按《锅炉设备空气动力计算标准方法》

——强度计算按GB/T9222-2008《水管锅炉受压元件强度计算》

等锅炉专业标准。

三、 供用户资料

根据《蒸汽锅炉安全技术监察规程》要求,并且保证用户进行锅炉安装、运行、维护和检修有必要的技术依据和资料,锅炉随机提供详尽的技术资料,供用户资料详见:

—65800 GKT 《供客户图纸清单》

—65800 GKJ 《供客户技术文件清单》

四、 锅炉主要技术经济指标和有关数据

1、锅炉参数

额定蒸发量:

240 T/H 额定蒸汽压力:

9.8 MPa 额定蒸汽温度:

540 ℃

3、主要技术数据

冷风温度:

20 ℃ 给水温度:

215 ℃ 排烟温度:

~140 锅炉设计热效率:

89.0 % 燃料消耗量:

50560kg/h 燃煤粒度要求: ≤ 10 mm(d 50=1.1~1.5mm)

(其中<1mm 质量分数:≤50%)

石灰石粒度要求:

≤ 1 mm(d 50=0.25~0.5mm) (其中<45μm 质量分数:≤6%) 排污率:

2 %

4、设计数据

锅炉省煤器阻力:

<0.4 MPa 锅炉过热蒸汽阻力:

<1.6 MPa 锅炉烟系统阻力(至预热器后出口): 4332 Pa

锅炉烟气量(t=140℃):498000m3/h

锅炉风系统阻力:

一次风

(包括预热器、风道、布风板、料层):12186 Pa

二次风

(包括预热器、风道、料层):8470 Pa

锅炉总送风量(α=1.2,t=20℃):309500 m3/h

一、二次风比为55:45或根据煤种调整为60:40。

锅炉外形尺寸:

宽度(锅炉主钢架中心线) :12800 mm

深度(锅炉主钢架中心线) :21780 mm

高度(锅炉炉顶大板梁顶标高):46500 mm

锅炉水容积:~134 m3

5、水质要求

锅炉的给水、炉水和蒸汽品质均应符合GB/T12145-2008《火力发电机组及蒸汽动力设备水汽质量》的规定。本炉正常运行时各主要指标要求如下:

6、负荷调节:

允许的负荷调节范围:30%~110%

调节方法:风煤比调节、循环灰量调节

7、其它技术数据

锅炉初始烟尘排放浓度:48.06 g/NM3

循环倍率:15~20

灰与渣的比率:~55:45

分离器分离效率:99.5%

噪声水平:<85dBA

五、锅炉整体布置说明

该锅炉是在总结了我公司以往循环流化床锅炉的大量设计经验、运行经验,并针对用户燃料的特点,进行开发设计的。

1、燃料供应

设计煤种:烟煤,适应无烟煤、烟煤、贫煤、褐煤等。

2、燃烧方式选择

根据环境保护、洁净燃烧的要求,该炉选用了循环流化床燃烧方式。

为了保证较高的燃烧效率和较高的锅炉热效率,选用15~20循环倍率布置燃烧系统。为了保证燃烧的稳定性和运行的可靠性,燃烧系统采用了全密封的膜式水冷壁、水冷布风板、水冷风室结构,采用分离可靠、分离效率最高的全密封的绝热旋风分离器和返料可靠性最好的U型返料器,以及床下点火系统。

本锅炉分离返料系统采用高温绝热式旋风分离器,从根本上保证了该锅炉有较高的燃烧效率和热效率。

3、热力系统(指锅炉各受热面沿烟气流程布置的位置和热量分配关系)

(1)烟气流程:

按炉膛(含水冷屏、过热屏)、绝热旋风分离器、对流受热面(过热器和省煤器)、空气预热器顺序布置。

(2)根据高温高压蒸汽锅炉加热、蒸发、过热的热量分配比例特点和方便过热蒸汽温度调节的要求合理布置各受热面。

本炉受热面积,是依据130t/h、220t/h等循环流化床蒸汽锅炉的设计经验和实炉测试数据而布置的,保证该炉的额定负荷并有110%出力能力。

4、锅炉汽水系统

锅炉正常运行时,不但要保证蒸发受热面水循环可靠,而且还必须保证给水及省煤器不发生水击,过热蒸汽不发生偏流等,本锅炉的汽水系统针对上述问题进行了合理设计。

(1)给水流程:

给水通过给水操纵台进入水冷套进口集箱,经水冷套加热后汇集到水冷套出口混合集箱,再由混合集箱从锅炉两侧引入省煤器进口集箱,给水从省煤器出口集箱引出后,由省煤器出水管引入锅筒。其中减温水取自给水操纵台。

(2)蒸汽流程:

蒸汽由锅筒引出后依次经过:顶棚管、悬吊管、低温过热器、屏式过热器、高温过热器。其蒸汽流程如下:锅筒→导汽管→顶棚管→悬吊管→低温过热器→Ⅰ级喷水减温器→屏式过热器→Ⅱ级喷水减温器→高温过热器→集汽集箱。

为了克服由于烟气侧偏流引起的热偏差,沿蒸汽流程左右侧蒸汽进行了一次交叉混合。

(3)为了保证锅炉运行,锅炉汽水系统还布置有排污、疏水、加药、取样、排气、紧急放水等系统,详见汽水系统图。

六、锅炉结构

1、燃烧系统

燃烧系统由炉膛、绝热式旋风分离器、返料器、布风板、风室等组成。炉膛下部是燃烧室,布风板上均匀布置了风帽。燃烧室的截面、布风板的布置、炉膛高度能保证燃料充分的燃烧。

燃煤由炉前4组给煤装置送入燃烧室。给煤管尺寸、位置满足锅炉在不同工况运行时的要求,落煤管上设置播煤风。经过预热的一次风由风室经风帽均匀送入炉膛,二次风在燃烧室上部分二层送入炉膛。煤在燃烧室燃烧后产生的含尘烟气经炉膛出口切向进入旋风分离器,被分离下来的颗粒经返料器送回炉膛进行循环燃烧。离开旋风分离器的烟气进入尾部烟道,冲刷尾部受热面。

该燃烧系统设置一、二次风、播煤风、返料风。为了精确控制风量组织燃烧,一、二次风总管上均应由设计院设计电动风门及测风装置。

一次风风量约占总空气量的55 %(或根据煤种调整为60%)。控制燃烧温度在850℃~950℃时,调节一次风量和给煤量、循环灰量,可以使锅炉负荷在30%~110%之间调节。

播煤风、返料风占总风量的3~5%。本锅炉设计采用专用高压返料风机,流

量9000 Nm3/h,压头20KPa。

本炉采用床下天然气点火,在水冷风室后侧布置2只点火气枪(每只气枪出力为1000NM3/h),气枪前燃气压力需>0.2MPa。

风室后侧设有三只防爆门,整台锅炉从启动到满负荷的时间应控制在6小时左右。

燃烧完全的灰渣由布风板上的排渣管排出炉外。排渣可定排或连排,布置的排渣管管径和位置,能保证炉渣及时顺利地排出。

燃烧设备包括点火系统的燃烧器,水冷布风板,风帽,水冷风室,放灰管,连接管及相应的阀门、法兰、配件、支撑件、紧固件。

2、分离、回料系统

分离、回料系统由高温绝热旋风分离器、水冷料腿和U型返料器组成。该分离系统经600多台锅炉,先后十多年运行实践,证明是成熟可靠的分离形式和结构。

高温旋风分离器实炉测试分离效率不小于99.5 %。

高温旋风分离器内壁采用耐磨浇注料,热膨胀系数小。分离器与炉膛出口处炉墙采用非金属膨胀节进行密封,保证了分离器长期安全可靠运行。分离器料腿采用水冷套结构,避免了返料结焦、堵塞。分离器中心筒采用耐热材料,不易变形、耐磨损。

U型返料器由布风板、风帽、风室、返料管,舌形挡板,送风管、落灰管组成。运行中通过调节返料风量来调整返灰量。炉膛流化床采用耐热铸钢防漏灰风帽。

分离、返料系统包括旋风分离器、返料器、返料风管、落灰管、落灰闸门、连通管及相应的阀门、法兰及紧固件,炉膛出口与旋风分离器连接的非金属膨胀节,返料管、二次风管、给煤管与炉膛连接的圆形不锈钢波纹膨胀节或非金属膨胀节。

3、锅筒

锅筒内径Φ1600 mm,壁厚100 mm,材料为P355GH。

锅筒正常水位在锅筒中心线下180 mm,最高、低安全水位偏离锅筒正常水位±50 mm。

锅筒内部装置由旋风分离器、给水清洗装置、顶部均流孔板、连续排污管、加药管等组成。旋风分离器直径Φ350 mm,共36只。

由旋风分离器出来的蒸汽穿过上部清洗孔板,穿越锅筒顶部的多孔板,然后通过8根Φ168x14 mm (20G,GB5310)蒸汽引出管引入过热器系统。

在大直径下降管进口处布置了十字挡板,改善下降管带汽及抽空现象。锅筒上除布置必需的管座外,还布置了再循环、加药、紧急放水、测温等管座。

4、水冷系统

炉膛由膜式水冷壁组成,保证了炉膛的严密性。炉膛横截面为10800x6410mm,炉顶水冷标高39110mm(水冷中心线标高),膜式水冷壁由Φ60x5(20G,GB5310)锅炉管和6x20.5 mm扁钢焊制而成。在炉膛前上部位置布置有3片水冷屏和6片过热屏。炉膛水冷壁(屏)通过水冷上集箱(包括水冷屏上集箱)上的吊杆悬挂于钢架顶部的框架上。

锅筒中的饱和水通过5根Φ377x26的集中下降管和各分散支管,引入水冷壁下集箱、水冷屏下集箱,经过加热后各自通过导汽管进入锅筒。

水冷壁下部焊有销钉用以固定高强度耐高温防磨耐火材料,可保证该区域水冷壁安全可靠地工作,易磨损部位采用让弯结构避免磨损。

炉膛下部四周水冷壁与浇注层交界处采用合金喷涂措施防磨。

水冷壁向下弯制构成水冷布风板和水冷风室。

水冷壁上设置测量孔、检修孔等。

水冷系统的最低处设置排污阀,满足定排要求。水冷膜式壁外侧设置数层刚性梁,保证了整个炉膛有足够的刚性,防止炉膛的呼吸现象。炉膛设膨胀中心作为膨胀补偿,炉膛膨胀中心设在炉膛几何中心线上,并布置有止晃装置和导向装置,将地震荷载及风荷载传递给锅炉构架,使锅炉满足抗震的要求。

5、过热器

过热器系统由高温过热器、屏式过热器、低温过热器、顶棚管和悬吊管等组成。其蒸汽流程如下:锅筒→导汽管→顶棚管→悬吊管→低温过热器→Ⅰ级喷水减温器→屏式过热器→Ⅱ级喷水减温器→高温过热器→集汽集箱。过热蒸汽经过左右交叉混合,改善了在烟道宽度上由于烟气温度不均匀而引起过热蒸汽温度的偏差。Ⅱ级喷水减温器的布置,可增加蒸汽温度调节的灵敏度。

高温蛇形管系、低温蛇形管系分别由φ38/φ42的管子组成,为降低磨损均采用顺列布置。屏式过热器由φ42的管子组成,共6屏,吊挂在炉膛前上部。

减温器置于屏式过热器进出口管道上,这样既可保证汽轮机获得合乎要求的过热蒸汽,又能保证过热器管不至于因工作条件恶化而烧坏。

为保证安全运行,低温过热器的高温段采用15CrMoG(GB5310)的无缝钢管,屏式过热器采用12Cr1MoVG(GB5310)无缝钢管,高温过热器采用12Gr2MoWVTiB (GB5310)的低合金无缝钢管。

过热器迎烟气面易磨损部位采用覆盖防磨罩等相应防磨措施。

6、省煤器

省煤器管束采用光管错列布置,管子材料为20G(GB5310),垂直于前墙逆流布置。

各组省煤器的重量均由通风梁支撑在锅炉钢架上。

省煤器易发生局部磨损处加装有防磨板。

各蛇形管组之间布置了人孔门,便于检修、清灰。

7、空气预热器

空气预热器为卧式结构,采用一、二次风间隔布置,一、二次风进出口在同一标高。中间为一次风预热器,两侧为二次风预热器,空气分别由一次风机和二次风机送入用φ50x2焊接钢管制成的一、二次风预热器。烟气在管外冲刷,空气在管内流动,一、二次风均流经三个行程,为便于更换和维修,分三组布置。

一、二次风预热温度分别达到185℃,为使管箱在热状态下能自由膨胀,在管箱上部装置有膨胀节。

每组空气预热器都设置吊钩,方便运输安装。

空气预热器设计的烟气流速和空气流速都控制在合理的范围内,提高了空气预热器的换热效率,避免了空气预热器烟气侧积灰。

设计的空预器膨胀节保证了管箱的自由膨胀和空气侧的密封,从而避免了空气向烟道侧的漏风,使锅炉在较低过量空气系数下运行,提高了锅炉性能。

8、锅炉钢架

本炉钢架采用框架式全钢结构,按8度地震烈度进行抗震设防,散装出厂,现场组焊。

锅炉立柱从锅炉零米层起,钢柱与基础采用-900 mm埋入式固接,采用包筋结构。柱脚底板借助于从混凝土中伸出的钢筋来固定,两个方向均为固接,具体连接方法由设计院考虑。

钢架计算时的荷载统计,已包括支吊汽水管道、烟风道、平台扶梯等荷载。

9、锅炉平台、扶梯

在锅炉的人孔门、检查门、看火孔、测量孔以及应操作的阀门处都设置了平

台。上下平台之间设有扶梯。平台之间净空设计合理,方便观察、操作、维修。检修平台允许的最大荷载为400kgf/m2。平台和扶梯边缘都装设高度1.2米的防护栏杆,平台采用栅格板式,并装设高度为120mm的踢脚板。

10、炉墙保温及门孔

炉膛外部采用敷管轻型炉墙与外护板结构,外护板采用压型钢板。旋风分离器、炉膛出口烟道、炉顶水平烟道、尾部竖井烟道采用耐磨浇注料或磷酸盐高铝砖(PA)和两层保温材料砌筑。炉墙重量通过钢架传递到基础上。

炉膛燃烧室水冷壁下部和旋风分离器内部浇注耐磨浇注料,该材料性能可以有效地阻止由于炉温变化而引起的交变热应力。尾部炉墙烟温低、结构合理,炉墙的外表面温度小于50℃。为保证炉墙安全运行,炉墙升温和降温速度应控制在每小时100~150℃之间。

锅炉门孔的布置,以方便锅炉安装检修为原则,各门孔内均砌有保温浇注料,门把上设自锁装置,使门孔处具有良好的密封性。为清除受热面上的积灰,保证锅炉的出力和效率,本锅炉在尾部烟道上设置了吹灰装置预留孔,由用户自行配置吹灰器。

11、仪表控制

锅炉控制主要分为汽水侧控制和烟气侧控制。

(1)汽水侧控制(详见汽水系统图)

汽水侧控制主要为锅炉给水量控制,过热蒸汽温度控制,过热蒸汽压力控制,炉水及蒸汽品质的控制等。锅炉在需要控制、监测的部位均设有相应的测点。汽水侧控制应与燃烧控制调整有机结合。

(2)烟气侧控制(详见锅炉燃烧系统图)

锅炉烟气侧的控制为:炉内燃料控制,炉膛温度控制,料层差压控制、炉膛差压控制、返料控制等。

a:在炉膛、水冷风室、旋风分离器、料腿、返料风室、一次风空预器、二次风空预器、引风机前烟道分别装有风压、烟压、风温、烟温、风量、氧量测点,以控制锅炉的燃烧过程。

b:通过对炉内燃料量控制,满足锅炉负荷变化的要求。

c:通过控制一、二次风风量,入炉燃料量控制炉内燃烧温度,达到最佳的脱硫效果。

d:通过放渣、放灰控制料层压差及炉膛差压,满足燃烧要求。

七、锅炉所配安全附件

本锅炉设有安全阀、温度计、压力表、水位表等安全附件。

此外,本锅炉需要由系统设计单位设置超温超压报警装置,低水位联锁保护装置,超压联锁保护装置及其它保证锅炉安全运行的保护装置。

八、点火注意事项

本炉点火燃料采用天然气,要求到达气枪前的天然气压力>0.2MPa。

点火前要检查点火装置、供气系统是否正常,放散系统及安全系统是否能达到联锁要求,速断阀开关是否符合要求,调节阀的调节是否灵敏。

1.对燃气系统进行检查,要求供气管路和管路上安装的附件连接严密可靠,能承受最高使用压力。因此主要检查易泄漏的部分,如阀门、法兰连接等处的严密性。对于新安装完成或检修后的供气管路系统,应按规定进行强度试验和严密性试验。燃气压力表和连接压力表的管段应畅通,连接处无泄漏。燃气系统上的各种阀门是保证锅炉安全正常运行的重要部件,必须严格检查,检查后除排空阀应在全开位置外,其它阀门均应关闭,尤其是燃烧器进口处速断阀应关闭严密,并对点火装置进行试验。

2.锅炉点火前,应吹净燃料系统的空气和锅炉及烟道内的可燃气体混合物,以防爆炸事故的发生。吹扫介质采用惰性气体,吹扫可采用一次吹扫和分段吹扫,吹扫时间一般不少于5分钟。对于新组装或大修后的管道,应用压缩空气吹扫,空气在管内流速应达到30-50m/s,压力不宜超过0.2-0.4MPa,连续吹扫时间一般为30分钟左右。吹扫工作结束后,关闭所有放散阀,使燃油系统充压,保持压力在正常范围。

3.锅炉点火时,先打开点火风门档板,调整到点燃后能使火焰稳定的位置,启动高能点火器,然后适量打开燃气阀通入天然气;若一次点火不成功,应迅速切断供气管路,让一次风在最低流化风量状态下流化5~10分钟后,再进行点火;如再次点火不成功,应分析原因,不允许再盲目进行点火。在锅炉启动、正常运行和停炉的过程中,不论锅炉负荷多少,入炉风量均不得低于最低流化风量。点火过程易发生爆燃事故,其主要原因是违反操作规程引起的。因此点火应严格按照操作规程,不可疏忽大意。

九、锅炉脱硫、氮氧化物排放、锅炉初始排放烟尘浓度

1、燃料燃烧时,可通过向炉内添加0~1 mm的石灰石细粉脱硫。石灰石与

燃料、烟气充分混合,多次循环,煤中所含硫分在燃烧后被固化在炉渣中,并随炉渣一起排出,使烟气中的含硫量降低。该锅炉脱硫效率大于90%,对应的Ca/S 比约为2.3。

2.根据试验分析,煤中约有15~20 %氮在燃烧时转换为NO

,如果采用分级

X

的排出量减少30~50%。

燃烧方式将使NO

X

本炉采用分级燃烧,二次风分二层布置在炉膛下部收缩段,使得其与炉内CO

排放浓度相适应,能更好地组织燃烧。一、二次风比为55:45,这时烟气中NO

X

量最少。

3.锅炉烟尘浓度与燃烧方式有关。循环床循环流化过程是:被气体速度吹起的细小颗粒带往分离器,对于粒径大于分离器临界直径的灰粒被分离器所捕获,经返料器又被送回炉内。一切终端速度大于气体速度的粗大颗粒不被烟气所挟带而滞留炉内,只在它们被烧损或碎裂成细末后才被吹出。因此,不被分离器捕捉的颗粒形成锅炉初始排放烟尘。所以循环床的排放烟尘浓度主要与燃料特性、分离器性能、运行操作有关。

十、锅炉的防磨、密封、低温腐蚀等措施

1、防磨

循环流化床流动燃烧的固体颗粒,对炉内的磨损是不可避免的。通过实炉观察试验,磨损的部位是有规律的,主要发生在炉膛燃烧室密相区、燃烧室与水冷壁的过渡区、旋风分离器的入口处、U型返料器舌形挡板处。在这些部位采取的有效措施有:

(1)燃烧室:采用高强度耐高温耐火材料,该材料在工作状态下材料表层形成一层釉面,极大地提高了该材料的高温强度、耐高温性能和高温中的抗磨损、抗蚀损性能及热稳定性,因此本炉磨损严重区的耐火材料的使用寿命可达三年以上。

(2)过渡区:采用水冷壁向外二次让弯的避让结构和合金喷涂相结合的措施。

(3)炉膛受热面:合理设计烟气流速。在循环床锅炉中煤是低温燃烧,飞灰并未经过熔化、凝固的过程,故飞灰不如煤粉炉硬。此外在炉内灰粒子对膜式水冷壁的撞击角很小,灰粒相对较软,在烟速合理时,运行14000小时后膜式水冷壁未发现明显的磨损现象。

(4)水冷屏:采用膜式壁结构,烟气垂直流动部分同膜式壁工况相同,不会

有明显的磨损现象。对于其下部及炉膛出口处,由于烟气方向改变易引起磨损部

位均覆盖防磨材料。

(5)对流受热面的磨损:高、低温过热器采用顺列布置,省煤器采用螺旋管,由于烟气流速适中,所以对流受热面磨损较小,并且每组过热器和省煤器前排及弯头都装有可靠的防磨装置,所以对流受热面的运行安全可靠。

(6)空气预热器采用卧式空气预热器,迎风段采用加厚管。

(7)流化床采用耐热铸钢钟罩式风帽,并且采用合理的结构,有效降低风帽的磨损和防止风帽的漏灰。高温旋风分离器中心筒采用耐热合金材料,运行中不变形,抗磨损。

以上的这些防磨措施,有效保证了锅炉的长期稳定运行。

2、密封、膨胀

循环流化床是微正压燃烧,锅炉密封性能对锅炉运行十分重要。本锅炉采用膜式水冷壁、水冷布风板、水冷风室、旋风分离器全钢板密封结构,保证了锅炉的严密性。

在锅炉需膨胀位置都设有全密封的膨胀装置、非金属膨胀节。

3、低温腐蚀

理论分析认为烟气中的SO

2

对受热面的腐蚀及沾污没有明显直接影响,而烟

气中SO

3

含量增加会显著地提高烟气露点温度,从而在低温受热面上凝聚造成酸腐蚀和沾污。循环流化床为低温低氧燃烧,火焰温度低,火焰区的过剩氧量少,

常会显著降低SO

3的转化率。该炉内加石灰石固硫,也减少了SO

3

的形成。

根据多数电厂的运行经验,当煤全硫含量小于1.8 %,最低金属温度大于80℃时, 预热器低温段不会产生明显的腐蚀。

因此本炉防止预热器低温腐蚀的措施是:冷风温度大于20℃(要求设计院在冷风入口配设暖风器),排烟温度不小于120℃,采用炉内脱硫,预热器低温段采用耐腐蚀材料考登钢(10CrNiCuP-A)。

4、积灰

受热面积灰与烟气流速、露点温度、结构布置等因素有关。在额定负荷下,当烟气流速不低于5~6 m/s,即可大大减轻积灰。本炉对流受热面烟气流速均大于6 m/s,尾部受热面不易积灰。

十一、其它

1、锅炉安装和使用请查阅本锅炉安装说明书、使用说明书、安装图等技术

资料。

2、锅炉的配套件以配套生产厂的技术资料为准。

3、锅炉供货按项目专用的《产品总清单》执行。

4、锅炉辅机,如一次风机、二次风机、引风机、返料风机、循环水泵、除尘器、冷渣机和自控系统、烟风道等由设计院选型,并由用户根据设计院的要求另行订货。

5、锅炉计量、检测、控制仪表的配置应当满足TSG G0002-2010《锅炉节能技术监督管理规程》中附件B《锅炉仪表配置要求》,由用户根据设计院的选型布置要求另行订货

循环流化床锅炉设计《毕业设计》

目录 1 绪论 (3) 1.1循环流化床锅炉的概念 (3) 1.2 循环流化床锅炉的优点 (3) 2 燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 3 无脱硫工况计算 (7) 3. 1无脱硫工况下燃烧计算 (7) 3. 2无脱硫工况下烟气体积计算 (7) 4 灰平衡与灰循环倍率 (8) 4.1 循环灰量 (8) 4.2 灰平衡计算 (8) 4.2.1 灰循环倍率 (8) 4.2.2 a n与a f和ηf的关系 (9) 5 脱硫工况计算 (10) 5.1 脱硫原理 (10) 5.2 NO X的排放 (10) 5.3 脱硫计算 (11) 6 燃烧产物热平衡计算 (14) 6.1 炉膛燃烧产物热平衡方程式 (14) 6.2 燃烧产物热平衡计算 (14) 7 传热系数计算 (17) 7.1 炉膛传热系数 (17) 7.2 汽冷屏传热系数 (17) 7.3 传热系数的计算 (17) 8 炉膛结构设计与热力计算 (20) 8.1 炉膛结构 (20) 8.1.1 炉膛结构设计 (20) 8.1.2 炉膛受热面积计算 (20) 8.2 炉膛热力计算 (21)

9 汽冷旋风分离器结构设计与热力计算 (24) 9.1 汽冷旋风分离器结构设计 (24) 9.2 汽冷旋风分离器热力计算 (24) 10 计算汇总 (27) 10.1 基本数据 (27) 10.1.1设计煤种 (27) 10.1.2 石灰石 (28) 10.2 燃烧脱硫计算 (28) 10.2.1 无脱硫工况时的燃烧工况 (28) 10.2.2 无脱硫工况时的烟气体积计算 (28) 10.2.3 脱硫计算 (29) 10.2.4 脱硫工况时受热面中燃烧产物的平均特性 (32) 10.2.5 脱硫工况时燃烧产物焓温表 (32) 10.3 锅炉热力计算 (34) 10.3.1 锅炉设计参数 (34) 10.3.2 锅炉热平衡及燃料和石灰石消耗量 (34) 10.3.3 炉膛膜式水冷壁传热系数计算 (36) 10.3.4 炉膛汽冷屏传热系数计算 (38) 10.4 结构计算 (41) 10.4.1 炉膛膜式水冷壁计算受热面积 (41) 10.4.2 炉膛汽冷屏计算受热面积 (43) 10.4.3 汽冷旋风分离器计算受热面积 (44) 10.5 热力计算 (46) 10.5.1 炉膛热力计算 (46) 10.5.2 汽冷旋风分离器热力计算 (49) 设计总结 (53) 谢辞 (54) 参考文献 (55)

机械设计课程设计计算说明书-带式输送机传动装置(含全套图纸)

机械设计课程设计 计算说明书 设计题目:带式输送机 班级: 设计者: 学号: 指导老师: 日期:2011年01月06日

目录 一、题目及总体分析 (1) 二、选择电动机 (2) 三、传动零件的计算 (7) 1)带传动的设计计算 (7) 2)减速箱的设计计算 (10) Ⅰ.高速齿轮的设计计算 (10) Ⅱ.低速齿轮的设计计算 (14) 四、轴、键、轴承的设计计算 (20) Ⅰ.输入轴及其轴承装置、键的设计 (20) Ⅱ.中间轴及其轴承装置、键的设计 (25) Ⅲ.输出轴及其轴承装置、键的设计 (29) 键连接的校核计算 (33) 轴承的校核计算 (35) 五、润滑与密封 (37) 六、箱体结构尺寸 (38) 七、设计总结 (39) 八、参考文献 (39)

一、题目及总体分析 题目:带式输送机传动装置 设计参数: 设计要求: 1).输送机运转方向不变,工作载荷稳定。 2).输送带鼓轮的传动效率取为0.97。 3).工作寿命为8年,每年300个工作日,每日工作16小时。设计内容: 1.装配图1张; 2.零件图3张; 3.设计说明书1份。 说明: 1.带式输送机提升物料:谷物、型砂、碎矿石、煤炭等; 2.输送机运转方向不变,工作载荷稳定; 3.输送带鼓轮的传动效率取为0.97; 4.工作寿命为8年,每年300个工作日,每日工作16小时。

装置分布如图: 1. 选择电动机类型和结构形式 按工作条件和要求选用一般用途的Y 系列三相异步电动机,卧式封闭。 2. 选择电动机的容量 电动机所需的工作效率为: d w d P P η= d P -电动机功率;w P -工作机所需功率; 工作机所需要功率为: w Fv P 1000 = 传动装置的总效率为: 42d 1234ηηηηηη= 按表2-3确定各部分效率: V 带传动效率97.01=η, 滚动轴承传动效率20.97η=, 三 相电压 380V

机械设计基础课程设计计算说明书模版.

机械设计基础课程设计 计算说明书 题目: 一级齿轮减速器设计 学院:生物科学与工程学院 班级:10级生物工程2班 设计者:詹舒瑶 学号:201030740755 指导教师:陈东 2013年 1 月16 日

目录 一、设计任务书……………………………………………………………………………… 1.1 机械课程设计的目的………………………………………………………………… 1.2 设计题目……………………………………………………………………………… 1.3 设计要求……………………………………………………………………………… 1.4 原始数据……………………………………………………………………………… 1.5 设计内容……………………………………………………………………………… 二、传动装置的总体设计…………………………………………………………………… 2.1 传动方案……………………………………………………………………………… 2.2 电动机选择类型、功率与转速……………………………………………………… 2.3 确定传动装置总传动比及其分配………………………………………………… 2.4 计算传动装置各级传动功率、转速与转矩……………………………………… 三、传动零件的设计计算…………………………………………………………………… 3.1 V带传动设计…………………………………………………………………………… 3.1.1计算功率…………………………………………………………………………… 3.1.2带型选择…………………………………………………………………………… 3.1.3带轮设计…………………………………………………………………………… 3.1.4验算带速…………………………………………………………………………… 3.1.5确定V带的传动中心距和基准长度……………………………………………… 3.1.6包角及其验算……………………………………………………………………… 3.1.7带根数……………………………………………………………………………… 3.1.8预紧力计算………………………………………………………………………… 3.1.9压轴力计算………………………………………………………………………… 3.1.10带轮的结构………………………………………………………………………… 3.2齿轮传动设计…………………………………………………………………………… 3.2.1选择齿轮类型、材料、精度及参数……………………………………………… 3.2.2按齿面接触疲劳强度或齿根弯曲疲劳强度设计………………………………… 3.2.3按齿根弯曲疲劳强度或齿面接触疲劳强度校核………………………………… 3.2.4齿轮传动的几何尺寸计算………………………………………………………… 四、铸造减速器箱体的主要结构尺寸……………………………………………………… 五、轴的设计………………………………………………………………………………… 5.1高速轴设计……………………………………………………………………………… 5.1.1选择轴的材料……………………………………………………………………… 5.1.2初步估算轴的最小直径…………………………………………………………… 5.1.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.2低速轴设计……………………………………………………………………………… 5.2.1选择轴的材料……………………………………………………………………… 5.2.2初步估算轴的最小直径…………………………………………………………… 5.2.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.3校核轴的强度…………………………………………………………………………… 5.3.1求支反力、弯矩、扭矩计算……………………………………………………… 5.3.2绘制弯矩、扭矩图………………………………………………………………… 5.3.3按弯扭合成校核高速轴的强度……………………………………………………

循环流化床锅炉的设计与实现毕业设计

循环流化床锅炉的设计与实现毕业设计 目录 目录 (1) 摘要 (1) Abstract (2) 第一章概述 (3) (3) 1.2循环流化床特点 (4) 1.2.1循环流化床优点 (4) 1.2.2循环流化床缺点 (5) 第二章燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 第三章脱硫与排烟有害物质的形成 (7) 3.1循环流化床锅炉在环保上的必要性 (7) 3.2影响循环流化床锅炉SO2的排放控制 (7) 3.2 影响脱硫效率的一些主要因素 (8) 3.3 无脱硫工况燃烧计算 (9) 3.3.1无脱硫工况下燃烧计算 (9) 3.3.2无脱硫工况下烟气体积计算 (9)

第四章物料循环倍率 (10) 4.1循环灰量 (10) 4.2物料循环倍率的选择 (10) 第五章脱硫工况计算 (12) 5.1燃烧和脱硫化学反应式 (12) 5.2脱硫计算 (12) 第六章锅炉燃烧产物热平衡 (17) 6.1脱硫对循环流化床锅炉热效率的影响 (17) 6.1.1脱硫对入炉可支配热量的影响 (17) 6.1.2脱硫对q4的影响 (17) 6.1.3脱硫对q2的影响 (18) 6.1.4脱硫对q6的影响 (18) 6.2锅炉热平衡计算 (18) 第七章传热系数计算 (21) 7.1炉膛膜式水冷壁传热系数计算 (21) 7.2炉膛汽冷屛传热系数计算 (22) 第八章锅炉结构设计 (24) 8.1炉膛设计 (24) 8.1.1炉膛介绍 (24) 8.1.2炉膛床温选择 (24) 8.1.3炉膛高度的选择 (25) 8.2炉膛汽冷屛设计 (25)

8.3汽冷旋风分离器设计 (26) 8.4回料器的设计 (27) 第九章热力计算 (29) 9.1炉膛热力计算 (29) 9.2汽冷旋风分离器热力计算 (31) 第十章尾部受热面 (34) 10.1 过热器 (34) 10.2 省煤器 (34) 10.3 空气预热器 (36) 第十一章计算结果 (38) 11.1 基本数据 (38) 11.1.1 设计煤种 (39) 11.1.2 石灰石 (39) 11.2 燃烧脱硫计算 (39) 11.2.1 无脱硫计算时的燃烧计算 (39) 11.2.2 无脱硫工况时的烟气体积计算 (40) 11.2.3 脱硫计算 (40) 11.2.4 脱硫工况时受热面中燃烧产物的平均特性 (43) 11.2.5 脱硫工况时燃烧产物焓温表 (43) 11.3 240t/h CFB 锅炉热力计算 (45) 11.3.1 锅炉设计参数 (45) 循环硫化床燃烧 (45)

化工设备课程设计计算书(板式塔)

《化工设备设计基础》 课程设计计算说明书 学生姓名:学号: 所在学院: 专业: 设计题目: 指导教师: 2011年月日 目录 一.设计任务书 (2)

二.设计参数与结构简图 (4) 三.设备的总体设计及结构设计 (5) 四.强度计算 (7) 五.设计小结 (13) 六.参考文献 (14) 一、设计任务书 1、设计题目 根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。

设计题目: 各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。 例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔); (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1《化工原理》课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003. [2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002. [5] JB/T4710-2005.钢制塔式容器[S]. 4、文献查阅要求

轻型客车四档中间轴式变速器设计

汽车设计课程设计计算说明书题目:轻型客车四档中间轴式变速器设计院别:xxxxxx 专业:xxxxx 班级:xxxxxxxx 姓名:xxxxxxxxxxx 学号:xxxxxxxxxxxxxxxxx 指导教师:xxxxxxxxxxxxxx 二零一五年一月十九日

一、变速器的功用与组成 ----------------------------------------------------------------- - 4 - 1.变速器的组成------------------------------------------------------------------------ - 4 - 二、变速器的设计要求与任务 ----------------------------------------------------------- - 5 - 1.变速器的设计要求 ----------------------------------------------------------------- - 5 - 2.变速器的设计任务 ----------------------------------------------------------------- - 5 - 三、变速器齿轮的设计 -------------------------------------------------------------------- - 6 - 1.确定一挡传动比 -------------------------------------------------------------------- - 6 - 2.各挡传动比的确定 ----------------------------------------------------------------- - 7 - 3.确定中心距--------------------------------------------------------------------------- - 8 - 4.初选齿轮参数------------------------------------------------------------------------ - 9 - 5.各挡齿数分配----------------------------------------------------------------------- - 11 - 四、变速器的设计计算 ------------------------------------------------------------------- - 16 - 1.轮齿强度的计算 ------------------------------------------------------------------- - 16 - 2中间轴的强度校核 ------------------------------------------------------------------- 20- 五、结论-------------------------------------------------------------------------------------- - 27 - 参考文献-------------------------------------------------------------------------------------- - 28 - 摘要 现代汽车除了装有性能优良的发动机外还应该有性能优异的传动系与之匹配才能将汽车的性能淋漓尽致的发挥出来,因此汽车变速器的设计显得尤为重要。变速器在发动机和汽车之间主要起着匹配作用,通过改变变速器的传动比,可以使发动机在最有利的工况范围内工作。 本次设计的是轻型客车变速器设计。它的布置方案采用四档中间轴式、同步器换挡,并对倒挡齿轮和拨叉进行合理布置,前进挡采用圆柱斜齿轮、倒档采用圆柱直齿轮。两轴式布置形式缩短了变速器轴向尺寸,在保证挡数不变的情况下,减少齿轮数目,从而使变速器结构更加紧凑。 首先利用已知参数确定变速器各挡传动比、中心矩,然后确定齿轮的模数、压力角、齿宽等参数。由中心矩确定箱体的长度、高度和中间轴及二轴的轴径,然后对中间轴和各挡齿轮进行校核,验证各部件选取的可靠性。最后绘制装配图及零件图。

汽车设计课程设计--计算说明书..

汽车设计课程设计说明书 题目:曲柄连杆机构受力分析 设计者:侯舟波 指导教师:刘忠民吕永桂 2010 年 1 月18 日

一、课程设计要求 根据转速、缸内压力、曲柄连杆机构结构参数,计算发动机运转过程中曲柄连杆机构受力,完成计算报告,绘制曲柄连杆机构零件图。 1.1 计算要求 掌握连杆往复惯性质量与旋转离心质量折算方法; 掌握曲轴旋转离心质量折算方法; 掌握活塞运动速度一阶、二阶分量计算方法; 分析活塞侧向受力与往复惯性力及相应设计方案; 分析连杆力及相应设计方案; 采用C语言编写曲柄连杆机构受力分析计算程序; 完成曲柄连杆机构受力计算说明书。 1.2 画图要求 活塞侧向力随曲轴转角变化 连杆对曲轴推力随曲轴转角变化 连杆轴承受力随曲轴转角变化 主轴承受力随曲轴转角变化 活塞、连杆、曲轴零件图(任选其中两个) 二、计算参数 2.1 曲轴转角及缸内压力参数 曲轴转速为7000 r/min,缸内压力曲线如图1所示。 图1 缸内压力曲线 2.2发动机参数 本计算过程中,对400汽油机进行运动和受力计算分析,发动机结构及运动参数如表1所示。

表1 发动机主要参数 参数 指标 发动机类型 汽油机 缸数 1 缸径D mm 91 冲程S mm 63 曲柄半径r mm 31.5 连杆长l mm 117 偏心距e mm 0 排量 mL 400 活塞组质量'm kg 0.425 连杆质量''m kg 0.46 曲轴旋转离心质量k m kg 0.231 标定功率及相应转速 kw/(r/min ) 17/7500 最高爆发压力 MPa 5~6MPa 三、计算内容和分析图 3.1 运动分析 3.1.1曲轴运动 近似认为曲轴作匀速转动,其转角,t t t n 3 7006070002602π ππα=?== s rad s rad dt d /04.733/3700≈== π αω 3.1.2活塞运动规律 图2 中心曲轴连杆机构简图

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

中间轴CAD课程设计

CAD/CAM课程设计任务书 一、设计题目:中间轴零件的CAD/CAM设计 二、设计目的 CAD/CAM课程设计是开设《机械CAD/CAM》课程之后进行的一个实践性教学环节。在系统学习CAD/CAM技术的基本原理、基本方法的基础上,着重培养学生借助计算机进行机械产品的设计、制造和系统集成的综合应用能力。其目的: 1.掌握产品的计算机辅助设计过程和方法,培养利用计算机进行结构设计的能力。 2.掌握零件的计算机辅助制造过程和方法,培养数控编程及加工仿真的能力。 3.通过应用PRO/ENGINEER,训练和提高CAD/CAM的基础技能。 三、设计任务 本课程设计以某一具体的机械零件为设计对象(零件图见附图)。主要设计任务: 1、熟悉并掌握大型机械CAD/CAM软件PRO/ENGINEER的草绘模块、零件模块、 制造模块及仿真模块的功能及建模原理。 2、进行零件的参数化功能定义、三维实体零件的特征造型、着色渲染、生成不同视 图,最终完成零件的造型设计。 3、进行机床选择、刀具选择及加工参数设置,生成零件数控加工的相关文件。如刀 位数据文件、刀具清单和数控加工代码等。并对零件进行加工仿真以检查设计结果是否正确合理。 4、编写课程设计说明书。 四、设计要求 1、要求设计过程在计算机上完成。 2、设计说明书用计算机打印(A4纸,1万字左右)。 正文:宋体五号,单倍行距; 页眉:宋体小五号,内容包括班级,姓名,“CAD/CAM课程设计说明书”字 样;页脚:右下脚页码。 3、设计结果应包括:课程设计说明书(应包含设计任务书、设计思路、设计步骤、 设计过程的说明和阶段结果。附零件三维图、加工代码、零件原图纸等内容) 4、严禁抄袭和请人代做,一经发现,成绩计为零分并上报教务处。 1

机械课程设计计算说明书

机械课程设计 计算说明书 ——题目D4.机械厂装配车间输送带传动装置设计 机电工程学院机自11-8 班 设计者cqs 指导老师tdf 2014年1月15号 中国矿业大学

目录 第一章机械设计任务书 机械课程设计任务书 (2) 第二章机械课程设计第一阶段 2.1、确定传动技术方案 (3) 2.2、电动机选择 (4) 2.3、传动件的设计 (6) 第三章机械课程设计第二阶段 3.1装配草图设计第一阶段说明 (23) 3.2轴的设计及校核 (23) 3.3轴承的设计及校验 (28) 3.4键的设计及校验 (22) 第四章机械课程设计第三阶段 4.1、轴与齿轮的关系 (30) 4.2、端盖设计 (30) 4.3、箱体尺寸的设计 (32) 4.4、齿轮和轴承的润滑 (34) 第五章机械课程设计小结 机械课程设计小结 (34) 附1:参考文献

第一章机械设计课程设计任务书 题目D3.机械厂装配车间输送带传动装置设计 图1:设计带式运输机传动装置(简图如下) 一、设计要求 1、设计条件: 1)机器功用由输送带传送机器的零部件; 2)工作情况单向运输、轻度振动、环境温度不超过35℃; 3)运动要求输送带运动速度误差不超过5%; 4)使用寿命10年,每年350天,每天16小时; 5)检修周期一年小修;两年大修; 6)生产批量单件小批量生产; 7)生产厂型中型机械厂 2、设计任务 1)设计内容1、电动机选型;2、带传动设计;3、减速器设计;4、联轴器选型设计;5、其他。 2)设计工作量1、传动系统安装图1张;2、减速器装配图1张;3、零件图2张;4、设计计算说明书一份。 3、原始数据 主动滚筒扭矩(N·m):800 主动滚筒速度(m/s):0.9 主动滚筒直径(mm):300

塔设备设计说明书精选文档

塔设备设计说明书精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 035 036 姓名:万永燕郑舒元 分组:第四组

目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

循环流化床锅炉设计工艺分析

循环流化床锅炉设计工艺分析 发表时间:2019-07-05T11:57:11.573Z 来源:《电力设备》2019年第4期作者:黄凯[导读] 摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。(武汉锅炉股份有限公司湖北武汉 430205)摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。对于煤矸石、油页岩、城市垃圾以及废弃物等难燃的固体燃料,都可以作为循环流化床锅炉的燃料,不仅具有较高的燃烧效率,而且污染较小。因为循环流化床锅炉采用流态化燃烧,在设计运行中会存在磨损、结焦、物料循环不畅等问题,经过技术的不 断改进,这些问题都得到了很好的解决,下面对此进行阐述。关键词:循环流化床;锅炉;工艺循环流化床锅炉控制系统是一类新型的锅炉控制系统,在实际的应用中发挥重要作用。在生产环节中,为了可以提升循环流化床锅炉系统的性能,应该完善控制系统的分析,提升循环流化床锅炉设计方案。 1循环流化床锅炉设计运行中的常见问题 1.1磨损问题 循环流化床锅炉是把固态的燃料进行流体化处理,让燃料具有液体的流动性质,在其中可以加入煤矸石以及石灰等物质,可以达到除硫的效果。因为燃料是以液态化的方式流动的固体,所以这些颗粒在流动的过程中,会与接触到的设备发生碰撞,从而造成一定的磨损。循环流化床锅炉在运行的过程中,床料流动的速度越快、浓度越大,对锅炉受热面和耐火材料的表面所造成的冲击就越加强烈,从而导致这些部件的磨损。在床料流动的过程中,也会伴随温度的循环流动,在耐火构件热膨胀系数不同的情况下,受到机械应力的影响会对炉内耐火构件造成磨损。 1.2结焦问题 循环流化床锅炉结焦是设计运行中的常见问题,结焦不仅降低锅炉的运行效率,同时还威胁到锅炉运行的安全性。形成结焦的原因主要是旋风分离器超温、床料结块、返料器堵塞等,如果燃烧室温度超过灰的变形温度,会导致炉内未燃碳重新燃烧,在床温上涨的情况下形成结焦。如果物料循环系统漏风,热床料中的可燃物与氧气接触重新燃烧,但由于热量不足就会形成局部超温结焦。如果在启动期间煤油混烧时间较长,在风量与燃煤颗粒匹配不佳等情况下,燃烧速度过慢就会导致未完全燃烧的油渣与床料板结成块,在流化不良的情况下,形成松散的渣块。在返料器运行过程中如果因为堵塞而突然停止工作,由于炉内循环物料不足就会导致温度升高,从而导致高温结焦。 1.3旋风分离器的问题旋风分离器的主要功能就是进行气固分离,保证循环流化床锅炉的正常运行。旋风分离器结构比较简单,其运行效率主要与形状、结构、进口气体温度、入口烟温、入口颗粒等因素有关。如果分离器的运行效率达不到设计值,就会出现未完全燃烧现象,直接影响到锅炉的燃烧效率。在飞灰量较大的情况下,就会对尾部受热面造成严重的磨损,增加除灰设备的能耗。如果进入循环回路中的灰量较少,就无法达到设计的循环量,无法有效控制床温,对锅炉满负荷运行以及炉膛传热产生一定的影响。 2循环流化床锅炉设计工艺分析 2.1循环床气固两相流动在循环床内,颗粒会聚集在一起,这些粒子团聚在一起,导致颗粒的体积和重量增大,产生非常大的自由沉降终端速度,在一定的气流速度下,粒子会顺着锅炉墙向下运动。在粒子流动的环节中,气体和固体之间会产生非常大的相对速度,粒子会在锅炉壁上沉积。在粒子团不断的聚集、下沉和上升的环节中,会形成内循环,导致锅炉内发生热量的交换。粒子团会沿着锅炉壁下沉,锅炉内的内循环非常剧烈,导致锅炉的传热效果非常好,锅炉内的热量分布也非常均匀。在850摄氏度的锅炉温度下,燃料和脱硫剂在短时间内会被加热到850摄氏度,燃烧效率非常高,而且在石灰石的作用下会产生脱硫反应,在合适的反应温度下实现燃料的二次循环。在循环床内的任何位置,都可以实现良好的传热效果。在循环过程中固体颗粒是向下运动的,但是颗粒的粒径比较大,可以降低颗粒的流动速度,防止炉壁发生严重的磨损情况。 在循环流化床锅炉悬浮段运行环节中,固体颗粒的流动不会呈现出快速流态化,此时的颗粒具有一定的浓度,并且会出现成团的现象。循环流化床悬浮段中的燃料的分布不均匀,应该在采用热态测试的基础上,确保燃料的均匀分布。 2.2物料平衡理论及其应用固体骨料在循环系统中呈现出对传热的流动特征,这对燃料的燃烧和脱硫过程都会产生一定的干扰,对整个锅炉的使用也会产生影响。采用物料平衡理论可以对固体燃料在燃烧系统内的分布规律进行合理的分析,在循环流化床的锅炉的设计中起到很好的效果。物料平衡理论主要是指燃料、焦炭等在回料装置等可以保持平衡,物料平衡建立的效果直接会影响到循环流化床锅炉的运行效果。(1)循环量的确定在循环流化床设计环节中,要确保一台锅炉可以正常的运行,在设计中应该确保热量分配的平衡。循环流化床中物料的浓度与受热面传导系数具有直接的关系,所以,要确保锅炉内具有充足的物料循环。在循环流化床物料循环中,结合不同燃料的特性,确定循环量。在具体的设计环节中,如果循环量低于设计的循环量,就会导致锅炉内的燃料过分燃烧,热量被受热面过度吸收。如果燃料的浓度过低,就会导致锅炉出力不足。(2)分离器效率的要求循环流化床锅炉在运行环节中,要确保充足的循环量,所以要合理的设计分离器。在分离器设计中,要提升分离效率。一定速度下,在确定的粒度分布中,应该确保某个粒径的分离效率非常高,粒径的范围是循环灰中的主体,其在锅炉的物料中成分非常多。如果分离器的分离效率对任意粒径的颗粒都不能达到100%,那么在循环流化床锅炉使用的环节中,分离器就不能实现物料的循环,锅炉的运行效果就不能得到保障。 (3)床压降的要求

循环流化床锅炉燃烧系统设备

循环流化床锅炉设备 1、循环流化床锅炉主要由哪些设备组成? 答:循环流化床锅炉主要由燃烧系统设备、气固分离循环设备、对流烟道三部分组成。其中燃烧设备包括风室、布风板、燃烧室、炉膛、燃油(燃气)及给煤系统等几部分。 2、流化床燃烧设备分为哪几种类型? 答:流化床燃烧设备按流体动力特性可分为鼓泡流化床锅炉和循环流化床锅炉,按工作条件可分为常压和增压流化床锅炉。11、布风板的种类有哪些?其作用是什么? 答:目前流化床锅炉采用的布风板有冷却型和非冷却型两种。冷却型布风板是由燃烧室水冷壁弯曲构成的,一般和水冷风室同时采用。它是为了采用床下点火所设置的。 12、流化床为什么要求布风板要有一定的压降? 答:一个稳定的流化床要求布风板要有一定的压降,一方面使气流在布风板下的速度分布均匀,另一方面可以掏由于气泡和床层起伏等原因引起颗粒分布和气流速度分布不均匀。布风板压降的大小与布风板上风帽开孔子率的平方成正比。布风板的压降会造成压头损失与风机电耗,因此布风板设计时布风板阻力取为维持均匀稳定床层需要的最小布风板压降。一般布风板阻力为整个床层阻力(布风板阻力加料层阻力)的20﹪~30﹪时,可以维持订层稳定的运行。 13、风帽的作用是什么? 答:风帽是保证锅炉安全经济运行的关键部件,其作用是实现流化床锅炉均匀布风。 14、布风板风帽的种类有哪些? 答:风帽的种类有钟罩式、蘑菇头式、导向式、猪尾巴式等。 15、大直径钟罩式风帽的特点是什么? 答:⑴内客设计合适阻力,可使布风均匀,调节性能好,运行稳定。 ⑵外帽小孔风速低,降低风帽间的磨损。 ⑶外帽与内管螺纹连接,便于检修。 ⑷运行时风帽不易堵塞,不易倒灰。 ⑸使用寿命长,不易损坏。 16、什么是风帽的开孔率?

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

机械设计课程设计计算说明书模版(二级齿轮)

机械设计课程设计计算 说明书 题目: 二级齿轮减速器设计 学院: 班级: 设计者: 学号: 指导教师: 年月日

目录 一、设计任务书……………………………………………………………………………… 1.1 机械课程设计的目的………………………………………………………………… 1.2 设计题目……………………………………………………………………………… 1.3 设计要求……………………………………………………………………………… 1.4 原始数据……………………………………………………………………………… 1.5 设计内容……………………………………………………………………………… 二、传动装置的总体设计…………………………………………………………………… 2.1 传动方案……………………………………………………………………………… 2.2 电动机选择类型、功率与转速……………………………………………………… 2.3 确定传动装置总传动比及其分配………………………………………………… 2.4 计算传动装置各级传动功率、转速与转矩……………………………………… 三、传动零件的设计计算…………………………………………………………………… 3.1 V带传动设计…………………………………………………………………………… 3.1.1计算功率…………………………………………………………………………… 3.1.2带型选择…………………………………………………………………………… 3.1.3带轮设计…………………………………………………………………………… 3.1.4验算带速…………………………………………………………………………… 3.1.5确定V带的传动中心距和基准长度……………………………………………… 3.1.6包角及其验算……………………………………………………………………… 3.1.7带根数……………………………………………………………………………… 3.1.8预紧力计算………………………………………………………………………… 3.1.9压轴力计算………………………………………………………………………… 3.1.10带轮的结构………………………………………………………………………… 3.2齿轮传动设计…………………………………………………………………………… 3.2.1高速级齿轮副设计………………………………………………………………… 3.2.2低速级齿轮副设计………………………………………………………………… 四、轴的设计………………………………………………………………………………… 4.1高速轴设计……………………………………………………………………………… 4.1.1选择轴的材料……………………………………………………………………… 4.1.2初步估算轴的最小直径…………………………………………………………… 4.1.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 4.2中间轴设计……………………………………………………………………………… 4.2.1选择轴的材料……………………………………………………………………… 4.2.2初步估算轴的最小直径…………………………………………………………… 4.2.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 4.3低速轴设计……………………………………………………………………………… 4.3.1选择轴的材料……………………………………………………………………… 4.3.2初步估算轴的最小直径…………………………………………………………… 4.3.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 4.4校核轴的强度…………………………………………………………………………… 4.4.1按弯扭合成校核高速轴的强度…………………………………………………… 4.4.2按弯扭合成校核中间轴的强度……………………………………………………

65吨时循环流化床锅炉的设计与计算毕业设计说明书

本科毕业设计说明书 65吨/时循环流化床锅炉的设计与计算 Design and calculation of circulating fluidized bed boiler 65 t / h 性质: □毕业设计□毕业论文

摘要 本次的毕业设计的题目是65吨/小时循环流化床锅炉设计。设计本着锅炉运行的安全性和可靠性为首要设计特性的准则,综合考虑燃烧,传热,脱硫,烟气、空气、工质的动力特性以及受热面的磨损和腐蚀。保证锅炉的着火稳定性,炉膛内有足够的辐射热量,煤的燃尽程度,合理的烟气速度和排烟温度以及脱硫效率。同时,还要确保有一定的气密性以保证炉膛内进行微负压燃烧。 在整个设计过程中作为技术支持进行了热力计算、强度计算。其中热力计算包括炉膛、高温过热器、低温过热器、省煤器以及空气预热器。炉膛及尾部顶棚全部采用膜式壁结构,解决炉膛漏风问题;将全部过热器布置在尾部烟道内,使其运行更加可靠。为了提高分离器的分离效率和锅炉的结构紧凑,采用两个小直径高温旋风分离器。鉴于该锅炉为中压锅炉,所以采用钢管式省煤器,为降低低温腐蚀,便于维修,将空气预热器低温段与高温段隔开。 此外,利用CAD绘制锅炉总图、炉墙砖砌图、锅筒展开图、锅炉本体图。 关键词:循环流化床锅炉;热力计算;强度计算

Abstract The topic of this graduation design is 65 t/h circulating fluidized bed boiler. Design in line with the boiler running safety and reliability as the primary design guidelines, the characteristic of consideration of combustion, heat transfer and desulfurization, flue gas, air, the dynamic performance of the working medium and the wear and corrosion of heat exchangers. Inside the boiler furnace fire stability enough heat radiation, the burning of coal, a reasonable speed and exhaust temperature and smoke desulfurization efficiency. At the same time, also make sure that there are certain air tightness to slightly negative pressure to ensure that the chamber of a stove or furnace combustion. In the process of the whole design as a technical support for thermodynamic calculation, strength calculation. Thermodynamic calculation including furnace, high temperature superheater, low temperature superheater, economizer and air preheater. Furnace and the rear roof are all made of the diaphragm wall structure, solve the problem of air leakage of the chamber of a stove or furnace; All the superheater arrangement in the tail flue, make its operation more reliable. In order to improve the separation efficiency of separator and boiler structure is compact, high temperature cyclone separator with two small diameter. Given the boiler as the medium pressure boiler, so the economizer tube type, in order to reduce low temperature corrosion, easy maintenance, to separate air preheater of low-temperature and high temperature. In addition, the use of CAD drawing general layout, boiler furnace wall brick figure, figure figure, boiler drum. Keywords:Circulating fluidized bed boiler; Thermodynamic calculation. Strength calculation;

相关主题
文本预览
相关文档 最新文档