当前位置:文档之家› 二氧化硅-工业循环冷却水和锅炉用水中硅的测定-GB-T12149-2007

二氧化硅-工业循环冷却水和锅炉用水中硅的测定-GB-T12149-2007

二氧化硅-工业循环冷却水和锅炉用水中硅的测定-GB-T12149-2007
二氧化硅-工业循环冷却水和锅炉用水中硅的测定-GB-T12149-2007

GB/T 12149-2007 工业循环冷却水和锅炉用水中硅的测定

1范围

本标准规定了工业循环冷却水、锅炉用水及天然水中硅含量的测定方法

本标准中分光光度法适用于工业循环冷却水中可溶性硅含量为0. 1 mg/L~5 mg/L的测定;硅酸根分析仪法适用于化学除盐水、锅炉给水、蒸汽、凝结水等锅炉用水中硅含量为0.1mg/L~50 mg/L的测定;重量法适用于工业循环冷却水及天然水中硅含量>5 mg/L的测定;氢氟酸转化分光光度法适用于天然水中全硅含量为0. 5 mg/L~5 mg/L的侧定.

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准

GB/T 602化学试剂杂质测定用标准溶液的制备(GB/T 602-2002,IS0 6353-1:1982,NEQ)

GB/T 6682分析实验室用水规格和试验方法(GB/T 6682-1992,neq ISO 3696:1987)

3分光光度法

3. 1原理

硅酸根与钥酸盐反应生成硅钥黄(硅钥杂多酸)。硅铂黄被1-氨基一2一萘酚-4-磺酸还原成硅钥蓝,用分光光度法测定。

3.2试剂和材料

本方法所用试剂和水,除非另有规定,仅使用分析纯试剂和符合GB/T 6682三级水的规定。试验中所需杂质标准溶液,在没有注明其他要求时,均按GB/T 602之规定制备。

3,2.1盐酸溶液:1+1。

3.2.2草酸溶液(H

2C

2

O

4

·2H

2

0):100 g/L

3.2.3钼酸铵[(NH

4 )

6

MO

7

O

24

·4H

2

0]溶液:75 g/L。

3.2.4 1-氨基一2-萘酚-4-磺酸(C

10H

9

NO

4

S)溶液:2. 5 g/L

称取0.5g1-氨基一2-萘酚-4-磺酸,用50 ml,含有1 g亚硫酸钠的水溶解。把溶液加到含有30 g亚硫酸氢钠的100 mL水中,用水稀释至200 mL,混匀.若有混浊,则需过滤。放入暗色的塑料瓶中,贮存于冰箱中。当溶液颜色变暗或有沉淀生成时失效。

3.2.5二氧化硅标准贮备液:1 ml,含0.1 mg SiO

2

3. 2. 6二氧化硅标准溶液:1 mL含0.O1 mg SiO

2

移取10.00 mL 二氧化硅标准贮备液,置于1 000 mL容量瓶中,用水稀释至刻度,摇匀此溶液用时现配。

3.3仪器和设备

一般实验室用仪器和下列仪器

3.3.1分光光度计:带有1 cm的比色皿。

3. 3. 2具赛比色管50 mL

3.4分析步骤

3.4. 1校准曲线的绘制

移取二氧化硅标准溶液0. 00 mL(试剂空白),1. 00 mL, 2. 00 mL, 4. 00 mL,

6. 00 mL, 8. 00 mL,10. 00 mL ,分别置于50 mL 比色管中,用水稀释至刻度。相应的二氧化硅量分别为0.00 mg,0.01 mg,0.02 mg,0. 04 mg,0.06 mg,. 0.08mg,0. 10 mg.加人1 mL 盐酸溶液和2 mL 钼酸盐溶液,混匀,放置5 min 。加人1. 5 mL 草酸溶液,混匀。1 min 后加人2 mL 1-氨基一2-萘酚-4-磺酸溶液,混匀,放置10 min 。使用分光光度计,以试剂空白为参比,在640 nm 波长处,用1 cm 比色皿测定吸光度。

以测得的吸光度为纵坐标,二氧化硅的量(mg)为横坐标,绘制校准曲线。

3.4.2测定

用慢速滤纸过滤水样。移取一定量过滤后的水样,置于50 mL 比色管中,用水稀释至刻度。以下按3.4.1中“加人1 mL 盐酸溶液……”操作。

3.5结果计算

二氧化硅的含量以质量浓度i ρ计,数值以毫克每升(mg/L)表示,按式(1)计算: )1.....(............................................................10001?=

V

m ρ 式中:

1ρ—根据测得的吸光度从校准曲线上查出的二氧化硅的量的数值,单位为毫克(mg) ;

V 一所取水样的体积的数值,单位为毫升(mL),

3.6允许差

取平行测宁结果的算术平均值为测定结果。平行测定结果的绝对差值不大于0. 3 mg/L 。

4硅酸根分析仪法

4.1原理

在pH 值为1.1~1.3条件下,水中的可溶硅与铝酸铵生成黄色硅钼络合物,用I-氨基一2-萘酚-4-磺酸还原剂把硅钼络合物还原成硅钼蓝,用硅酸根分析仪测定其硅含量。

加人掩蔽剂—酒石酸或草酸可以防止水样中磷酸盐和少量铁离子的干扰。

4.2试剂和材料

本方法所用试剂和水,除非另有规定,仅使用分析纯试剂和符合GB/T 6682一级水的规定。

安全提示:本标准所使用的强酸具有腐蚀性,使用时应注意。溅到身上时,用大量水冲洗,避免吸入或接触皮肤。

4.2.1钼酸铵[(NH 4 )6MO 7 O 24·4H 20]

4.2.2酒石酸溶液;100 g/L 。

4.2.3钼酸铵溶液

4, 2.3.1称取50 g 钼酸铵溶于约500 mL 水中

4.2.3.2量取42 mL 硫酸在不断搅拌下加人到300 mL 水中,并冷却到室温。

4.2.3.3将4.2.3, 1配制的溶液加入到4. 2.3. 2配制的溶液中然后用水稀释至1 L 。

4.2.4 1-氨基一2-萘酚一4-磺酸溶液:1.5 g/L。

称取I.5g 1-氨基一2-萘酚-4-磺酸,用200 mL含有7 g亚硫酸钠的水溶解,把溶液加到含有90 g亚硫酸氢钠的600 mL水中,用水稀释至1 000 mL,混匀。若有混浊,则需过滤,放人暗色的塑料瓶中,贮存于冰箱中。当溶液颜色变暗或有沉淀生成时失效

4.3仪器和设备

一般实验室用仪器和下列仪器

4.3.,硅酸根分析仪

硅酸根析仪是为测定硅而专门设计的光电比色计。为提高仪器的灵敏度和准确度,采用特制长比色皿(光程长为150 mm);利用示差比色法原理进行测量。

示差比色法是用已知浓度的标准溶液代替空白溶液,并调节透光率为100%或0%,然后再用一般方法测定样品透过率的一种比色方法。对于过稀的溶液,可用浓度最高的标准溶液代替挡光板并调节透光率为0%,然后再测定其他标准溶液或水样的透光率;对于过浓的溶液,可用浓度最小的一个标准溶液代替空白溶液并调节透光率为1000%,然后再测定其他标准溶液或水样的透光率。对于浓度过大或过小的有色溶液,采用示差比色法,可以提高分析的准确度。

4.4测定方法

移取100 mL水样注人塑料杯中,加人3 mL钼酸盐溶液,混匀后放置5 min;加3 mL酒石酸溶液,混匀后放置1 min;加2 mL 1-氨基-2-萘酚一4-磺酸溶液,混匀后放置8 min按仪器说明书要求,调整好仪器的上、下标,将显色液注满比色皿,开启读数开关,仪表指示值即为水样的含硅量。同时做空白试验。

4.5结果计算

硅含量((SiO

2)以质量浓度

2

ρ计,数值以微克每升(ug/L)表示,按式(2)计算:

)2(

..........

..........

/)

100

/

100

)

(

1

2

1

2

2

V

C

C

V

C

C-

-

=(

ρ

式中:

C2—水样测定时仪表读数的数值,单位为微克每升(ug/L);

C1—空白试验时仪表读数的数值,单位为微克每升(ug/L);

100—水样稀释后的体积的数值,单位为毫升(mL) ;

V—被测水样的体积的数值,单位为毫升(mL) o

5重量法

5. 1原理

本方法是将一定量的酸化水样蒸发至干,用盐酸使硅化合物转变为胶体沉淀,脱水后经过滤、洗涤、灼烧、恒重等操作,进行水样测定。

5.2试剂和材料

本方法所用试剂和水,除非另有规定,仅使用分析纯试剂和符合GB/T 6682二级水的规定。

安全提示:本标准所使用的酸具有强腐蚀性,使用时应注意。避免吸入或接触皮肤,溅到身上时,应立即就医。

5.2.1盐酸。

5.2.2硫酸

5.2.3 氢氟酸。

5.2.4盐酸溶液,1十49。

5.2.5硝酸银溶液;50 g/L 。

5.3仪器和设备

一般实验室用仪器和下列仪器。

5.3. 1水浴锅(控温范围:40℃一100℃,精度:士1℃)

5.3.2电热板或远红外加热板(电压可调)。

5.33马弗炉。

5.4分析步骤

5.4. 1取一定体积的过滤后水样(全硅含量应大于5 mg),按500 mL 水样加2 mL 盐酸比例加盐酸,混匀后逐次将水样加人到250 mL 硬质玻璃烧杯中,在电热板或远红外加热板上缓慢地蒸发(以不沸腾为宜)。当水样浓缩,体积明显减少时应及时添加酸化水样,这样多次反复操作直至全部水样浓缩至

100 mL 左右

5.4.2将烧杯移人沸腾水浴锅内,继续蒸发至干。然后每次加盐酸5 mL,重复蒸干三次把烧杯连同蒸发残留物一同移人150'C-155℃的烘箱中烘2h

5.4.3从烘箱中取出烧杯冷却至室温,加盐酸5 mL 润湿残留物,加50 mL 水,加热至70℃-80℃,用橡皮擦棒搅拌并擦洗烧杯内壁,把粘附在壁上的沉淀擦洗下来。用中速定量滤纸趁热过滤,用热盐酸溶液洗涤沉淀物和滤纸3--5次,滤 纸呈白色后改用700C-80℃的水继续洗至滤液无氯离子为止(用硝酸银溶液检验)。

5.4.4将滤纸连同沉淀物置于已恒量的坩埚中,在电炉上灰化后移人高温炉中,在950℃士50℃下灼烧至恒量。

5.4.5对于重金属离子含量较高的水样,灼烧后沉淀物颜色不是白色时,可用氢氟酸处理,从失去质量计算全硅含量。

用铂坩埚代替瓷坩埚进行测定,向已恒量的灼烧残留物中加人硫酸5~6滴、氢氟酸5 mL-~10 mL ,于通风橱内在低温电炉或电热板上加热处理,当白色浓烟冒完时,将铂坩埚移人高温炉,在950℃士50℃下灼烧至恒量

5.5结果计算

5,5.1灼烧残留物未经氢氟酸处理,水样中全硅含量(Si02)以质量浓度s ρ计,数值以毫克每升(mg/L)表示,按式(3)计算: )3.........(.. (100012)

3?-=V

m m ρ 式中:

2m —灼烧后沉淀与坩埚的质量的数值,单位为毫克(mg) ;

1m —柑祸的质量的数值,单位为毫克(mg);

V —水样体积的数值,单位为毫升(mL) o

5.5.2灼烧残留物经氢氟酸处理,水样中全硅含量(SiO 2)以质量浓度4ρ计,数值以毫克每升(mg/L)

表示,按式(4)计算:

)4.....(........................................1000324?-=

V

m m ρ 式中: 2m —灼烧后沉淀与坩埚的质量的数值,单位为毫克(mg) ;

3m —氢氟酸处理后残留物和柑涡的质量的数值,单位为毫克(mg); V —水样体积的数值,单位为毫升(mL) 。

5.6允许差

取平行测定结果的算术平均值为测定结果。平行侧定结果的绝对差值不大于0.5 mg/L 。

6氢氟酸转化分光光度法

6.1原理

水样中的非活性硅经氢氟酸转化为活性硅,过量的氢氟酸用三氯化铝掩蔽后,在27℃~5℃下,与钼酸铵作用生成硅钼黄,用还原剂将硅钼黄还原成硅钼蓝进行全硅含量测定。

6.2试剂和材料

本方法所用试剂和水,除非另有规定,仅使用分析纯试剂和符合GB/T 6682二级水的规定。试验中所需杂质标准溶液,在没有注明其他要求时,均按GB/T 602之规定制备。

安全提示:本标准所使用的酸具有腐蚀性,使用时应注意。溅到身上时,用大量水冲洗,避免吸入或接触皮肤。

6.2. 1二氧化硅(优级纯)。

6.2.2碳酸钠(优级纯)。

6.2.3盐酸溶液:1+1.

6.2.4氢氟酸溶液:1+7。

6.2.5草酸(H 2C 2O 4·2H 20)溶液:100 g/L

6.2.6三氯化铝(AlC13·H 2O)溶液:724 g/L 。

6.2.7钼酸铵[(NH 4) 6 M O7O 24·4H, O]溶液:75 g/L.

6.2.8 1-氨基一2萘酚-4磺酸溶液:1.5 g/Lo

同4.2.4。

6.2.9二氧化硅标准贮备溶液:1 mL 含1 mg Si02

6.2.10二氧化硅标准溶液:1 mL 含0.05 mg SiO 2

移取5 mL 的二氧化硅贮备溶液,置于100 mL 容量瓶中,用水稀释至刻度,摇匀。

6.3仪器和设备

一般实验室用仪器和下列仪器

6.3.1可见分光光度计。

6.3.2比色皿:10 mm.

6.3.3多孔水浴锅(恒温控制)。

6.3.4乙酸纤维薄膜:0.45 um-1 um 。

6.3.5有机玻璃刻度移液管:0 mL~5 mL

6.3.6聚乙烯瓶或密封塑料杯:150 mL-200 mL

6.4分析步骤

6.4.1校准曲线的绘制

6.4.1.1分别移取0. 00 mL,l. 00 mL,2. 00 mL,3. 00 mL,4. 00 mL,5. 00 mL 二氧化硅标准溶液注人一组聚乙烯瓶(杯)中,用水稀释至50 mL 此系列溶液的SiO 2质量浓度分别为0.0 mg/L,1. 0 mg/L,2.0 mg/L,3.0 mg/L,4.0 mg/L,5.0

mg/L 。

6.4. 1.2在上述溶液中分别加三氯化铝溶液3. 0 mL ,摇匀后用有机玻璃移液管准确加氢氟酸溶液1mL,摇匀,放置5 min.

6.4.1.3再加人1 mL 盐酸溶液,摇匀,试液温度控制在27℃士5℃下加钼酸铵溶液2 mL ,摇匀,放置5 min 。加草酸溶液2 mL,摇匀,放置1 min 。再加1-氨基一2萘酚-4磺酸溶液2 mL,摇匀,放置8 min 。于660 nn 波长下,用10 mm 比色皿,以水作参比,测定溶液的吸光度并以吸光度为纵坐标,Si02:浓度为横

坐标绘制校准曲线。

6.4.2水样的测定

6.4.2.1用乙酸纤维薄膜过滤水样并收集于聚乙烯瓶中。根据水样含硅量的大小,移取一定体积过滤后水样,注人聚乙烯瓶(杯)中,用水稀释至50 mL,摇匀。加1 mL 盐酸溶液,摇匀用有机玻璃移液管准确加人1 mL 氢氟酸溶液,摇匀,盖好瓶盖(不要过紧)置于沸腾水浴锅中.加热15 min 。

6.4.2.2取下聚乙烯瓶(杯)加三氯化铝溶液3. 0 mL,摇匀,并置于冷水中冷却,当水样温度为27'C 士5℃时,加钼酸铵溶液2 mL,摇匀,放置8 min 。加草酸溶液2 mL,摇匀,放置1 min 。再加1-氨基一2萘酚_4磺酸溶液2 mL,摇匀,放置8 min 。在660 nn 处,用l0mm 比色皿以水为参比测定水样的吸光度,从校准曲线上查出相应的二氧化硅含量。同时做空白试验。

6.5结果计算

全硅含量((Si02)以质量浓度s ρ计,数值以毫克每升(mg/L)表示,按式(5)计算:

)5(........................................5001?-=V

m m s ρ 式中:

1m —从校准曲线上查出的水样中二氧化硅含量的数值,单位为毫克每升(mg/L) ;

0m —从校准曲线上查出的空白试验中二氧化硅含量的数值,单位为毫克每升(mg/L) ;

V 一水样体积的数值,单位为毫升〔mL).

6.6允许差

取平行测定结果的算术平均值为测定结果。平行测定结果的绝对差值不大于0.1 mg/L 。

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

工业锅炉水质__GBl576—2001

中华人民共和国国家标准 工业锅炉水质GBl576—2001 代替GBl576—1996 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定 表1

国家质量技术监督局2001-01-10批准 2001-10-01实施 表1(完) 1) 硬度mmol/L的基本单元为c(1/2Ca2+、1/2Mg2+),下同。 2) 碱度mmo1/L的基本单元为c(OH-、1/2CO2-3、HC03-),下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机 构同意后,碱度指标上限值可适当放宽。 3) 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀 时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于 0.05mg/L。 4) 如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶 解固形物与电导率或与氯离子(Cl-)的比值关系应根据试验确定。并应定期复试和修正此 比值关系。

表2 3 、承压热水锅炉给水应进行锅外水处理,对于额定功率小于等于4.2MW非管架式承压的热水锅炉和常压热水锅炉,可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作,其水质应符合表3的规定。 表3

1)通过补加药剂使锅水pH值控制在10一12。 2)额定功率大于等于4.2MW的承压热水锅炉给水应除氧,额定功率小于 4.2MW的承压热水锅炉 和常压热水锅炉给水应尽量除氧。 4、直流(贯流)锅炉给水应采用锅外化学水处理,其水质按表1中额定蒸汽压力为大于1.6Mpa、小 于等于2.5Mpa的标准执行。 5、余热锅炉及电热锅炉的水质指标应符合同类型、同参数锅炉的要求。 6、水质检验方法应按附录A(标准的附录)执行。

工业循环水国标word版本

工业循环水国标

中华人民共和国标准 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment GB50050-95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 中国计划出版社 1995年北京 目次 1总则 2术语、符号 2.1术语 2.2符号 3循环冷却水处理 3.1一般规定 3.2敞开式系统设计 3.3密闭式系统设计 3.4阻垢和缓蚀 3.5菌藻处理 3.6清洗和预膜处理 4旁流水处理 5补充水处理 6排水处理 7药剂的贮存和投配 8监测、贮存和化验 附录A水质分析项目表 附录B本规范用词说明 附加说明 附:条文说明 1总则 1. 01为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1. 02本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1. 03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1. 04工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1. 05工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1术语

2.1.1循环冷却水系统Recirculating cooling water systemc 以水作为冷却介质,由换热设备,水泵、管道及其它关设备组成,并循环使用的一种给水系统。 2.1.2敞开式系统Open system 指循环冷却水与大气直接触冷却的循环冷却水系统。 2.1.3密闭式系统Closed system 指循环冷却水不与大气直接触冷却的循环冷却水系统。 2.1.4药剂Chemicals 循环冷却水处理过程中使用的各种化学物质。 2.1.5异状养菌数学课Count of heterotrophic bacteria 按细菌平皿计数法求出每毫升水中的异养菌个数. 2.1.6粘泥Slime 指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。2.1.7粘泥量Slime content 用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mg/m3表示。 2.1.8.污垢热阻值Fouling resistance 表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为m2.k/w。 2.1.9腐蚀率Corrosion rate 以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。 2.1.10系统容积System capacity volume 循环冷却水系统内所有水容积的总和。 2.1.11浓缩倍数Cycle of concentration 循环冷却水的含盐浓度与补充水的含盐浓度之比值。 2.1.12监测试片Monitoring test coupon 放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。 2.1.13预膜Prefilming 在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。 2.1.14间接换热Indirect heat exchange 换热介质之间不直接接触的一种换热形式。 2.1.15旁流水Side stream 从循环冷却水系统中分流部分水量,按要求进行处理后,再返回系统。 2.1.16药剂允许停留时间Permitted retention time of chemicals 药剂在循环冷却水系统中的有效时间。 2.1.17补充水量Amount of makeup water 循环冷却水系统在运行过程中补充所损失的水量。 2.1.18排污水量Amount of blowdown 在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。 2.1.19热流密度Heat load intensity 换热设备的单位传热面每小时传出的热量。以W/m2。 2.2符号 编号符号含义

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

低压工业锅炉水质主要检测以下指标

: 1、给水硬度 2、给水氯根 3、给水pH 4、给水氧含量(小于6吨锅炉不用) 5、锅水总碱度 6、锅水pH 7、锅水氯根 8、锅水磷酸根 9、锅水亚硫酸根 具体指标如下: 中华人民共和国国家标准GBl576—2001代替GBl576—1996 工业锅炉水质 一、范围 本标准规定了工业锅炉运行时的水质要求。本标准适用于额定出口蒸汽压力小于等于 2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定表1 项目给水锅水

额定蒸汽压力, MPa ≤ 1.0> 1.0> 1.6 ≤ 1.0> 1.0> 1.6≤1.6≤ 2.5≤ 1.6 ≤ 2.5 悬浮物,mg/L ≤5 ≤5 ≤5 总硬度,mmol/L1) ≤ 0.03 ≤ 0.03 ≤ 0.03 总碱度,mmol/L2)无过热器6-26 6-24 6-16 有过热器≤14 ≤12 pH(25℃)≥7 ≥7 ≥7 10-12 10-12 10-12 溶解氧,mg/L3)≤ 0.1 ≤ 0.1 ≤

0.05 溶解固形物,mg/L4)无过热器<4000<3500<3000 有过热器<3000<2500 SO2-3,mg/L4)10-30 10-30 PO3-4,mg/L 10-30 10-30 相对碱度游离NaOH/溶解固形物)5)< 0.2< 0.2 含油量,mg/L ≤2 ≤2 ≤2 含铁量,mg/L6) ≤ 0.3 ≤ 0.3 ≤ 0.3 国家质量技术监督局2001-01-10批准2001-10-01实施 表1(完) 1)硬度mmol/L的基本单元为、,下同。 2)碱度mmo1/L的基本单元为c(OH-、、HC03-),下同。对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。 3)当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于

工业循环水处理技术改进措施

工业循环水处理技术改进措施 环境保护、节水减排、废水回用是对目前循环冷却水系统提出的新挑战。企业应根据自身特点,积极采用成熟的新技术、新材料和新装置,优化循环冷却水处理系统,提高循环冷却水处理技术水平,为企业甚至整个社会的可持续发展做出应有的贡献。 1导言 循环水处理是个巨大而艰巨的系统工程,我们要解决的就是腐蚀、结垢、微生物粘泥这三个问题,要针对本厂实际情况结合自己设备存在的问题,做出正确判断,更重要的是要对整个设备进行优化管理,加大管理监察力度,围绕水质稳定做工作,争取达到对循环水水质、水温的合理控制,防患于未然,在实现节能降耗的同时,为全厂生产设备的安全运行提供有利保障。 2段国内外循环水处理的实际情况 2.1现阶段国内外循环水处理情况 循环水冷却处理技术于上世纪初期已在国外得到了良好的应用和发展,但也因为诸多实际因素的限制暴露出各种问题。上世纪末期循环水处理技术才被引入我国,在经过了一段漫长的发展历程后,方呈现出逐渐成熟趋势。在近几年的发展过程中,全世界循环水处理效率得到了很大程度的提升,应用于循环水处理的相关处理剂也逐渐增多,更甚至发展成为国际化和规模化的处理剂产品,在此方面,我国对于循环水处理剂的进出口量也在不断增长。 2.2现阶段国内外循环水主要处理手段 现阶段我国在处理循环水方面主要应用以下几种方式:首先是化学处理方式,该方式主要通过应用化学药剂,对循环水中所包含的多种不稳定物质实施高强度处理,从而有效降低污水的腐蚀性以及阻止污水结垢,另一方面能够合理降低常规工作状态下的排水量和补水量;其次是物理处理方式,该方式主要是应用相关处理材料对循环水进行科学全面的分析,同时通过改变循环水的能量、温度及压强,有效加强循环水处理材料的抗腐蚀及抗结垢等功能。 3循环水运行中存在的问题 3.1循环水系统内长期漏油 由于设备老化等原因,循环水系统长期漏油,久而久之,这样就会使装置换热设备内表面形成一层油膜,影响循环水的处理效果,泄漏的油脂还会成为众多微生物丰富的营养源,造成循环水系统微生物大量迅速繁殖难以控制,微生物粘泥、藻类急剧增多,使换热器内表面长期被油泥覆盖,致使缓蚀阻垢剂无法与换热器内表面接触从而丧失其缓蚀阻垢作用,导致换热器极易产生结垢和腐蚀。 3.2阻垢缓蚀效果差 由于不同时期水质和生产工艺条件都会发生变化或波动,就要及时改进、调整、优化缓蚀阻垢剂配方,如果配方长期不换,菌藻对杀菌剂已产生了免疫功能,阻垢缓蚀效果抗冲击和污染能力就会降低,杀菌效果差。 3.3凉水塔排泥设施不完善,水池没有做到定期清淤 凉水塔底部一般呈平底状,池底排泥阀无法排掉池底的淤泥,所以循环水厂的排泥阀不起作用,淤泥只能靠清扫水池才能排掉。但由于生产的连续不间断性,给清池工作带来很大的困难。 4现代循环水处理技术 随着循环水处理技术的发展,现代循环水处理技术采用有机阻垢剂、缓蚀剂、杀菌灭澡剂综合运用的方法,轮换交替使用,这样可以达到药剂间相互增效的作用。目前有机阻垢剂品种繁多,主要有有机磷系列、聚羟酸系列、聚羟酸脂系列等,一般来讲,复合配方的阻垢

工业循环冷却水处理GB50050-95设计规范

工业循环冷却水处理设计规范 GB50050—95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 关于发布国家标准《工业循环冷却水处理设计规范》的通知 建标[1995]132号 根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。 本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九五年三月十六日 1总则 1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1 术语 2.1.1 循环冷却水系统Recinrculating cooling water system 以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。

工业用水标准

工业用水标准 电导率≤10μS/CM动物饮用纯水(医药)、普通化工原料配料用纯水、食品行业配料用纯水、普通电镀行业冲洗用去离子纯水、纺织印染用除硬脱盐纯水、聚脂切片用纯纯水、精细化工用纯水、民用饮用纯净水、其它有相同纯水质要求的用纯水. 电导率≤4μS/CM电镀化学品生产用纯水、化工行业表面活性剂生产用纯水、医用纯化水、白酒生产用纯水、啤酒生产用纯水、民用饮用纯净水、普通化妆品生产用纯水、血透纯水机用纯水、其它有相同纯水质要求的用纯水. 电阻率5~10MΩ.CM锂电池生产用纯水、蓄电池生产用纯水、化妆品生产用纯水、电厂锅炉用纯水、化工厂配料用纯水、其它有相同纯水质要求的用纯水. 电阻率:10~15MΩ.CM动物实验室用纯水、玻壳镀膜冲洗用纯水、电镀用纯纯水、镀膜玻璃用纯水、其它有相同纯水质要求的用纯水. 电阻率≥15 MΩ.CM医药生产用无菌纯水、口服液用纯水、高级化妆品生产用去离子纯水、电子行业镀膜用纯水、光学材料清洗用纯水、电子陶瓷行业用纯水、尖端磁性材料用纯水、其它有相同纯水质要求的用纯水. 电阻率≥17 MΩ.CM磁性材料锅炉用软化纯水、敏感新材料用纯水、半导体材料生产用纯水、尖端金属材料用纯水、防老化材料实验室用纯水、有色金属,贵金属冶炼用纯水、钠米级新材料生产用纯水、航空新材料生产用纯水、太阳能电池生产用纯水、纯水晶片生产用纯水、超纯化学试剂生产用纯水、实验室用高纯水、其它有相同纯水质要求的用纯水. 电阻率≥18 MΩ.CM ITO导电玻璃制造用纯水、化验室用纯水、电子级无尘布生产用纯水等其它有相同纯水质要求的用纯水

出水电导率≤10μS/CM的纯净水,白酒生产用纯水,啤酒生产 用纯水等,生产制造出水电导率≤5μS/CM的电镀用纯水设备、蓄 电池用水设备、镀膜玻璃钢纯水设备、生产制造出水电导率0.110μ S/CM的导电玻璃制造用水,实验室用超纯水。生产出水电阻率在 5-10MΩ.CM的锂电池、蓄电池生产用水,10~15MΩ.CM的电镀用水,光学材料清洗用水等等,生产制造电阻率≥17 MΩ.CM 磁性材料锅炉用软化水、敏感新材料用水、半导体材料生产用水、尖端金属材料用水等。生产制造电阻率≥18 MΩ.CM ITO导电玻璃制造用水、化验室用水、电子级无尘布生产用水等 制取高纯水的主要工艺为反渗透+EDI工艺和反渗透+抛光混床工艺或反渗透+EDI+抛光混床工艺,出水水质最小电阻率能达到10M Ω.CM,电阻率能达到18.5MΩ.CM,生产用纯水各行业标准不一,比如电池行业至少需要电阻率达到10MΩ.CM,电镀行业用水、镀膜玻璃用水一般要求达到15MΩ.CM,纯净水生产,白酒生产用纯水,啤酒生产用纯水一般只需达到电导率≤10μS/CM即可,一级反渗透工艺即可达到电导率≤10μS/CM,所以订购纯水设备,纯净水设备时先了解水质需要达到一个什么标准,然后再咨询厂家工艺的可行性及效益性,以最少的投入达到预期的纯水水质标准。 反渗透设备出水水质在各行业应用: 电导率≤10μS/CM 普通化工原料配料用水、食品行业配料用水,普通电镀行业冲洗用去离子水、纺织印染用除硬脱盐纯水、聚脂切片

锅炉水处理解读

165m3/h锅炉补给水处理系统技术方案 一、总则 根据用户提出的低压锅炉补给水的用水要求,本技术方案就165m3/h低压锅炉补给水系统的工艺设计、设备结构、性能等方面的要求做出了详细说明,我方保证提供符合本技术方案和最新工业标准要求的优质产品。 1.采用的规范和标准 1.1国产设备的制造和材料符合下列标准、规范、规定的最新版本要求。 1)DL5000-94《火力发电厂设计技术规程》 2)DL/T 5068-96《火力发电厂化学水处理设计技术规程》 2)DL5028-93《电力工程制图标准》 3)GB150-98《钢制压力容器》 4)劳锅字(1990)8号《压力容器安全技术监察规程》 5)劳锅字(1992)12号《压力容器设计单位资格管理与监督规则》 6)JB/T2982-99《水处理设备技术条件》 7)HGJ32-90《橡胶衬里化工设备》 8)DLJ58-81《电力建设施工及验收技术规范(火力发电厂化学 篇)》 9)DL5007-92《电力建设施工及验收技术规范(火力发电厂焊接 篇)》 10)DL5031-94《电力建设施工及验收技术规范(管道篇)》

11)GB12145-89《火力发电机组及蒸汽动力设备水汽质量标准》 12)HGJ34-90《化工设备、管道外防腐设计规定》 13)DL5009.1-2002《电力建设安全工作规程》 1.2进口设备或部件的制造工艺和材料应符合美国机械工程师协会 (ASME)和美国材料试验学会(ASTM)的工业法规中所涉及的标准。 1.3对外接口法兰符合下列要求 1)87GB《火力发电厂汽水管道零件及部件典型设计手册》 2)JB/T74-94《管路法兰技术条件》 3)JB/T75-94《管路法兰类型》 1.4衬里钢管及管件符合下列标准的最新版本的规定要求: 1)HG21501《衬胶钢管及管件》 1.5设备外部管路的设计符合下列标准最新版本的要求: 1)DL/T5054-1997《火力发电厂热力设备和管道保温油漆设计技 术规定》 2)HGJ34-90《化工设备、管道外防腐设计规定》 1.6 当上述规定和标准对某些专用设备和材料不适用时,则采用材料生 产厂的标准。 1.7 供方提供反渗透膜所遵循的设计导则及设计和运行标准软件计算书。 2.系统概述 2.1 系统要求 2.1.1产水用途:锅炉补给水

冶金工业废水处理技术

冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、

循环水处理标准GB

新版国标《工业循环冷却水处理设计规范》G B50050-2007释义新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科 技有限公司与您共同学习,共同提高。 国标《工业循环冷却水处理设计规范》GB50050-2007 说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处

理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。 我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。 表1 我国循环冷却水处理配方发展 年代配方 1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH) 聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH) 1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH) 1980~1985 膦酸盐/聚合物或共聚物(碱性处理) 硅酸盐或钼酸盐配方 1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高 1998 开始开发无磷无金属配方 目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。不论是国产

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

工业用水标准

GB1576-2001《工业锅炉水质》 2009.3.23

《工业锅炉水质》 一、修订概况 《工业锅炉水质》标准是根据国家标准化管理委员会2006年的国家标准修订计划(项目计划编号:20064862-T-469),对GB1576-2001《工业锅炉水质》进行的修订。 1、修订原则 工业锅炉水质标准修订遵循以下原则:(1)规范性 按GB/T1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T1.2-2002《标准化工作导则第2部分:标准中规范性技术要素内容的确定方法》的要求进行修订。 (2)连续性 GB1576自1979年颁布以来,经历了1985年、1996年和2001年三次修订,是一个比较成熟的标准,具有较好的适用性。近三十多年的实践证明,该标准为确保我国工业锅炉安全运行发挥了很大的作用。鉴于此,凡是实践证明符合我国国情,且能确保锅炉安

全运行、执行有效的内容,在新标准中均予以保留。GB/T1576-2008是在GB1576-2001基础上进行修改、充实、完善的。 (3)适用性 随着我国国民经济的迅速发展和技术的不断进步,对节能降耗和环境保护提出了更高要求。根据工业锅炉产品发展趋势,JB/T10094-2002《工业锅炉通用技术条件》的适用范围在2002年修订时已将工业锅炉额定压力扩大至小于3.8MPa,本标准在修订时适用范围随之扩大到小于3.8MPa。为适应社会需求的变化,近几年贯流锅炉、直流锅炉得到广泛应用,这种锅炉对水质提出了更高的要求,原标准已不适用于这类锅炉的要求;再则,用于工业锅炉的阻垢剂和除氧剂的种类日渐增多,效果也比原标准规定的药剂有所提高,新标准应适应发展的要求;另外,在保证锅炉安全运行的前提下,为了促进工业锅炉节能减排,修订标准时,对有关指标作出相应的规定。 (4)可操作性 充分考虑我国锅炉水处理现状和现有的

钢铁工业主要水处理系统

与钢铁工业节水问题紧密相关的另一个问题是钢铁工业用水的处理,只有水处理问题得到有效的解决,节水工作才能真正取得成效。国外大钢铁企业的经验证明,正确使用水处理剂,可以有效解决水循环系统的结垢问题,不仅延长了系统使用寿命,节约水资源,而且可以实现污水零排放,节水和环保效果非常显著。 在钢铁工业中,需要进行水处理的系统主要是: (1)炼铁厂:高炉、热风炉冷却净循环水处理系统;高炉煤气洗涤水浊循环系统;高炉炉渣水循环系统;鼓风机站净循环水处理系统。 (2)炼钢厂:氧气转炉烟气净化污水处理系统;转炉间接冷却循环水处理系统;电炉净循环冷却水系统;转炉软化冷却水系统;电炉软水冷却水系统;转炉污泥处理系统;电炉真空处理污水处理系统。 (3)连铸厂:结晶器软水闭路循环水系统;二次冷却浊循环水系统;污泥脱水处理系统。 (4)热轧厂:热轧净循环水处理系统;热轧浊循环水处理系统;过滤器反洗水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 (5)冷轧厂:间接冷却开路循环水处理系统;酸碱废水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 水处理剂中用量较大的有三类:絮凝剂;杀菌灭藻剂;阻垢缓蚀剂。絮凝剂亦称混凝剂,其作用是澄凝水中的悬浮物,降低水的浊度,通常用无机盐絮凝剂添加少量有机高分子絮凝剂,溶于水中与所处理水均匀混合而使悬浮物大部沉降。杀菌灭藻剂亦称杀生剂,其作用是控制或清除水中的细菌和水藻。阻垢缓蚀剂主要用于循环冷却水中,提高水的浓缩倍数,降低排污量以实现节水,并降低换热器和管道的结垢和腐蚀。 针对钢铁工业的特点,水处理剂的使用需注意以下几点: (1)在钢铁企业中,具有高热流密度的设备较多,这与化工工业有着显著的不同。因此,开发应用耐高温、低公害或无公害的阻垢缓蚀剂,是钢铁工业水处理剂的研发方向之一。 (2)结垢堵塞问题突出。高炉煤气洗涤循环水的水质成分很复杂,由于矿石中氧化钙的溶入,造成管道结垢,喷头堵塞,影响生产正常运行。在转炉炼钢过程中,投入造渣剂石灰,部分石灰细粉被烟气带出,在烟气洗涤塔中与循环水生成氢氧化钙,随后与烟气中的二氧化碳反应生成碳酸钙,造成洗涤塔中喷嘴堵塞,输水管道断面减少,阻力增加,浪费能源。在高炉煤气洗涤和转炉烟气净化浊循环水中,也需要解决洗涤水中大量悬浮物以及严重结垢问题。这些方面均需要开发优质的聚凝剂、分散剂及除硬稳定剂。 (3)连铸及轧钢浊循环水主要是细小的氧化铁皮悬浮物及循环水中油的去除问题。这类循环水的水处理工艺是沉淀、除油、过滤、冷却。水处理药剂主要采用絮凝剂、助凝剂、除油剂及少量的阻垢分散剂等。目前国内生产的絮凝剂主要是铝盐及铁盐,助凝剂主要是聚丙烯酰胺类高分子药剂。与国外同类产品相比,使用效果较差。因此,开发适用于钢铁企业的高效絮凝剂、助凝剂、除油剂是当务之急。

工业锅炉水水质标准

工业锅炉水质标准 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合下表规定: 项目给水锅水 额定蒸汽压力, MPa ≤1.0>1.0 >1.6 ≤1.0>1.0>1.6 ≤1.6 ≤2.5 ≤1.6≤2.5 悬浮物,mg/L≤5≤5 ≤5 总硬度,mmol/L1 ≤0.03≤0.03≤0.03 总碱度,mmol/L无过热器 6-26 6-24 6-16 有过热器≤14≤12 pH25℃≥7≥7≥710-1210-1210-12 溶解氧,mg/L3)≤0.1≤0.1≤0.05 溶解固形物,mg/L无过热器<4000<3500<3000 有过热器<3000<2500 SO2-3,mg/L 10-3010-30 PO3-4,mg/L 10-3010-30 相对碱度游离NaOH/溶解固形物<0.2<0.2 含油量,mg/L ≤2 ≤2≤2 含铁量,mg/L6≤0.3≤0.3≤0.3 1 硬度mmol/L的基本单元为c1/2Ca2+、1/2Mg2+,下同。 2 碱度mmo1/L的基本单元为cOH-、1/2CO2-3、HC03-,下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。 3 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。 4 如测定溶解固形物有困难时,可采用测定电导率或氯离子C1-的方法来间接控制,但溶解固形物与电导率或与氯离子Cl-的比值关系应根据试验确定。并应定期复试和修正比值关系。 5 全焊接结构锅炉相对碱度可不控制。 6 仅限燃油、燃气锅炉 2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如对汽、水品质无特殊要求)也可采用锅内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药、排污和清洗工作,其水质应符合下表规定。 项目给水锅炉水悬浮物,mg/L≤20 总硬度,mmol/l≤4 总碱度,mmol/l 8-26

工业循环水常遇问题及解决方案

工业循环水常遇问题及解决方案 一、工业循环水 随着工业生产得发展,水用量急剧增加,很多地区已经出现供水不足得现象,节约用水刻不容缓!冷却水占工业用水主体,提高其重复利用率、循环使用就是节水节能得必须手段 二、循环水运行过程中常产生得问题 在工业生产得工艺条件下,工业循环水水质常会发生一系列变化,对生产造成危害,如:腐蚀、结垢、菌藻、粘泥等。这些问题如果得不到有效得解决,则无法进行安全生产,造成巨大得工业损失。 1 >水垢 由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类得溶解度而沉淀。常见得有碳酸钙、磷酸钙、硅酸镁等垢。 碳酸钙 碳酸钙就是工业循环冷却水中最常见得水垢,主要就是Ca (HC03)2 在循环冷却水得运行中受热分解成C02与CaC03o 磷酸钙 为了抑制系统材质得腐蚀,常常要加入聚磷酸盐来作为缓蚀剂,当水 温升高时,聚磷酸盐会分解为正磷酸盐。 硅酸镂

水中得Si02量过高,加上水得硬度较高,生成非常难处理得硅酸钙(镁)硕垢。水垢得质地比较致密,大大得降低了传热效率,0、6毫米得垢厚就使传热系 数降低了20%。 2、污垢 污垢主要由水中得有机物、微生物菌落与分泌物、泥沙、粉尘等构成。垢得 质地松软,阻隔传热、阻隔水流、引起垢下腐蚀,缩短设备使用寿命。 、3、电化学腐蚀 循环水对换热设备得腐蚀,主要就是电化腐蚀。产生原因有设备制造缺陷、 水中充足得氧乞、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌得黏液 所生成得污垢等因素。如果不加控制,极短得时间便使换热器、输水管路设备报废。 4、微生物粘泥 循环水中溶有充足得氧气、合适得温度及富养条件,很适合微生物得生长繁殖。如不及时控制将迅速导致水质恶化、发臭、变黑。冷却塔大量黏垢沉积甚至堵寒,冷却散热效果大幅下降,设备腐蚀加剧。 工业循环水处理技术 5、水垢得控制方法 从冷却水中去除成垢钙离子 从水中除去Ca2+,使水软化,则碳酸钙就无法结晶析出,也就形不成水垢, 主要两种方法。 ①离子交换树脂法 离子交换树脂法就就是让水通过离子交换树脂,将Ca2+、Mg2+从水中置换出

新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义

新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义国标《工业循环冷却水处理设计规范》GB50050-2007说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。

相关主题
文本预览
相关文档 最新文档