当前位置:文档之家› 保偏光纤

保偏光纤

保偏光纤
保偏光纤

光纤陀螺中的耦合器应用

光纤陀螺-光电子技术在光纤传感器中应用的典范 汪绳武 (上海永鼎光电子技术有限公司) 中国惯性学会 摘要 光纤陀螺是属于惯性技术范畴的一种惯性仪表。光纤陀螺也是 光电子技术范畴的一种光传感器,光纤陀螺是惯性技术与光电子技术 紧密结合的产物。但实际上,惯性技术与光电子技术在光纤螺上的紧 密切合还是不足的,光电子技术的发展还没有充分注意到光纤传感器, 特别是光纤陀螺的潜在市场。 本文通过对光纤陀螺和与其相关的光电子器件的介绍, 希望两个技 术方面要在过去已有的基础上,更进一步互相渗透,使光纤陀螺市场 早日形成。 1.概述 陀螺仪的应用在我们周围无处不存在,例如,在国防领域中导弹的精确制导、潜艇长期潜伏在水下的精确导航、行进中的坦克保持火炮和瞄准系统的稳定等都离不开陀螺仪。在国民经济领域中,工程测量的精确定位、石油钻探的精确定向、机器人动作精确控制等也要靠陀螺仪。即使在日常生活中,人们在不知不觉中也已经或将得益于陀螺仪。比如飞机在飞行中使旅客感到十分平稳和舒适是得益于陀螺仪构成的航向姿态参考系统。随着列车提速,消除车厢摆动尤其高速转弯时的摆动,就要借助于陀螺仪。还有,汽车行驶中的定位和导向,在目前主要靠GPS,但GPS的使用存在着被动性的缺点,当GPS与陀螺组合在一起时,才使汽车导向和自动驾驶真正具备了主动性。陀螺仪的应用十分广泛,以上的例子只是极少的一部分。 以上列举的应用是通过陀螺仪和伺服控制系统共同实现的,而陀螺仪在其中充当了一个十分重要的、不可缺少的角色。 陀螺仪的种类很多,包括机电的、激光的、光纤的、压电的和微机械的等等。各种陀螺仪都具有自身的优点。但到目前为止,在众多类型的陀螺中,光纤陀螺更受到各种应用的关注。 光纤陀螺本质上是由光电子器件组成的光干涉仪系统,没有任何活动部件,这就决定了光纤陀螺具有一系列独特的优点:不怕冲击振动,可以在恶劣的力学环境下应用;对角速 率的反应极快;角速率测量灵敏度高;测量速率范围高达;潜在的成本低;加工简单。 这些优点是其它陀螺不能比拟的。 国内外十分重视光纤陀螺的发展和应用,但目前国内发展速度跟不上需求,至今尚未生产和达到应用。主要问题是总体技术未达到应用的要求,而与光纤陀螺相关的光电子器件在技术和数量上又满足不了陀螺总体的设计要求。 通信光电子器件产业在国内已经有相当的规模,但主要市场的还是针对光通信行业,对光电子器件的另一个应用市场,即光纤陀螺和光纤传感器,还未被受到足够的重视。研究其原因,从商业角度考虑,是因为光纤陀螺市场尚未形成,不能成为推动光纤陀螺专用的光

光纤跳线知识汇总

什么叫光纤跳线 光纤跳线用来做从设备到光纤布线链路的跳接线。有较厚的保护层,一般用在光端机和终端盒之间的连接。 光纤主要分为两类: 单模光纤(Single-modeFiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。 多模光纤(Multi-modeFiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。 光纤使用注意 光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色 要一致。一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。 光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。 光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。 光纤跳线简介 光纤通道协议一般在两种介质上传输——光缆和铜缆。 从内部可传导光波的不同,光纤分为单模(传导长波长的激光)和多模(传导短波长的激光)两类: 单模光纤(Single-modeFiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。单模光缆的连接距离可 达10公里, 多模光纤(Multi-modeFiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较 短。多模光缆的连接距离要短的多,是300米或500米(主要看激光的不同,产生短波长激光的光源一般有两种,一种是62.5的, 一种是50的) 另外,光缆的接头部分也有两种,一种SC接口为1GB接口还有一种为LC接口为2GB接口. 光纤跳线的种类有很多,根据接头形状可分为:FC、SC、ST、LC等;根据插芯的类型可分为:PC、UPC、APC等;根据光纤种 类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900μm、2mm、3mm等。 产品广泛运用到:通信机房、光纤到户、局域网络、光纤传感器、光纤通信系统、光纤连接传输设备、国防战备等. 光纤跳线连接方式 FC、ST、SC、LC、MTRJ是物理接口连接方式不同。 FC是圆形螺旋口。 ST是圆形45度卡口。 SC是方型插口。

如何选购消光比测试仪 指标对标详细分析表

一、进口品牌:ER2200偏振消光比测试仪 ER2200偏振消光比测试仪 ?厂商:韩国FIBERPRO

二、国产品牌华纤光科消光比测试仪HXGK-X100 产品介绍: 潍坊华纤光电科技有限公司最新推出消光比测试仪HXGK-X100,50dB的PER动态测试范围,可以快速高精度地测量消光比、偏振角度和光功率。 参数指标:

操作波长:1260nm~ 1650nm 输入功率范围:–40 dBm~ 10 dBm 偏振消光比范围: 0 ~ 40dB 注入功率 -5 ~ +10 dBm 0 ~ 45dB 注入功率 -10 ~ -5 dBm 0 ~ 35dB 注入功率 -20 ~ -10 dBm 0 ~ 25dB 注入功率 -30 ~ -20 dBm 消光比测量分辨率:0.1 dB 消光比测量精度:0.3dB (PER < 40 dB) 角度测量分辨率:0.1° 角度测量精度:±1° 功率测量分辨率:0.1 dB 功率测量精度:±0.2dB 测试速率 0.1~0.2s. 输入接口:FC/PC 输出参数:消光比、角度、功率 工作电流:220V 50Hz/60Hz 通信接口:RS232 / GPIB / USB 2.0 尺寸:85*210*320mm 操作温度:10℃ ~ 40℃ 应用领域:光器件的偏振测量、保偏尾纤器件测试、保偏跳线生产、保偏器件对轴等。 消光比重要指标对比表 序号名称ER2200 (韩国FIBERPRO)ERM-101(美国GP) 1 偏振角度测试精度0.05 0.06 2 消光比测试精度0.1db 0.3db 3 功率测量精度0.1db 0.23db 4 输入功率范围-40dbm--+10dbm -30dbm--+10dbm 总结:ER2200 消光比内部光接收镜和光接口之间只有6.684 毫米。是ERM101 所达不到的。所以ER2200 精度比ERM101 要高。

保偏光纤耦合器

保偏光纤耦合器-拉锥式 产品特点 主要应用 低插入损耗 高承受功率 高消光比 高稳定性 高可靠性 光放大器 光纤水听器 光纤陀螺仪 干涉实验 相干系统 封装尺寸 性能参数 参数 单位 指标 类型 - 1x2 2x2 中心波长 nm 1310,1550 1064 1310,1550 1064 工作波长范围 nm ±20 典型附加损耗 dB 0.3 0.6 0.3 0.6 最大附加损耗 0.7 0.9 0.7 0.9 耦合比 dB 01/99~50/50 典型消光比 dB 20 18 20 18 最小消光比 dB 17 15 17 15 最大光功率(CW) mW 2000 最大承受拉力 N 5 光纤类型 - 熊猫保偏光纤 工作温度 ℃ -5~+70 储存温度 ℃ -40~+85 封装尺寸 Mm ?3x54:裸光纤 ?3x70: 900um 保护套管 9x16x90: 900um ,2.0mm ,3.0mm 套管 以上参数不含连接头,加头损耗IL ≤0.3db ,RL ≧5db ,ER ≧2db ,保偏光纤的慢轴方向与连接头定位键对准; 订货信息:PMSC-XXXX-XXXX-X 产品名称 工作波长 结构类型 分光比 尾纤类型 尾纤长度 连接头类型 工作轴向 拉锥式保偏耦合器 1550=1550nm 1=1x2 50=50:50 0=250um 裸纤 0=0.8米 0=FC/UPC S-慢轴 1310=1310nm 2=2x2 10=10:90 1=900um 套管 1=1米 1=FC/APC F=快轴 1064=1064nm 01=1:99 9=不带头 自定义 70 Ф3.0

光纤跳线的种类大全图文并茂

ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明:

① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线 光纤接口大全

各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤

光纤跳线基础知识.doc

光纤跳线是指光纤两端都装上连接器插头,用来实现光路活动连接(一端装有插头的称为尾纤)。光纤跳线用于长途及本地光传输网络、数据传输及专用网络,以及各种测试和自控系统。光纤跳线是通过精密设备经过多道工序精磨而成的,具有插入损耗低、回波损耗高、重:复性好等优点,可广泛应用于各种光纤器件和各种光纤通信系统中。 光纤跳线的种类有很多,根据连接器形状口I分为:FC、SC、ST、LC、MT.RJ、MU等;根据连接器插头从插针体的类型可分为:PC、UPC、APC等;根据光纤种类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900pm. 2mm、3mm等。在根据连接器形状划分中,单模光纤可使用的连接器类型有FC, SC, ST, FDDI, SNA, LC, MT-RJ等,多模光纤可使用的连接器类型有FC, SC, ST, FDDI, SMA, LC, MT-RJ, MU 及VF45 等。单模跳线包括SC/PC, SC/APC, FC/PC, FC/APC, ST/PC, LC/PC, LC/APC, MU/PC、MU/APC. MT-RJ;多模跳线包括:SC/PC, FC/PC, ST/PC, LC/PC, MU/PC, MT-RJ O光纤跳线所用光纤一般为G.652光纤,直径一般为63mm,长度一般为5~100m,插入损耗一般小于0.1dB;反射损耗一般要大于45dB。 下面我们简单介绍根据光纤连接器形状常使用的FC, SC, ST, LC, MT-RJ MU 6 W 光纤跳线。注意,光纤跳线的两端连接器插头根据使用情况可以是不相同,如我们常使用的FC/APC-LC/APC,就是一项连接ODF,另一端连接设备的光纤跳线。 1、FC-FC光纤跳线:FC (Ferrule Connector,意为金属连接件)光纤连接器通常是圆形的金属套,紧固方式为螺纹式,主要应用于配线架上。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式。此类连接器结构简单,操作方便,制作容易,但光纤端而对微生较为敏感,IL容易产生菲涅尔反射,提高I口I波损耗性能较为困难。后来,对该类型连接器作了改进,采用对接端面呈球面的插针,连接器一般是圆形带螺纹的,而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。如图1所示的就是一条两端都带FC连接器接头的FC-FC光纤跳线。

【CN110057543A】基于同轴干涉的波面测量装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910331365.5 (22)申请日 2019.04.24 (71)申请人 暨南大学 地址 510632 广东省广州市天河区黄埔大 道西601号 (72)发明人 贾伟 周常河 王津 项长铖  谢永芳 薄启宇  (74)专利代理机构 广州市华学知识产权代理有 限公司 44245 代理人 陈燕娴 (51)Int.Cl. G01M 11/00(2006.01) (54)发明名称基于同轴干涉的波面测量装置(57)摘要本发明公开了一种基于同轴干涉的波面测量装置,包括用于产生干涉条纹场的马赫曾德双光束干涉系统、用于产生同轴干涉的合束元件、采集干涉信号的光探测器、以及用于扫描双光束干涉场的二维移动台和测量位移的激光干涉仪系统。其特点是在传统的马赫曾德双光束干涉仪中引入小尺寸合束元件,使两束相干光产生同轴干涉,通过二维扫描测量该干涉信号的周期变化,实现对马赫曾德双光束干涉场周期的高精度测量,从而推算出双光束波面的分布情况。利用小尺寸合束元件的扫描测量,该发明可以实现大尺寸波面的测量,而不需要相应尺寸的合束元件 或参考波面。权利要求书2页 说明书8页 附图4页CN 110057543 A 2019.07.26 C N 110057543 A

权 利 要 求 书1/2页CN 110057543 A 1.一种基于同轴干涉的波面测量装置,其特征在于,所述的波面测量装置包括: 马赫曾德双光束干涉系统,其为双光束全息干涉光路,用于产生稳定的高密度干涉条纹场,并用于待测光学元件输出波面的测量; 同轴干涉及记录模块,包括合束元件和光探测器,用于产生同轴干涉信号,并记录该信息,其中,所述的合束元件,利用光的反射或衍射特性,使马赫曾德干涉光路的两束光重合,产生同轴干涉,从而形成稳定的干涉场;所述的光探测器,用于接收干涉场的光强信息; 二维移动和位移测量系统,包括二维移动平台和激光干涉仪,用于实现大尺寸光场的二维扫描以及位移的精确测量,其中,所述的二维移动平台,用于承载合束元件与光探测器实现对同轴干涉光场的二维扫描,二维移动平台的一维运动方向与马赫曾德干涉光场的条纹方向垂直,另外一维运动方向与干涉光场的条纹方向平行;所述的激光干涉仪,用于高精度测量二维移动平台垂直于干涉光场方向的位移; 数据采集与处理系统,用于控制光探测器采集同轴干涉强度信息、二维移动平台的二维运动以及激光干涉仪的位移测量,并通过数字计算对采集光强的周期信号进行处理,实现大尺寸波面的测量。 2.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的马赫曾德双光束干涉系统为双光束全息干涉光路,包括:激光器、1×2光纤耦合器、第一单模保偏光纤、第二单模保偏光纤、第一准直透镜、第二准直透镜以及待测光学元件;所述的激光器经1×2光纤耦合器均匀分束并分别进入第一单模保偏光纤和第二单模保偏光纤,光纤输出的球面波分别经对称放置的第一准直透镜和第二准直透镜形成相交的两束平面波,产生高密度的干涉光场,其干涉条纹的密度通过改变两束平面波的夹角进行调节,其中,两束平面波中的一束作为参考光,另外一束作为测量光,当插入待测光学元件后输出的波面会发生变化,并改变高密度干涉条纹的周期。 3.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的第一单模保偏光纤和第二单模保偏光纤的偏振方向与干涉条纹方向一致。 4.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的合束元件是半透半反镜、光栅或分束棱镜。 5.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的光探测器是光电倍增管,CCD阵列或雪崩二极管。 6.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的同轴干涉及记录模块还包括小孔光阑,同轴干涉光场经所述的小孔光阑进入光探测器,通过改变小孔光阑的大小控制光探测器的采集信息为同轴干涉光场的一小部分,并且小于干涉条纹周期的二分之一。 7.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的二维移动平台上同时固定有激光干涉仪的反射镜,激光干涉仪的其他部分放置在与马赫曾德双光束干涉系统同一平台上,所述的反射镜以及激光干涉仪出射的激光与所述的合束元件位于同一水平面。 8.根据权利要求1所述的基于同轴干涉的波面测量装置,其特征在于,所述的数据采集与处理系统由一台计算机实现进行控制,所述的光探测器、激光干涉仪以及二维移动平台通过控制器与计算机连接,并利用计算机指令实现对以上设备的同步控制,该计算机在完 2

光通信中关键器件_耦合器

中国科技信息2005年第10期 CHINA SCIENCE AND TECHNOLOGY INFORMATION May.2005 光通信中关键器件-耦合器 冯霞 李平 葛祥友 山东大学信息科学与工程学院 250100 摘 要:随着光纤通信的迅速发展和日益普及,对耦合器的需求量与日俱增。本文从线性和非线性两个方面对耦合器的类型和特点进行了介绍。在线性部分对宽带耦合器作了较详细的分析。关键词:耦合器;光通信 1.引言 随着近几年光纤通信的迅速发展,光纤到家,光纤到路边的日益临近,对耦合器的需求量与日俱增。耦合器是将光信号从一条光纤中分至多条光纤中的器件,属于光无源器件,广泛应用在光传输系统、有线电视、局域网中。以光孤子脉冲作为信息载体的全光通信系统已成为近年来的研究热点,非线性光纤耦合器作为此类系统的关键器件也引起高度重视。 2.耦合器技术性能指标 光耦合器的性能指标有插入损耗、分光比与隔离度等。现在以 定向耦合器为例对上面的各个性能指标进行描述。 图1 定向耦合器 插入损耗:表示输入耦合器一个端口的功率与输出端口输出功率总和之差,即 (1) 其中, 为从输入端1或2输入的光功率, 为输出端3、4的输出功率。 分光比:表示耦合器输出端的功率分配 比,即 (2) 隔离度:反映定向耦合器反向散射信号的大小。当从1端注入光功率,3、4端输出功率时,2端对1端的隔离度定义为, (3) 光纤定向耦合器的插入损耗为0.2 ̄1dB,分光比1% ̄99%(根据需要),隔离度可大于65dB。 3. 线性耦合器 下面分别介绍一下常见的几种线性耦合器。 3.1 定向耦合器 定向耦合器是指在光纤之间传输光信号来完成传统的光束分离功能的器件。双通道定向耦合器是优良平行的,传输常数相同的,相互之间距离很近的条波导构成。在两波导之间 3.2 保偏光纤耦合器 目前保偏光纤耦合器有熔融拉锥型和研磨抛光型两种。保偏光纤耦合器的最大特点是能稳定的传输两个正交的线偏振光,并能长距离的保持各自的偏振态不变。耦合器的参数如耦合比,附加损耗等,主要由双锥体形状决定,而双锥体的形状主要由火焰形状、温度分布、拉伸速度等来控制。制造保偏光纤耦合器必须使两根保偏光纤偏振轴平行,这是制造保偏耦合器成败的关键。实验证明,折射率匹配型保偏光纤便于制造低损耗、小尺寸的保偏耦合器,同时要较好的控制腰部直径和锥体形状。耦合比可由拉伸长度来控制。消光比是评价保偏耦合器保偏性能的主要参数。保偏光纤耦合器的结构如图2所示。 3.3 星型耦合器 星形耦合器是光纤通信网的关键部件,通常可采用 熔融拉锥光纤耦合器组成 星形耦合器,但其结构较为复杂。平板介质光波导多端口耦合器结构简单、耦合效率高,适于成批生产。星型平板介质耦合器[1]的结构模型如图3所示。发射端口阵列位于以o’为圆心的圆弧o’p’处, 图4 星型平板介质耦合器结构模型3.4 波导干涉耦合器[2] 多模干涉耦合器制作工艺简单、结构紧凑及容差性好,可以制成1XN和NXN光开关、环形半导体激光器,还可以考虑制成用于无源光网络的光分路器。多模干涉耦合器的关键结构是能传输多个模式(一般大于3个)的多模波导。为了使光输入和输出多模波导,还必须由一些波导(一般为单模波导)放置在多模波导的起始端和终止端。分析多模波导场分布的方法很多,有全模式分析法、WKB法、混合法、光束传输法和导模传输法等。输入(出)波导宽度及位置、干涉区长度等结构参量对多模波导耦合器性能参量存在一定的影响。 3.5 含布拉格光栅的光纤耦合器[3] 含光栅的光纤耦合器是一种可用于密集波分复用的、很有前途的波分复用器,它能使光纤布拉格光栅和光纤耦合器的优点得到很好的结合,容易做到低成本、高性能。目前对于布拉格光栅在对称光纤耦合器中作用的理论分析主要有两种,一种是普通耦合模理论,另一种是耦合超模理论。最近有人提出用统一耦合理论分析含布拉格光栅的对称光纤耦合器。由布拉格光栅和对称光纤耦合器组成的波分复用器如图4所示。在耦合区域内两完全相同的合纤芯(a和b)共享同一包层,组成光纤耦合器的两根光纤为 单模光纤,它们的传播常数分别为.区域L1和L3代表普通方向耦合器部分,区域L1 代表含布拉格光栅的光纤耦合器部分。 的区域内,由于消逝场的重叠而发生相干耦合,光波可以从一个波导耦合到另一个波导中去。常用的制作方法是熔融拉锥法,就是将两根(或两根以上)除去涂覆层的光纤以一定的方式靠拢,在高温下熔融,同时向两侧拉伸,最终在加热区形成双锥形式的特殊波导结构,实现传输功率耦合的一种方法。定向耦合器可用耦合波方程分析。图1可用来表示熔融拉锥型光纤耦合器的工作原理:入射光在双锥体结构的耦合区发生功率再分配,一部分光功率从“直通臂”继续传输,另一部分则由“耦合臂”传到另一光路。在Y型耦合器中,若直通臂与耦合臂的功率分别表示为P1(L)和P2(L),则标准熔融拉锥型单模光纤耦合器的耦合比为 :(4) 式中C为耦合系数。 oo’=R。带状波导宽度分别为a(发射端口)和a’(接受端口)。当能量从N个带状波导端口中任一段口p中以主模ψ激励空间区域,接着以辐射模的形式向前传播照射接受阵列。由于传输过程中产生衍射,最后只有一部分被接受阵列所截获,而辐射到接收阵列中每个端口op’的能量只有一部分能够激励起这个端口的主模。 由于 ,因而可用菲涅耳近轴衍射理论来处理耦合器中光传输 问题。

光纤通信原理与技术课程教学大纲

《光纤通信原理与技术》课程教学大纲 英文名称:Fiber Communication Principle and its Application 学时:51 学分:3 开课学期:第7学期 一、课程性质与任务 通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。 二、课程教学的基本要求 要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。 三、课程内容 第一章光通信发展史及其优点(1学时) 第二章光纤的传输特性(2学时) 第三章影响光纤传输特性的一些物理因素(5学时) 第四章光纤通信系统和网络中的光无源器件(9学时) 第五章光纤通信技术中的光有源器件(3学时) 第六章光纤通信技术中使用的光放大器(4学时) 第七章光纤传输系统(4学时) 第八章光纤网络介绍(6学时) 第九章光纤通信原理与技术实验(17课时) 四、教学重点、难点 本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。本课程的教学难点是光电信息技术物理基础。

五、教学时数分配 教学时数51学时,其中理论讲授34学时,实践教学17学时。(教学时数具体见附表1和实践教学具体安排见附表2) 六、教学方式 理论授课以多媒体和模型教学为主,必要时开展演示性实验。 七、本课程与其它课程的关系 1.本课程必要的先修课程 《光学》、《电动力学》、《量子力学》等课程 2.本课程的后续课程 《激光技术》和《光纤通信原理实验》以及就业实习。 八、考核方式 考核方式:考查 具体有三种。根据大多数学生学习情况和学生兴趣而定其中一种。第一种是采用期末考试与平时成绩相结合的方式进行综合评定。对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。第三种是采用课程论文(含市场调查报告)和平时成绩相结合的方式,课程论文占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。 九、教材及教学参考书 1.主教材 《光纤通信原理与技术》,吴德明编著,科学出版社,第二版,2010年9月 2.参考书 (1)《光纤通信原理与仿真》,郭建强、高晓蓉、王泽勇编著,西南交通大学出版社,第一版,2013年5月 (2)《光通信原理与技术》,朱勇、王江平、卢麟,科学出版社,第二版,2011年8月

光纤跳线的颜色和接头

单模光纤,一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。 多模光纤,一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短. 各类光纤接口类型的区别与图示 光纤的接口比较复杂,在项目的过程中有时候确实很容易弄错,为了方便自己和大家的工作,特整理了以下资料: 光纤接头类型主要可以分为以下几种: FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(光纤收发器用的较多) LC 卡接式方形,比SC略小(光纤交换机用的较多) MT-RJ 方型,一头光纤收发一体 光纤模块主要分为以下两种,一般都支持热插拔: GBIC(Giga Bitrate Interface Converter)使用的光纤接口多为SC或ST型 SFP小型封装GBIC,使用的光纤为LC型 光纤单模和多模的标识: L:表示单模,波长1310纳米; LH:表示单模长距,波长1310纳米,1550纳米;

SM:表示多模,波长850纳米; SX/LH:表示可以使用单模或多模光纤; 单模光纤的传输距离要比多模光纤远。 另外,如下图所示,在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/APC”等,其含义如下:

“/”前面部分表示尾纤的连接器型号: “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 “/”后面表明光纤接头截面工艺,即研磨方式: “PC”微球面研磨抛光,在电信运营商的设备中应用得最为广泛,其接头截面是平的,。“UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 “APC”呈8度角并做微球面研磨抛光,可改善电视信号的质量。

插入损耗

插入损耗 一.专业术语: 插入损耗—Insertion Loss 光纤—Optical Fiber 单模光纤—Single Mode Fiber(9/125) SMF 多模光纤—Multimode Fiber(50/125,62.5/125) MMF 保偏光纤—Polarization Maintaining Fiber PMF 光纤涂覆层—Fiber Cladding 纤芯—Core 光缆—Optical Fiber Cable 塑料光纤—Plastic Optical Fiber 玻璃光纤—Glass Optical Fiber 二.插入损耗: 光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的分贝数。 1).插入损耗愈小愈好,一般要求应不大于0.5dB; 2).中国电信要求: 平均值≤0.15Bb 极限值≤0.30Bb 三.产生插入损耗的原因: 1).光纤公差引起的固有损耗 主要是由光纤制造公差,即纤芯尺寸,数值孔径,纤芯/包层同心度和折射率分布失配等因素产生。 2).连接器加工装配引起的固有损耗 这是由连接器加工装配公差,即端面间隙,轴线倾角,横向偏移和菲涅尔反射及端面加工精度等因素产生。 四.影响插入损耗的各种因素 1).纤芯错位损耗 这是产生连接损耗的重要原因。 2).倾斜角度 若要求倾斜损耗≤0.1dB,则多模渐变型折射率光纤倾斜角度≤0.7゜ 单模光纤的倾斜角度≤0.3゜ 3).光纤端面间隙损耗 端面间隙控制在1μm,这种损耗就可以忽略不计,现在加工工艺已经可以做到 4).光纤端面多次反射(菲涅尔反射)引起的损耗 5).纤芯直径不同的光纤连接时产生的损耗 输入光纤的半径不小于光纤的半径时,才会产生这种损耗. 6).数值孔径不同引起的损耗 当NA1不小于NA2时,才会产生这种损耗

全保偏非线性偏振环形镜锁模掺铒光纤激光器

全保偏非线性偏振环形镜锁模掺铒光纤激光器 李润敏1,宋有建1,师浩森1,戴雯2,李跃鹏1,武子铃1,田昊晨1,柴路1,胡明列 1(1.天津大学精密仪器与光电子工程学院超快激光研究室,天津300072; 2.上海无线电设备研究所,上海200090) 摘要:研究了基于非线性偏振环形镜锁模的全保偏光纤激光器锁模机制。在非线性偏振环形镜中,用偏振分束器取代传统的非线性放大环形镜锁模激光器中的光纤耦合器,并辅以非互易性元件和增益光纤,作为全保偏光纤激光器中实现稳定锁模的核心器件。构建了一台基于非线性偏振环形镜的掺铒光纤锁模激光振荡器,实现了重复频率75MHz ,时域脉冲宽度141fs ,总输出功率约30mW 的稳定锁模脉冲序列输出。该激光器具有双向输出,且通过调节腔内波片可调节输出功率。此外,对激光器输出功率和重复频率的稳定性进行了评价,在自由运转情况下,1h 内输出脉冲序列的平均功率波动小于0.05%,重复频率的1s 相对稳定度为2.0×10-8。该结构的全保偏光纤激光器可开机自启动锁模,且环境稳定性高、重复频率较高、脉冲宽度窄,能满足激光测距、激光加工、激光光谱成像、航天等应用对超短脉冲光源的需求。 关键词:非线性偏振环形镜; 全保偏;锁模光纤激光器;自启动中图分类号:TN248文献标志码:A DOI :10.3788/IRLA201847.0803006 All -polarization -maintaining erbium -doped mode -locking fiber laser based on nonlinear polarization loop mirror Li Runmin 1,Song Youjian 1,Shi Haosen 1,Dai Wen 2,Li Yuepeng 1,Wu Ziling 1, Tian Haochen 1,Chai Lu 1,Hu Minglie 1 (1.Ultrafast Laser Laboratory,College of Precision Instruments and Opto -Electronics Engineering,Tianjin University, Tianjin 300072,China;2.Shanghai Radio Equipment Research Institute,Shanghai 200090,China) Abstract:The mode -locking mechanism of an all -polarization -maintaining fiber laser based on a nonlinear polarization loop mirror was demonstrated.Instead of a fiber coupler in the traditional nonlinear amplifying loop mirror based mode -locked fiber laser,a polarization beam splitter (PBS)was implied in the nonlinear polarization loop mirror.The combination of the PBS,non -reciprocal components and a piece of gain fiber acted as the core elements in nonlinear polarization loop mirror to achieve stable mode -locking in an all -polarization -maintaining fiber laser.A passively mode -locked erbium -doped fiber laser based on this mode -locking mechanism was also presented.The laser directly emited an optical pulse train of 141fs duration (75MHz)with 30mW total output power.The laser had bidirectional 收稿日期:2018-03-05;修订日期:2018-04-03 基金项目:国家自然科学基金(61675150,11527808,61535009);天津市自然科学基金(17JCJQJC43500) 作者简介:李润敏(1994-),女,硕士生,主要从事被动锁模掺铒光纤激光器方面的研究。Email:lirunmin@https://www.doczj.com/doc/796751852.html, 导师简介:宋有建(1981-),男,副教授,博士生导师,博士,主要从事飞秒激光技术方面的研究。Email:yjsong@https://www.doczj.com/doc/796751852.html, 0803006-1第47卷第8期 红外与激光工程2018年8月Vol.47No.8Infrared and Laser Engineering Aug.2018 万方数据

光纤分路器型号大全

光纤分路器就是光分路器(也叫分光器),用来实现光波能量的分路与合路的器件。它将一根光纤中传输的光能量按照既定的比例分配给两根或者是多根光纤,或者将多根光纤中传输的光能量合成到一根光纤中。 一、常见熔融拉锥型(FBT)光分路器 1、1×2单模单窗熔融拉锥FBT不锈钢管封装光纤耦合器900μm 裸纤 2、2×2单模双窗熔融拉锥FBT光纤耦合器900μm松套光纤FC APC 光纤分路器型号大全

3、1×N单模三窗熔融拉锥FBT不锈钢管封装光纤耦合器,无连接器 4、1×2多模OM4单窗熔融拉锥FBT不锈钢管封装光纤耦合器900μm裸纤 5、1×2多模OM1/OM2双窗熔融拉锥FBT光纤耦合器0.9mm/2.0mm/3.0mm-ABS盒式

二、常见平面波导型(PLC)光分路器 1、1x4250μm裸纤式PLC平面波导光分路器 2、1×8PLC平面波导光分路器标准LGX盒式SC/APC 3、1x2PLC平面波导光分路器ABS盒式 2.0mm

4、1x16带分支器型PLC平面波导光分路器 5、1×2PLC平面波导分路器1U19"机架式 光纤分路器特点: 使用单/多模光纤和保偏光纤 多端口设计,光缆的长度和直径可定制 有多个分光比,从1:99到50:50 封装方式分为管式和盒式,有熔融拉锥型(FBT)光分路器和平面波导型(PLC)光分路器两种 端接的连接器有PC、UPC和APC三种研磨方式 可以端接FC、SC、ST、LC和MU连接器

随着FTTH网络的广泛应用,为了服务更多的用户,人们对光分路器的分光路数需求越来越高。因此,PLC光分路器以其分路数多、分光均匀等优点成为FTTH应用中较受欢迎的光分路器。

光纤跳线技术规范

光纤跳线技术规范 浏览次数: 1.陶瓷插针外径Φ: 2.499±0.0005mm 插针体芯径Φ:0.125+0.001-0mm 插针体长度:16.0±0.3mm 插针体同心度:≦1.4um 插针体曲率半径:20mm+5-10mm 2.光缆外径为3mm,光缆外表光滑无瑕疵。 外径不圆度:≦10% 光缆抗拉强度:≧200N 光缆最小弯曲半径:30mm 光缆温度特性:-40℃-+80℃,光缆附加衰减≦0.2dB/km 光缆颜色:黄色 3.工作波长:1310nm、1550nm 4. 光纤的衰减:≦0.37dB/km(1310nm) ≦0.25dB/km(1550nm) 5.光纤的截止波长:λC≦1250nm 6.光纤连接器光学指标 插入损耗:IL≦0.2dB 回波损耗:RL≧50dB 连接衰减:≦0.5dB(包括互换和重复) 互换回波损耗:≧35dB 插拔耐久性寿命:>1000次仍能满足衰减要求。 7.光纤连接器陶瓷插针物理干涉指标: 曲率半径:10mm≦R≦25mm 研磨球面偏心:≦50um 光纤凹凸量:50nm 8.光纤连接器外观检查 光纤连接器外观平滑、洁净、无油污、无伤痕和裂纹,各部件组合平整,插头与转器 的接合平顺,易于插拔。 9.光纤连接器陶瓷插针端面外观检查 10.光纤连接器插拔力:2.5-20N 11.光纤连接器使用条件 运输和储存时温度:-20℃-+60℃ 工作温度:+5℃-+40℃ 相对湿度:保证性能:10%-90%(+35℃) 温度循环实验:时间:≧72h 范围:-10℃-+45℃ 上升和下降速度:0.5℃/分种 12.光纤连接器的标志 单模光纤连接器的光缆外观为黄色。 每一条光纤连接器都挂有生产铭牌,生产铭牌标注有产品生产日期、生产编号、插入损耗数值、回波损耗数值及产品两端的区分标志。 光纤连接器的包装盒上标注有产品型号、生产厂家。

古河特种光纤

古河特种光纤 掺铒光纤 古河公司提供的掺铒光纤, 设计应用于光放大器。这些被优化的掺铒光纤正被使用于要求高效能,低噪声及增益平坦的高品质掺铒光纤放大器(EDFA)中。 特性 --高性能,低噪声系数,增益平坦,低熔接损耗,保证光纤一致性,980nm或1480nm泵浦,高可靠性,有效着色,,OASIX模拟软件及相关参数,通过ISO9000及14000认证 主要应用 C波段,HE980,单级或多级的掺铒光纤放大器,在线中继器,980nm泵浦(低等-中等功率),增益平坦放大器,中等至高功率放大器,980nm泵浦(中等),MP980, 窄带掺铒光纤放大器, 高功率980nm泵浦, 用于L波段光纤放大器,是L波段光信号放大的有效解决方案。 铒-镱双包层光纤 产品简介 铒-镱双包层光纤是高功率光源和放大器的有用组成部分。利用现有的高功率泵浦,结合铒、镱之间的能量转换,可产生出1550nm附近输出数瓦功率的放大器。 特点 优化有效的离子浓度, 短器件中高掺铒浓度, 为1550nm附近输出数瓦功率的放大器提供范围从910nm到1060nm宽的泵浦波长窗口, 完成与普通的单模或色散位移光纤的低损耗连接 耦合光纤 产品简介 古河特种光电产品部提供一系列用于制造光耦合器的光纤产品。该系列产品能大大提高熔融光纤耦合器的性能。这些光纤具有125um标准包层直径,也有80um小直径。小直径使设计和包装的小型化成为可能。小公差、高数值孔径以及光纤生产工艺的成熟性及重复性,使得低损耗、受弯曲影响小、高可

靠性的器件可以大量生产。例如,我们的980nm光纤,其纤芯和包层的同心度为<=0.3um。只有这样,耦合器才有极低的熔接损耗(<0.1dB)。200Kpsi的拉力筛选,保证我们的光纤在更长的工作寿命里的可靠性,并且可以应用于高应力的工作环境,如小弯曲半径。 这些优越的光纤性能指标,源自我们在制作MCVD光纤预制棒时专业的设计,严格的工艺控制,以及大量生产特殊光纤所积累的广泛的经验。 无论是用于光分路、合路器,还是用于光网络中信号监控,或者在EDFA中耦合泵浦光和信号光,OFS 特殊光电产品部的标准125um包层耦合器光纤都是理想的选择。80um小直径耦合器光纤将自然地用于城域网的新微型器件,交互连结器件及光纤传感器(如陀螺仪)中。 主要应用 ·EDFA中的WDM, ·T AP耦合器·, 光分路、合路器·, 光纤光学陀螺仪,微型耦合器·,纤芯包层高同心度导致低熔接损耗,高数值孔径降低弯曲造成的光损耗,·双重的工作波长可用作泵浦光和信号光的WDM,80um 小包层直径用于微型器件,标准125um包层直径用于通信器件 保偏光纤 产品简介 古河特种光电产品部提供TruePhase保偏光纤。这类光纤可应用于通信系统中制作偏振敏感的元件。 TruePhase14xx拉曼光纤主要用于在拉曼增益模块中。拉曼增益模块是长距和40Gbps系统的主要器 件之一。因为光纤针对1400nm至1490nm范围而设计,所以采用此类光纤的拉曼泵浦光源可在此波长范围内提供高稳定的输出。 TruePhase1480是专门为使用1480nm泵浦光源的掺铒光纤放大器而设计生产的。 TruePhase1480可作为激光器的尾纤,也能用在泵浦合波器中,把多路泵浦光合到一路输出。 使用TruePhase1550,可使在1550nm工作的元器件,如铌酸锂相位调制器受益。此类光纤可作为激光器尾纤,保持了发射光的偏振状态。工作在1550nm使用较长光纤的装置如PMD补偿器,可选择250um的涂层外径而减小尺寸。 TruePhase光纤利用双应力产生体(SAPs)在纤芯内产生双折射。这样沿每个轴(快和慢)方向偏振的偏振光以不同的速度传播,两个偏振光的串扰可受到抑制,所以沿任何一轴的偏振光可保持偏振状态。 TruePhase光纤采用标准的工业设计,所以所有主要熔接设备生产厂的标准熔接程序都可使用。当熔接正确时,TruePhase光纤呈现出低损耗和高消光比。 主要应用 TruePhase14xx拉曼光纤:拉曼增益模块,拉曼泵浦尾纤,拉曼泵浦组合器 TruePhase1480:-掺铒光纤放大器,1480泵浦激光器尾纤,1480泵浦合波器TruePhase1550:外调制器,激光器尾纤,PMD补偿器,其他偏振敏感器件 双包层掺镱光纤(130um/ 210um)

相关主题
文本预览
相关文档 最新文档