当前位置:文档之家› 天津大学-研究生-最优化方法复习题

天津大学-研究生-最优化方法复习题

天津大学-研究生-最优化方法复习题
天津大学-研究生-最优化方法复习题

《最优化方法》复习题

第一章 概述(包括凸规划)

一、 判断与填空题

1

)].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2

{}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ?

3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题

)(min x f D x ∈的全局最优解. ?

4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D

x ∈的严格局部最

优解. ?

5 给定一个最优化问题,那么它的最优值是一个定值. √

6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √

7 非空集合n

R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √

8 任意两个凸集的并集为凸集. ?

9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √

10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ?

11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √

12 设{}k

x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法,

则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。 √

15 函数R R D f n →?:在点k

x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的

步长k α,则其搜索公式为 .

16 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的

步长k α,则=+?k T k k k d d x f )(α 0 .

17 设}0{\n k R d ∈为点n k R D x ?∈处关于区域D 的一个下降方向,则对于0>?α,),0(αα∈?使得.D d x k k ∈+α ?

二、 简述题

1 写出Wolfe-Powell 非精确一维线性搜索的公式。

2 怎样判断一个函数是否为凸函数.

(例如: 判断函数2122212151022)(x x x x x x x f +-++=是否为凸函数)

三、 证明题

1 证明一个优化问题是否为凸规划.(例如 判断0 ..2

1)(min ≥=++=x b

Ax t s b x c Gx x x f T T (其中G 是正定矩阵)是凸规划.

2 熟练掌握凸规划的性质及其证明.

第二章 线性规划

考虑线性规划问题:

,0,..min )(≥=x b Ax t s x

c LP T

其中,m n m n R b R A R c ∈∈∈?,, 为给定的数据,且rank .,n m m A ≤=

一、 判断与选择题

1 (LP)的基解个数是有限的. √

2 若(LP)有最优解,则它一定有基可行解为最优解. √

3 (LP)的解集是凸的. √

4 对于标准型的(LP),设{}

k x 由单纯形算法产生,则对{} ,2,1,0∈k ,有

.1+>k T k T x c x c ×

5 若*x 为(LP)的最优解,*y 为(DP)的可行解,则.**y b x c T T ≥ √

6 设0x 是线性规划(LP)对应的基),,(1m P P B =的基可行解,与基变量m x x ,,1 对应的规范式中,若存在0

7 求解线性规划(LP)的初始基可行解的方法:____________________.

8 对于线性规划(LP),每次迭代都会使目标函数值下降. ×

二、 简述题

1 将以下线性规划问题化为标准型:

.0,0,

2,

1242,

6..32)(max 323213213213

21≥≥≥+-≥++≤+++-=x x x x x x x x x x x t s x x x x f

2 写出以下线性规划的对偶线性规划:

.0,,,,

3342,

6342..423)(max

4321432143214321≥≥+++-=++++++=x x x x x x x x x x x x t s x x x x x f

三、 计算题

熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).

见书本:

例2.5.1 (利用单纯形表求解);

例2.6.1 (利用大M 法求解);

例2.6.2 (利用二阶段法求解).

四、 证明题

熟练掌握对偶理论(弱对偶理论、强对偶理论以及互补松弛条件)及利用对偶理论证明相关结论。

第三章 无约束最优化方法

一、 判断与选择题

1 设n n R G ?∈为正定矩阵,则关于G 共轭的任意1+n 向量必线性相关. √

2 在牛顿法中,每次的迭代方向都是下降方向. ×

3 经典Newton 法在相继两次迭代中的迭代方向是正交的. ×

4 PRP 共轭梯度法与BFGS 算法都属于Broyden 族拟Newton 算法. ×

5 用DFP 算法求解正定二次函数的无约束极小化问题,则算法中产生的迭

代方向一定线性无关. √

6 FR 共轭梯度法、PRP 共轭梯度法、DFP 算法、及BFGS 算法均具有二次

收敛性. ×

7 共轭梯度法、共轭方向法、DFP 算法以及BFGS 算法都具有二次终止性. √ 8 函数R R f n →:在k x 处的最速下降方向为 . 9 求解)(min x f n

R x ∈的经典Newton 法在k x 处的迭代方向为=k p .

10 若)(x f 在*x 的邻域内具有一阶连续的偏导数且0)(*=?x f ,则*x 为的局

部极小点. ×

11 若)(x f 在*x 的某邻域内具有二阶连续的偏导数且*x 为)(x f 的严格局部

极小点,则)(*2

*x f G x ?=正定. ×

12 求解)(min x f n

R x ∈的最速下降法在k x 处的迭代方向为=k p .

13 求解)(min x f n

R x ∈的阻尼Newton 法在k x 处的迭代方向为=k p .

14 用牛顿法求解)(2

1min n n n T T R x R G R b x b Gx x n ?∈∈∈+,时,至多迭代一次可达其极小点. ×

15 牛顿法具有二阶收敛性. √

16 二次函数的共轭方向法具有二次终止性. ×

17 共轭梯度法的迭代方向为:_____________________.

二、证明题

1 设R R f n →:为一阶连续可微的凸函数,n R x ∈*且0)(=?*x f ,则*

x 为)(min x f n R x ∈的全局极小点.

2 给定n R b ∈和正定矩阵n n R G ?∈. 如果n k R x ∈为求解

x b Gx x x f T T R x n +=

∈21)(min 的迭代点, {}0\n k R d ∈为其迭代方向,且),0[∞+∈k α为由精确一维搜索所的步长,则.)()(k T k k

T k k Gd

d d x f ?-=α 3 试证:Newton 法求解正定二次函数时至多一次迭代可达其极小点.

四、 简述题

1 简述牛顿法或者阻尼牛顿法的优缺点.

2 简述共轭梯度法的基本思想.

五、 计算题

1 利用最优性条件求解无约束最优化问题. 例如:求解121222122

123)(min x x x x x x f --+= 2 用FR 共轭梯度法无约束最优化问题.

见书本:例3.4.1.

3 用PRP 共轭梯度法无约束最优化问题.

见书本:例3.4.1. 例如:01.0,)0,0( 22

123)(min 01212221==--+=

εT x x x x x x x f 其中

第四章 约束最优化方法

考虑约束最优化问题:

{}{},,,2,1,0)(,,,2,1,

0)(..)

(min )(m l l I i x c l E i x c t s x f NLP i i ++=∈≥=∈=

其中,.:),,2,1(,R R m i c f n i →=

一、判断与选择题

1 外罚函数法、内罚函数法、及乘子法均属于SUMT. ×

2 使用外罚函数法和内罚函数法求解(NLP )时,得到的近似最优解往往不是(NLP )的可行解. ×

3 在求解(NLP )的外罚函数法中,所解无约束问题的目标函数为 .

4 在(NLP )中0=l ,则在求解该问题的内罚函数法中,常使用的罚函数为 .

5 在(NLP )中0=l ,则在求解该问题的乘子法中,乘子的迭代公式为

=+i k )(1λ ,对{

}m i ,,1 ∈.

6 在(NLP )中l m =,则在求解该问题的乘子法中,增广的Lagrange 函数为:_________________________________

7 对于(NLP)的KT 条件为:_______________

二、计算题

1利用最优性条件(KT条件)求解约束最优化问题.

2用外罚函数法求解约束最优化问题.

见书本:例4.2.1;

例4.2.2.

3用内罚函数法求解约束最优化问题.

见书本:例4.2.3.

4用乘子法求解约束最优化问题.

见书本:例4.2.7;

例4.2.8.

三、简述题

1简述SUMT外点法的优缺点.

2简述SUMT内点法的优缺点.

四、证明题

利用最优性条件证明相关问题.

例如:Q设为正定矩阵,A为列满秩矩阵.试求规划

b

x

A

t s

a

x

c

Qx

x

x

f

P

=

+ +

= T

T T

..

2

1 )

(

min

)

(

的最优解,并证明解是唯一的.

第五章多目标最优化方法

一、判断与选择题

1 求解多目标最优化问题的评价函数法包括 .

2 通过使用评价函数,多目标最优化问题能够转化为单目标最优化问题. √

3 设m n R R D F →?:,则F 在D 上的一般多目标最优化问题的数学形式为 .

4 对于规划T m R D x x f x f x F V n

))(,),(()(1m in =-?∈,设D x ∈*,若不存在D

x ∈使得)()()()(**≠≤x F x F x F x F 且,则*x 为该最优化问题的有效解. √

5 一般多目标最优化问题的绝对最优解必是有效解. √

6 对于规划T m R D x x f x f x F V n

))(,),(()(1m in =-?∈,设i w 为相应于

),,2,1(m i f i =的权系数,

则求解以上问题的线性加权和法中所求解优化的目标函数为 .

7 利用求解T m R D x x f x f x F V n

))(,),(()(1m in =-?∈的线性加权和法所得到的

解,或者为原问题的有效解,或者为原问题的弱有效解. √

二、简述题

1 简单证明题

☆绝对最优解、有效解、及弱有效解之间的关系.

●第5.2节中几个主要结论的证明.

2简单叙述题

★简述求解一般多目标规划的评价函数法的基本思想.

●简述求解一般多目标规划的线性加权和法的基本思想.

★简述求解一般多目标规划的理想点法的基本思想.

●简述在求解一般多目标规划的评价函数法中,确定权系数方法的

基本思想.

最优化方法复习题66882.docx

《最优化方法》复习题 第一章概述(包括凸规划) 一、判断与填空题 ar§ max /W =玄生min【―/(兀)】?7 1 xeR n xeR n 2max |/(x): x e D o }= - min [f(x): x e D Q R H\ x 3设f : D u RJ R?若T wR”,对于一切xeR n恒有/(Z)上的凸函数当且仅当—/为D上的凹函数.V 1()设f : D u R” T R为凸集D上的可微凸函数,Z G Z).则对V XG D,有/(x)-/(x*) 0}是凸集。V 12设{*}为由求解min的算法A产生的迭代序列,假设算法A为下降算法, XG D

则对\^^{0,1,2,???},恒有____ /(x A.+1)< f(x k) ____________ :

13算法迭代时的终止准则(写出三种): ____________________________ o 14凸规划的全体极小点组成的集合是凸集。V 15函数f : D u R“ T R在点('沿着迭代方向d* eR n \ {()}进行精确一维线搜索的步长匕.,则其搜索公式为_____________________________ . 16函数f ?. D匚R“ T R在点*?沿着迭代方向d k e/?z, \{0}进行梢确一?维线搜索的步长匕,则V/(x A+a k d k Yd k = ___________ 0 . 17设d k eR n\{0}为点/ w D匸R“处关于区域D的一个下降方向,则对于Va >0, 3?G(0,a)使得x 二、简述题 1写出Wolfe-Powell非精确一维线性搜索的公式。 2怎样判断一个函数是否为凸函数. (例如:判断函数/(x) = xf +2兀|兀2 +2兀;一10兀1 +5兀2是否为凸函数) 三、证明题 1证明一个优化问题是否为凸规划.(例如 1Z* T —X Gx + c x + b 2 判断s.t. Ax = b(其小G是正定矩阵)是凸规划. x>0 2熟练掌握凸规划的性质及英证明.

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc

课 程 编 号 : 0 7 0 0 0 2 0 3 北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期 2005 级数学专业最优化方法终考试卷( A 卷) 1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为 x 1,x 2,x 3 ,其数学模型为: max z 3 x 1 2 x 2 5 x 3 1 2 x 2 3 430 ( A 资源限制 ) x x 3 x 1 2 x 3 460 ( B 资源限制 ) s.t 4 x 2 420 (C 资源限制 ) x x 1 , x 2 , x 3 0 请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为: x 1 2 x 2 3x 3 800 问最优解有何变化? 2. (12 分 )用 Newton 法求解 min f ( x ) 4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。 3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜 索,得 x 1 ( x 11 , x 21 , x 31 )T , 设 f ( x 1 ) 2, f ( x 1 ) 2 ,求从 x 1 出发的搜索方向 p 1 。 x 11 x 21 4. (15 分 ) 给定下面的 BFGS 拟 Newton 矩阵修正公式: H k 1 ( I s k y k T )H k ( I s k y k T )T s k s k T , y k T s k y k T s k y k T s k 其中 s k x k 1 x k , y k g k 1 g k 用对应的拟 Newton 法求解: min f ( x ) x 1 2 2x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。 5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。 6(12 分 ).求约束问题 在 x (0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来 1 7( 8 分)考察优化问题 min f ( x ) s.t. x , D 设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。 8( 8 分)设 min f ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为 2 x 0 x * p ,其中 R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。 课程编号 :07000203 北京理工大学 2008-2009 学年第一学期 2006 级数学专业最优化方法终考试卷( A 卷) 1. (15 分 ) 用单纯形法求解线性规划问题 2. (10 分 )写出线性规划问题 的对偶问题并证明该对偶问题没有可行解。 3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0 ( 1, 1)T 。( 1)采用精确一维搜索;( 2) 采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。 4. (15 分 )用 DFP 拟牛顿法求解 min f ( x) x 12 2x 22 初始点取为 x 0 1 ,初始矩阵 H 0 2 1 。 1 1 1 5. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1 x 2 6} 是凸集,并计算原点 (0,0) 到集合 S 的最短距离。 6. (15 分 ?) 考虑问题 (1)用数学表达式写出在点 ( 1 , 5)T 处的下降可行方向集。 3 3 ( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。 7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。

最优化方法及其Matlab程序设计

最优化方法及其Matlab程序设计 1.最优化方法概述 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证,从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。最优化是每个人,每个单位所希望实现的事情。对于产品设计者来说,是考虑如何用最少的材料,最大的性能价格比,设计出满足市场需要的产品。对于企业的管理者来说,则是如何合理、充分使用现有的设备,减少库存,降低能耗,降低成本,以实现企业的最大利润。 由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型。 即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解。 数学模型建好以后,选择合理的最优化算法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 2.最优化方法(算法)浅析 最优化方法求解很大程度上依赖于最优化算法的选择。这里,对最优化算法做一个简单的分类,并对一些比较常用的典型算法进行解析,旨在加深对一些最优化算法的理解。 最优化算法的分类方法很多,根据不同的分类依据可以得到不同的结果,这里根据优化算法对计算机技术的依赖程度,可以将最优化算法进行一个系统分类:线性规划与整数规划;非线性规划;智能优化方法;变分法与动态规划。 2.1 线性规划与整数规划 线性规划在工业、农业、商业、交通运输、军事和科研的各个研究领域有广泛应用。例如,在资源有限的情况下,如何合理使用人力、物力和资金等资源,以获取最大效益;如何组织生产、合理安排工艺流程或调制产品成分等,使所消耗的资源(人力、设备台时、资金、原始材料等)为最少等。 线性规划方法有单纯形方法、大M法、两阶段法等。 整数规划有割平面法、分枝定界法等。 2.2 非线性规划 20世纪中期,随着计算机技术的发展,出现了许多有效的算法——如一些非线性规划算法。非线性规划广泛用于机械设计、工程管理、经济生产、科学研究和军事等方面。

(完整版)天津大学最优化历年试题

2003—2008《工程与科学计算》历届试题类型 1. 直解法 例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数) ?? ? ??=++=++=++0000 .11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x 例2. 设线性方程组b Ax =,其中 1 123 1 112341113 4 51 A ??? ?=?????? 求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法 例1. 设线性方程组b Ax =为 ?? ?? ??????=????????????????????-----221221122321x x x ααα , 0≠α 写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛. 例 2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中 b Ax =为 ?? ? ? ?=++-=+=-5 228262332 13231x x x x x x x 3.插值 例 1. 已知,12144,11121,10100=== (1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位) (2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件 4. Runge —Kutta 格式 例 写出标准Kutta Runge -方法解初值问题 ???==+-=1 )0(,1)0(sin 2' 2'''y y x y xy y 的计算格式

13-14(1)最优化方法期末试卷

2013-2014学年第一学期 数学计算经数专业《最优化方法》(课程)期末试卷 试卷来源:自拟 送卷人:赵俊英 打印:赵俊英 乔凤云 校对:赵俊英 一.填空题(20分) 1.最优化问题的数学模型一般为:____________________________, 可行域D 可以表 为_____________________________, 若____________________,称* x 为问题的全局最优解. 2.()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则=?)(x f , =?)(2 x f . 3.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向. 4. 无约束最优化问题:min (),n f x x R ∈,若k x 是不满足最优性条件的第k 步迭代点,用共轭梯度法求解时,搜索方向k d =______________ 5. 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 . 6 .举出一个具有二次终止性的无约束二次规划算法: . 7.函数222 21 12313()226f x x x x x x x x =+++- (填是或不是) 严格凸函数. 二.(18分)简答题: 1. 设计求解无约束优化问题的一个下降算法,并叙述其优缺点. 2. 叙述单折线法的算法思想. 3. 写出以下线性规化问题的对偶: 1234123412341234134min ()2536..873411,762323,324712,0,0,0.f x x x x x s t x x x x x x x x x x x x x x x =-+-??-+++=?? +++≥??+++≤? ≤≥≥??

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

最优化方法课程教学大纲

《最优化方法》课程教学大纲 Methods of Optimization 课程代码: 课程性质:专业基础理论课/选修 适用专业:信息计算、统计学开课学期:6 总学时数:56总学分数:3.5 编写年月:2002年3月修订年月:2007年7月 执笔:刘伟 一、课程的性质和目的 最优化计算方法是在生产实践和科学实验中选取最佳决策,研究在一定限制条件下,选取某种方案,以达到最优目标的一门学科,广泛应用与空间科学、军事科学、系统识别、通讯、工程设计、自动控制、经济管理等各个领域,是工科院校高年纪学生、研究生、应用数学专业学生和搞优化设计的工程技术人员的一门重要课程。通过本课程教学,使学生掌握最优化计算方法的基本概念和基本理论,初步学会处理应用最优化方法解决实际中的碰到的各个问题,培养解决实际问题的能力。 二、课程教学内容及学时分配 (一)教学内容 1. 最优化方法和最优化模型 最优化方法定义、最优化问题的数学模型与分类;根据问题特点(无约束最优化与约束最优化),根据函数类型(线性规划,非线性规划);最优化方法(解析法,直接法),最优解与极值点。 2.基础知识 多元函数泰勒公式的矩阵形式,古典极值理论问题,二次函数求梯度公式,凸集,凸函数,凸规划,几个重要的不等式。 3. 常用的一维搜索方法 一维搜索法是最优化的基础,“成功-失败”法的思想与算法,黄金分割法(0.618法)的思想与算法,二次插值法,三次插值法,D。S。C法,Powell 法等方法的思想与算法。 4. 无约束最优化方法 无约束最优化方法是最优化方法中的基本方法。最速下降法的思想与算法步骤,牛顿法的思想与算法步骤,共轭方向法的思想与算法步骤,共轭梯度法的思想与算法步骤,变尺度法(DFP法和BFGS法)的思想与算法步骤 5. 约束最优化方法 约束最优化方法通常约束问题转化为无约束问题求解。序列无约束极小化方法(SUMT-外点法与SUMT-内点法)的思想与算法步骤,内点的求法,其他罚函数法,Frank-Wolfe法的思想与算法步骤

最优化方法考试试题

华南农业大学期末考试试卷(A 卷) 2010--2011学年第 1 学期 考试科目: 运筹学与最优化方法 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 用单纯形法求解下列线性规划问题(共 15 分) 12121212max 105349 ..528,0z x x x x s t x x x x =++≤?? +≤??≥?

二、灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分) 12121212max 62 ..33,0z x x x x s t x x x x =++≥?? +≤??≥? 三、解下列0-1型整数规划问题(共 10 分) 12345123451345124512345max 325232473438..116333,,,,01 z x x x x x x x x x x x x x x s t x x x x x x x x x =+--+++++≤??+-+≤?? -+-≥??=?或

四、利用库恩-塔克(K-T )条件求解以下问题(共 15 分) 22121122 121212 max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+≤??+≤??≥? 五、用内点法求解下列非线性约束最优化问题(共 15 分) 21 121 2min ()6923..3 f X x x x x s t x =-++≥??≥?

六、给定初始点(0)(1,1)T X =,用最速下降法迭代一次研究下列函数的极大值。(共 15 分) 22 121122()46222f X x x x x x x =+--- 七、某人因工作需要购置了一辆摩托车,他可以连续使用或任一年末将旧车卖掉,换一辆新车,下表列出了于第i 年末购置或更新 的车至第j 年末的各项费用的累计(含更新所需费用、运行费用及维修费用等),试据此确定该人最佳的更新策略,使从第一年至第五年末的各项费用的累计之和为最小。(共 15 分)

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=? ∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为 最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(* x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称* x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈* . 则对D x ∈?,有 ).()()()(* **-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

《算法设计与分析》历年期末试题整理_含答案_

《算法设计与分析》历年期末试题整理(含答案) (1)用计算机求解问题的步骤: 1、问题分析 2、数学模型建立 3、算法设计与选择 4、算法指标 5、算法分析 6、算法实 现7、程序调试8、结果整理文档编制 (2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程 (3)算法的三要素 1、操作 2、控制结构 3、数据结构算法具有以 下5 个属性: 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。 确定性:算法中每一条指令必须有确切的含义。不存在二义性。只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限 次来实现的。 输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。 输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。 算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算 法应对其作出反应,而不是产生莫名其妙的输出结果。 效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要 的最大存储空间。一般这两者与问题的规模有关。 经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法 迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 编写计算斐波那契(Fibonacci)数列的第n 项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即:

天津大学最优化方法复习题

----------专业最好文档,专业为你服务,急你所急,供你所需------------- 《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法,

相关主题
文本预览
相关文档 最新文档