当前位置:文档之家› 电冰箱-空调器制冷系统的异同点和相互关联性

电冰箱-空调器制冷系统的异同点和相互关联性

电冰箱-空调器制冷系统的异同点和相互关联性
电冰箱-空调器制冷系统的异同点和相互关联性

电冰箱\空调器制冷系统的异同点和相互关联性

摘要:在电子信息工程专业课的学习过程中,讲到电冰箱、空调器的原理与维修一书,有很多教师和学生容易把电冰箱和空调器的制冷系统混为一谈,认为二者无论从工作原理还是组成上大致都一样,并且有很多元件还可以互换,造成在分析二者的故障现象和检修方法时相互混淆,得出错误的答案。本文从实际情况出发,结合二者的异同方面来对电冰箱、空调器的制冷系统作出分析,供大家参考。

关键词:电冰箱空调器制冷系统关联

电冰箱、空调器的原理与维修一书是电子信息工程专业的考试科目,它和电子信息工程专业的其他专业课程的关联不大,所以有些学生理解起来就容易加入大量的个人主观想法。脱离了实际情况,与我们的教学目的想违背,达不到预设的教学效果。所以我结合了多年的教学经验,从实际出发,对于在课程中出现的最容易混淆的内容,即电冰箱、空调器的制冷系统作出阐述,来帮助广大教师和学生加强对该知识点的理解和记忆。

1 相同点的表现方面

电冰箱和空调器的制冷系统制冷的工具一样。都是通过制冷工质的循环作用,来获得一定量的制冷量,从而达到改变单位空间容积内温度的目的。在这里可以说它们的作用是一样的,运转的效果相同。

动力源相同。电冰箱和空调器的运转都需要借助与压缩机的运行,来带动制冷剂在制冷系统管道的流动,从而达到了制冷的效果。并且二者中用到的压缩机工作的过程和在工作后所达到的作用是一样的,都是为了提供动力和一个较高的冷凝压力。

故障现象的表现形式大致相同。大部分的电冰箱和空调器的故障现象都是围绕制冷系统而产生的,例如电冰箱、空调器的制冷效果差,前者的故障原因主要有:制冷剂堵塞或泄露、温控器设置不当、箱门密封不严或者箱体隔热效果下降。后者的故障原因为:制冷剂堵塞或泄露、温控器设置不当、房间负荷过大、室内密封不严等。

2 不同点的表现方面

作用不同。电冰箱制冷系统的作用是对电冰箱内部的空间进行降温,达到对电冰箱内所存放的食物及其他物品延迟变质速度,从而增加其保存的时间的目的;而空调器制冷系统则是对整个房间内的区域进行升温或降温,进而使整个房间的温度适中宜人,更加的有利于人们的生活和工作。从这点意义上讲,空调器和电冰箱他们的制冷空间不一样,并且空调器的制冷系统还增加了一个升温制热的效果。

冰箱制冷系统设计说明书word版本

冰箱制冷系统设计说 明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小内容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸

2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国内外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w 。如果箱体外表面温度t w 低于露点温度t d ,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d +0.2 )(i o o o W t t a K t t -- = (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ t o t i

在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱内壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。内胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; i o a a K 111 ++= λδ

电冰箱制冷系统的组成、作用及种类

项目三 电冰箱制冷系统的组成、作用及种类 【课时安排】:8个课时 【学习目标】: 1、知识目标:了解电冰箱的种类、规格和型号。 2、能力目标:通过理论知识的学习和应用,培养综合运用能力。 3、情感目标:培养学生热爱科学,实事求是的学风和创新意识,创新精神【知识目标】: 1、电冰箱组成。 2、电冰箱制冷系统的组成、作用及种类。 【教学过程】: 知识点一:电冰箱的基本组成: 一、概述 它主要有箱体、制冷系统、电气控制系统和附件四部分组成。 二、电冰箱组成 1、箱体:电冰箱的躯体部分,且来隔热保温。箱体内空间分为冷藏和冷冻两部分。 2、制冷系统:利用制冷剂在循环过程中的吸热和放热作用,将箱内的热量转移 至箱外空气中去,使箱内温度降低,达到冷藏、冷冻食物的目的。 3、电气自动控制系统:用于保证制冷系统按照不同的使用要求自动而安全地工 作,将箱内温度控制在一定范围内以达到冷藏冷冻的目的。 4、附件:完善和适应冷藏、冷冻不同要求而设置的。 知识点二:制冷系统的组成 1)压缩机(2)冷凝器(3)干燥过滤器(4)毛细管(5)蒸发器

一、电冰箱制冷系统的制冷原理 冰箱制冷系统工作经历了四个过程:压缩、冷凝、节流和蒸发。 (1)压缩机吸入来自蒸发器中的气态制冷剂,在内部汽缸内进行压缩,形成高温高压的气态制冷剂;把压力提高到与冷凝温度相对应的冷凝压力,经高压阀门从高压排气管送入冷凝器中。 (2)进入冷凝器的高温高压气态制冷剂,沿盘管向大气环境散热,与大气环境交换热量,同时在内部由气态冷凝成液态。 (3)液态制冷剂经干燥过滤器吸收水分、滤除有形赃物,优化制冷环境,防止制冷系统冰堵和脏堵。 (4)液态制冷剂经毛细管节流,控制制冷剂的流量,控制对蒸发器的供液量; 把压力由冷凝压力降至蒸发压力,送至蒸发器内。 (5)进入蒸发器的液态制冷剂,剧烈地汽化转变成气态制冷剂,同时,沿盘管吸收大量的热量,达到制冷目的。制冷剂循环往复,以至无穷。 二、压缩机

实验六 电冰箱控制系统

实验六电冰箱控制系统 一、实验目的 熟悉电冰箱的控制系统,能进行简单维护维修。 二、实验原理 (一)控制电路中常用的元器件 电冰箱电气控制系统的主要作用,是根据使用要求,自动控制电冰箱的起动、运行和停止,调节制冷剂的流量,并对电冰箱及其电气设备实行自动保护,以防止发生事故。电冰箱的控制电路是根据电冰箱的性能指标来确定。但其电气控制系统还是大同小异的,一般由动力、起动和保护装置、温度控制装置、化霜控制装置、加热与防冻装置,以及箱内风扇、照明等部分组成。常用压力式温度控制器见下图。 1. 温度控制器: 温度控制器简称温控器,是电冰箱、房间空调器等制冷设备调温、控温的装置。它的主要作用是: (1)通过调节温度控制器旋钮,可以改变所需要的控制温度。 (2)可根据电冰箱内或空调房间内的温度要求,对制冷压缩机进行开、停的自动控制,使电冰箱内或房间内的温度保持在控制范围内。 温度控制器的种类很多,常用的温感压力式温度控制器。 温感压力式温度控制器主要用于人工化霜的普通“直冷式”单、双门电冰箱,或用于全自动化霜的“间冷式”双门电冰箱对冷冻室的温度进行控制。 温度控制器主要由感温元件、毛细管、感压腔和一组微动开关等机构组成。感温元件也叫温压转换部件,是一个密闭的腔体,由感温管感温剂和感压腔三部分组成。感压腔内充入的感温剂一般是氯甲烷或是R12。它的作用是将蒸发器表面的温度变化转换为压力变化,从而引起快跳触点的动作。 2. 起动继电器: (1)重锤式起动继电器:重锤式起动继电器的结构主要包括电流线圈、重力衔铁、弹簧、动触点、T形架、绝缘壳体等; (2) PTC起动继电器: PTC是正温度系数的热敏电源电阻英文的缩写。 PTC起动继电器的工作原理:电冰箱在室温下起动时,PTC元件的电阻很小(约20?),而在较短的时间(0.1~0.2s)内通过基本恒定的电流,呈导通状态,之后随着其元件本身的发热温度升高,其阻值迅速增大,此时,PTC处于“断开”状态。 3. 过载保护器: 过电流和过热保护器称为过载保护器,是压缩机电动机的安全保护装置。当压缩机负荷过大或发生卡缸、抱轴等故障,以及电压过高或过低而不能正常起动时,都要引起电动机电流增大;另外,制冷系统出现制冷剂泄漏时,压缩机连续运行,此时电动机的运行电流虽然比正常运行时的额定值低,但由于系统回气冷却作用减弱,也不使电动机温升过高。过载保护器的作用就是当出现上述故障时切断电源,保护电动机不被烧毁。

冰箱制冷原理及常见故障维修

《部分:电冰箱制冷原理及常见故障维修》 编制: 第一部分家用电冰箱基础知识 一、含义 家用电冰箱:即一个供家用的具有适当容积和装置的绝热箱体,用消耗电能的手段 来制冷,并具有一个或多个间室,它包括冷藏箱、冷藏冷冻箱、冷冻箱。 二、构造 家用电冰箱是由箱体、制冷系统、电气控制系统及附件四大部分组成。 箱体包括门体和箱体,两者紧密的结合在一起,组成一个相对密闭的储物空间,保持箱内冷量尽可能少的散发到箱外。 制冷系统由压缩机、冷凝器、蒸发器、毛细管、干燥过滤器以及制冷剂组成。 制冷系统的作用就是保持稳定不断的从冰箱箱体内吸收热量,排放到大气 中去,以使家用电冰箱内长期处于低温状态。 电气控制系统由温控器、定时器、启动继电器、过载保护器、电加热器、照明灯以及其它电气部件构成。通过这些零部件控制压缩机的开停,从而使冰箱制 冷系统间歇性的制冷,并使电冰箱内温度控制在用户所需要的低温范围内。 附件包括搁物架、果蔬盒、瓶座、瓶栏杆、制冰盒、储冰盒、刮霜铲、接水盘、蒸发皿、铰链、底脚等附属零部件。 三、分类 1、电冰箱按外形(即其所含箱门的多少)可分为单门电冰箱及双门、三门、四门 等多门电冰箱,多门电冰箱中又增设有对开门式、抽屉式等结构。 2、电冰箱按用途可分为: 1)冷藏箱(以汉语拼音字母C表示) 2)冷藏冷冻箱(以汉语拼音字母CD表示) 3)冷冻箱(以汉语拼音字母D表示) 3、电冰箱按使用时的气候环境可分为: 1)亚温带型(以SN表示),气候环境温度为:10---32℃; 2)温带型(以N表示),气候环境温度为:16---32℃; 3)亚热带型(以ST表示),气候环境温度为:18---38℃; 4)热带型(以T表示),气候环境温度为:18---43℃; 4、电冰箱按冷却方式可分为: 1)直冷式(即冷气自然对流式)电冰箱; 2)间冷式(即冷气强制对流式)电冰箱,又称为风冷电冰箱、无霜电冰箱; 3)风直冷电冰箱,即包括直冷、风冷两种制冷方式。

电冰箱的组成

冰箱由哪几部分构成 (2010-02-23 19:50:22) 转载▼ 电冰箱主要由箱体、门体、制冷系统、电气系统及附件五部分组成。 一.箱体和门体 箱体、门体根据不同的温度要求组成若干间室,与外界空气隔绝并分别保持一定低温。箱体、门体由箱壳、箱胆、门壳、门胆等结构件和绝热材料组成。 1. 箱壳、门壳一般由0.4-0.8mm的冷轧钢板作成,表面经磷化与喷塑(或喷漆)处理。为了美观,门壳多用彩板,有的冰箱已经使用拉丝板。 2.箱胆、门胆一般用厚1.2-5mm的ABS板或HIPS板经真空成型作成。箱胆也有用铝板作成的,这种箱胆强度比塑料好,但耐腐蚀性不如塑料。 3.隔热层 过去冰箱的隔热层都用玻璃棉充填,现在冰箱隔热层都用聚氨酯发泡塑料。聚氨酯发泡塑料是在异氰酸酯、聚醚的聚合反应中,加入发泡剂发泡而成。 发泡剂过去都采用R11,这种发泡剂对大气层的臭氧层有较大的破坏作用。现在的发泡剂逐渐改为R141b或环戊烷,这两种发泡剂都是环保发泡剂。 4.门铰链 箱体和门体由门铰链联接在一起。单门电冰箱有上、下两个铰链,双门电冰箱有上、中、下三个铰链。门铰链上一般都加一个限位机构和一个自锁机构。 5.门封条 为防止冰箱内冷气外泄和外界热气侵入,在门体的内壁四周装有磁性门封条,依靠磁条的磁力,将门封与箱体铁皮紧紧吸住。门封条是用软质聚氯乙烯挤塑成条,将磁性胶条穿入塑料门封条的空心管里,四角热粘合而成。康佳冰箱的门封条基本都可以进行拆卸,方便清洗。 二.制冷系统 电冰箱的制冷系统由压缩机、冷凝器、干燥过滤器、毛细管、和蒸发器组成,制冷系统利用制冷剂的循环进行热交换,将冰箱内的热量转移到冰箱外的空气中去,达到使冰箱内降温的目的。 1.压缩机 家用电冰箱用压缩机一般为全封闭压缩机。它的全称为“电冰箱用全封闭型电动机-压缩机”,它实际是将压缩机与电动机全部密封在机壳内。 (1)压缩机的作用 压缩机是制冷循环系统的“心脏”,它的作用是在电动机的带动下,输送和压缩制冷剂蒸气,使制冷剂在系统中进行制冷循环。当压缩机电动机带动曲轴作旋转运动时,连杆将旋转运动转化为活塞的往复式运动。活塞在气缸中所作的往复运动,可分为吸气、压缩、排气和膨胀四

实验五 模拟电冰箱制冷系数的测量

实验五 模拟电冰箱制冷系数的测 量 一、实验目的 1、 培养学生理论联系实际,学用结合的实际工作能力; 2、 学习电冰箱的制冷原理,加深对热学基本知识的理解; 3、 测定电冰箱的制冷系数。 二、电冰箱的制冷原理 1、电冰箱制冷的理论基础 热力学第二定律的克劳修斯说法是:不可能把热量从低温物体传到高温物体而不引起外界的变化。因此,只能通过某种逆向热力学循环,外界对系统作一定的功,使热量从低温物体(冷端)传到高温物体(热端),如图5—l 所示。Q 1是系统向高温热源放出的热量,Q 2是系统从低温热源吸收的热量, W 是外界对系统所做的功,那么: Q 2=Q 1-W (5-1) 电冰箱就是通过逆向热力学循环对循环系统冷端的利用,称为制冷机。 图5—l 图5—2 2、制冷的方式 制冷可利用熔解热、升华热、蒸发热、珀尔贴效应等方式。电冰箱则是用氟里昂作制冷剂,当液体氟里昂在蒸发器里大量蒸发(实际是沸腾,但在制冷技术中习惯称为蒸发)时,带走低温处的热量,从而达到制冷的目的。因此,电冰箱是一种利用蒸发热方式制冷的机器。

3、制冷剂氟里 昂氟里昂是饱和 碳氢化合物的氟、氯、 溴衍生物的统称。本 实验中使用的氟里昂12的分子式为CCL2F2,国际统一符号为R12。R12无色、无 味、无臭、无毒、对金属材料无腐蚀性。当氟里昂容积浓度不超过10%左右时,人没有任何不适的感觉,但当氟里昂容积浓度达到80%,人有窒息的危险。R12不燃烧、不爆炸,但其蒸汽遇到800℃以上的明火时,会分解产生对人体有害的毒气。R12的几个有关参数如下: 沸点(latm) -29.8℃凝固点(latm) -155℃ 临界温度 112℃临界压力 4.06Mpa 4、真实气体的等温线制冷剂在循环过程中的状态变化,遵循真实气体的状态变化规律,其P-V图如图5-2所示。从图5-2中可见,真实气体的等温线并非都是等轴双曲线。如在lm部分,真实气体的等温线与理想气体的等温线相似;在m点气体开始液化,在m至n点这段气体的液化过程中,气体体积虽在减少,但气体压力保持不变,因此该过程是等压过程,我们称其压力为饱和蒸汽压;至n点气体完全液化。等温线的mn部分为饱和蒸汽和饱和液体共存的范围,但在no部分,曲线几乎与压力轴平行,这反映了液体的不易压缩性。随着温度的升高,气液体共存状态的范围从mn线段缩小为m’n’线段,而饱和蒸汽压增高。温度继续升高,等温线的平直部分缩成一点,在P—V图上出现一个拐点K,称临界点。通过临界点的等温线称临界等温线。在临界等温线以上,压力无论怎样加大,气体不可能再液化。 在p-V图上,不同等温线上开始液化和液化终了的各点可以连成曲线mKn。曲线nK的左边完全是液体,nK线称温饱和液体线,以干度X=0表示。曲线mK的右边完全是气体状态,mK线称干饱和蒸汽线,以干度X=1表示(干度X表示气液体共存区里饱和蒸汽所占的比例。例如干度X=0.3时,表示饱和蒸汽占30%,饱和液体占70%)。 5、电冰箱的制冷循环电冰箱的制冷循环如图5—3、图5—4所示,其中图5—3为循环示意图,图5—4表示在P—V图上的制冷循环过程。

电冰箱的制冷系统

§3.4 电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5 、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1 )制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2 )全封闭式压缩机的特点压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1 所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图 (3 )往复活塞式压缩机的内部结构简介 1)机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图 3.4-2所示。 图3.4-2压缩机内部的机械部分 2)压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成, 常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

试验五电冰箱制冷系统分析

---------------------考试---------------------------学资学习网---------------------押题------------------------------实验五电冰箱制冷系统 一、实验目的 1. 了解电冰箱的分类特点,了解电冰箱的技术指标、结构、分类等; 2. 熟悉电冰箱的制冷系统,对其能进行简单维护维修。 二、实验原理 (一)电冰箱的技术性能 (1)类型分冷藏箱C、冷冻箱D、冷藏冷冻箱CD。(2)电源包括额定电压、额定频率和使用电压范围等。 (3)电动机的额定输入功率(W)。(4)耗电量(kW·h/24h)。(5)外形尺寸(深×宽×高)。(6)重量(kg,分为毛重和净重)。(7)总有效容积(L)。包括冷冻室有效容积和冷藏室有效容积。 (8)制冷系统性能。包括压缩机型号、输入功率、起动电流、起动继电器型号、过载保护继电器型号、冷凝器、蒸发器、毛细管、干燥过滤器的规格、制冷剂型号及灌注量。 (9)冷冻室和冷藏室性能。包括冷冻室能力、星级、气候类型、冷藏室温度等。 (10)气候类型。分热带型(T)、亚热带型(ST)、温带型(N)和亚温带型(SN)等4种。我国大多使用亚热带型(ST)和温带型(N)。 (二)电冰箱的结构、分类 电冰箱的箱体是电冰箱的基础结构。箱体结构形式直接影响着冰箱的结构性能、耐久性和经济性。箱体的质量在一定程度上标志着冰箱的质量。 电冰箱的箱体由壳体、箱门、台面及其他一些必要附件组成。壳体和箱体形成一个能存放物品的密封容器。台面主要起装饰和保护作用。箱体首先要有长时间的保温作用,其次是美观、平整、光洁。 1.电冰箱按箱内冷却方式不同,可分为直冷式和间冷式两种,其中,直冷式又分单门和双门电冰箱两种。若按制冷剂不同又分“有氟”、“无氟”电冰箱等。 (1)直冷式单门电冰箱 直冷式单门电冰箱中的蒸发器吊装在电冰箱内体的上部。当制冷剂(氟利昂)在其管路中低压沸腾时,进行低温吸热,而由蒸发器围成的空腔就形成了冷冻部位(冷冻室)。蒸发器下面的冷藏部位(冷藏室)则依靠冷空气下降、热空气上升,进行冷热的自然对流,对存放在冷藏部位的食品进行冷却。这种电冰箱冷冻部位空间的最低温度一般能达到-6~-12℃;而冷藏部位通过电气自动控制系统中的温度控制继电器,可将温度控制在0~8℃。直冷式单门电冰箱的结构如图8所示。 (2)直冷式双门电冰箱 直冷式双门电冰箱设有二个蒸发器。冷冻室空间的平均温度可达到-18℃以下,而冷藏室温度为0~8℃。直冷式双门电冰箱的结构如图9所示。 (3)间冷式电冰箱 间冷式电冰箱大都做成双门双温式。冷冻室的温度可达到-18℃以下,而冷藏室的温度为0~8℃。采用这种冷却方式和全自动化霜控制的电冰箱,称为“无霜汽化式”双门双温电冰箱。它特别适用于沿海地区或空气湿度较大的地区。间冷式电冰箱的结构如图10所示。 (4)“无霜”电冰箱

电冰箱的制冷系统(抽真空、充注制冷剂等)

§3.4电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1)制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2)全封闭式压缩机的特点 压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图(3)往复活塞式压缩机的内部结构简介 1) 机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图3.4-2所示。 图3.4-2压缩机内部的机械部分 2) 压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成,通常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

电冰箱工作原理演示实验

电冰箱工作原理演示实验 一、实验目的 1、掌握压缩式电冰箱的工作原理。 二、实验原理及内容 压缩式电冰箱是电机压缩式电冰箱的简称,它主要有以下三个构成部分:箱体、制冷系统与控制系统。而其中最关键的是制冷系统。现在就来看看制冷系统是如何工作的。它是利用物态变化过程中的吸热现象,使之吸热现象,使之气液循环,不断地吸热和放热,以达到制冷的目的。其具体过程是:通电后压缩机工作,将蒸发器内已吸热的低压、低温气态制冷剂吸入,经压缩后,形成温度为55℃~58℃,压强为112800帕的高压、高温蒸气,进入冷凝器。由于毛细管的节流,使压力急剧降低。因蒸发器内压力低于冷凝器压力,液态制冷剂就立即沸腾蒸发,吸收箱内的热量变成低压、低温的蒸气。再次被压缩机吸入。如此不

断循环,将冰箱内部热量不断的转移到箱外。正是因为这样,所以夏天用冰箱来冷却房间,不但是不可能的,反而会使其内部温度升高。通过以上分析,我们知道只要压缩机一工作,其机体内就有高压存在,并且在断电后,要有段时间才能消失,这就是冰箱为什么不能在关机后立即开机的原因所在。 三、注意事项 电冰箱在运行过程中,其制冷系统压缩机的吸气侧移为低压侧,其压力略高于大气压力。压缩机的排压侧移为高压侧,压强高达117007帕左右,两侧的压强差很大(压力差也是很大),停机后两侧系统仍然保持这个压力差,如果立即起动,压缩机活塞压力加大,电机的压动力矩不能克服这样的压力差,使电机不能起动,处于堵转状态,这就使得旋转磁场相对于转子的转速加快,磁通量的变化率加大了,从而导致电机绕组的电流剧增,温度升高,如果时间长,很有可能烧毁电机。因此要求停机后过4~5分钟再起动。 四、思考题 1、电冰箱上毛细管的作用? 2、电冰箱如何实现控制温度的? 3、电冰箱关机以后为什么要等几分钟才能再开机?

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

冰箱压缩机原理

个人收集整理仅供参考学习 电冰箱的制冷原理 [实验目的]: 掌握冰箱压缩机的工作原理。 [实验原理]: 世界上的物质有三态:气态、固态和液态,在一定条件下三态可以相互转化。液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化吸热来制冷的,该种电冰箱由电动机提供机械能,通过压缩机对制冷系统作功,制冷系统利用低沸点的制冷剂,蒸发时,吸收汽化热的原理制成的。 电冰箱的喉管内,装有一种称为氟利昂:freon,俗称雪种的致冷剂。常用的一种为二氟二氯甲烷(CCL2F2),是一种无色无臭无毒的气体,沸点为29℃。氟利昂在气体状态时,被压缩器加压,加压后,经喉管流到电冰箱背部的冷凝器,借散热片散热(物质被压缩后,温度就会升高)后,冷凝而成液体。液体的氟里昂进入蒸发器的活门之后,由于脱离了压缩器的压力,就立即化为蒸汽,引致冰箱内部冷却。汽化后的氟里昂又被压缩器压回箱外的冷凝器散热,再变为液体,如此循环不息,把冰箱内的热能泵到箱外。 蒸气压缩式电冰箱制冷系统循环原理图见图。它由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成。其动力来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。 制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

实训二 电冰箱制冷系统抽真空

实训二电冰箱制冷系统抽真空 一、实训目的 在制冷系统加压试漏没有变化后,在充注制冷剂之前,必须进行抽真空的处理,排除系统中的不凝性气体(如氮气)和氷分。原因如下: ①不凝凝性气体(如氮气)使冷凝压力、冷凝温度和排气温度升高,压缩机消耗功率增加,制冷量下降;不凝性气体与氟利昂气体混合后会使氟利昂和油发生化学反应,引起腐蚀加剧使压缩机寿命降低。 ②系统中残留的水分,会造成毛细管冰塞。 ③进一步检查系统的密封性。 二、实训设备和材料 ⑴真空泵(或压缩机)一台 ⑵带真空压力表的三通修理阀一个、连接软管。 ⑶实训材料:银焊条数根、工艺管数根。 三、相关理论和技能、实训步骤 (一)抽真空的目的与方法 制冷系统在完成加压检漏工作后要对系统抽真空,将系统中的水分与不凝性气体排出以保证制冷系统的正常工作。电冰箱的真空度要求较高,系统中残留空气的绝对压力要求在133Pa以下。 抽真空的目的有两个: 一是排除制冷系统中的不凝性气体(如氮气、空气等)。不凝性气体可使冷凝压力、冷凝温度和排气温度升高,压缩机功耗增加,恶化制冷条件,使制冷量下降,不凝性气体与氟利昂混合后会使氟利昂和油发生化学反应,引起腐蚀,缩短压缩机使用寿命。 二是排除制冷系统中的水分。抽空时由于压力降低使残留的水分汽化,被真空泵抽出,从而可有效地避免冰堵的发生。 常用的抽真空方法有:低压单侧抽真空法、高低压双侧抽真空法、二次抽真空法、利用冰箱自身压缩机抽真空法等。 (二)、抽真空操作 操作内容1.低压单侧抽真空法 操作如下: ①将压缩机工艺管用割刀割开、放气,注意 放气不要太快,防止损失冷冻油,待制冷剂放光 后再将工艺管完全割断。然后在断口处焊上一段 直径6mm的纯铜管,铜管的另一端扩好喇叭口并 事先套人螺母,由螺母与修理阀连接(或在断口 处焊上一根专用的单向维修阀)。 ②如右图用带压力表的修理阀把工艺管与真

直冷电冰箱制冷系统优化设计探析

直冷电冰箱制冷系统优化设计探析 李刚蔡颖玲张凤林王军车景顺摘要:冷冻室蒸发器采用多层换热片的复合立体结构,在S型制冷盘管壁外侧固定套装翅片,增加冷冻室顶部和低部两个高温区制冷量。将冷冻室按1:1划分出变温室,通过其中温度传感器控制双稳态电磁阀通断实现制冷剂回路切换,将变温室按冷冻、软冷冻、冷藏使用,也可关闭。通过横、竖盘管混排结构的丝管式冷凝器设计,借助制冷系统压缩机、冷凝器、蒸发器负荷匹配及其与毛细管制冷剂流量匹配,通过防凝露管走向及位置设计、蒸发器管道位置及走向布置和回气换热器设计,研制的BCD-186CHS直冷电冰箱最大负荷日耗电0.39度,在变温室为节能状态时耗电在0.35度以下,最低达0.31度。关键词:热工学优化设计理论分析直冷电冰箱制冷系统1前言电冰箱发展速度很快,我国电冰箱的产量由1991年的470万台增加到2001年的1349万台,平均年增长11.1%[1]。而电冰箱的耗电量占家用电器总耗电量的32%[2],所以,节能降耗和环保是电冰箱研发工作的重要课题,而蒸发器和冷凝器的传热能力、软冷冻及变温技术优化设计则是关键因素。2蒸发器的优化设计研制采取了以下措施。第一,减小冷藏、冷冻两蒸发器的面积比差值,在总面积一定情况下,尽量加大冷藏室蒸发器的面积,采用

大内径蒸发管、增加蒸发管长度及双管并行排列结构等,保证在低温或高温环境下有最佳的开停比,从而保证在一定环境温度下耗电最少。第二,设计高效蒸发器。冷冻室蒸发器是由从上到下依次排列多个换热层片和连接所有换热层片的连接管组成的复合立体式结构[3],换热层片由多个并列S型制冷盘管构成,且在其盘管壁外侧固定套装翅片,大大增加了制冷盘管与空气间接触面积,如图1示。该蒸发器在不改变电冰箱结构情况下,大幅度增加冷冻室蒸发面积,增加冷冻室顶部和低部两个高温区制冷量,使其快速达到规定要求,缩短压缩机工作时间,大幅降低能耗。冷藏室采用导热粘接胶膜将压扁铜管紧紧粘在传热铝板上,并通过高粘合双面胶粘贴在冷藏室内胆上,增强传热效果。第三,合理安排蒸发器位置和制冷剂走向。据箱内自然对流情况,制冷剂流向采用逆流式换热,毛细管和回气管采用较长的并行锡焊或热塑工艺等,以提高换热效果。第四,通过理论计算和试验相结合方法,合理匹配蒸发器与冷凝器的传热面积,努力减小冰箱工作系数,避免过低蒸发压力和过高冷凝压力,达节能目的。3 冷凝器优化设计在优化冷凝器设计中除合理增大冷凝面积外,还应充分考虑以下几点:3.1 设计横、竖盘管混排结构冷凝器:在冷凝器内为制冷剂气液两相状态,分析冷凝器中制冷剂流态变化和内、外部换热条件,横排管冷凝器的换热系数比竖排管冷凝器增加3倍以上,为加强流体扰动,破坏流动边界层,采用横、竖盘管相结合走

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤 图1 BCD-348W/H电冰箱制冷系统图

2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 ) ( i o o o W t t a K t t- - =(1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN、温带N气候条件下,露点温度为19±0.5℃ 亚热带ST、热带T气候条件下,露点温度为27±0.5℃ 在t w > t d的前提下,计算箱体的漏热量Q1,并用下面的公式校验绝热层的厚度 t o t i

1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; λ ——绝热层的导热系数,W/m 2·℃; δ —— 箱体各绝热层的厚度,m 注:1当室风速为0.1-0.15m/s 时,αo 可取3.5-11.6 W/m 2·℃ 2箱空气为自然对流(直冷冰箱)时,αi 可取0.6-1.2 W/m 2·℃ 3间冷冰箱,由于箱风速大,αi 可取17-23 W/m 2·℃ i o a a K 111++=λδ

制冷空调及电工技术实验指导

SAN制冷空调及电工技术 第一章制冷技术基础实验 实验一绝对压力,表压力,真空度 实验二压力与液体沸点的关系 实验三空气的干球温度与湿球温度的关系 第二章冰箱,空调的工作原理 实验一电冰箱的制冷系统及其工作原理 实验二空调器的制冷系统及其工作原理 实验三电冰箱(直冷式)的电路控制原理 实验四电冰箱(间冷式)的电路控制原理 实验五空调器的电路控制原理 实验六热原理空调机的工作原理 第三章电冰箱故障实验 实验一制冷剂泄漏 实验二毛细管堵塞的故障 实验三制冷剂冲注量过大的故障 实验四压缩机的吸气口堵塞 实验五压缩机过载重保护器故障 实验六压缩机启动器故障 实验七温控器故障导致不制冷 实验八电动箱不停机故障 第四章空调器的故障实验 实验一制冷剂泄漏故障实验 实验二毛细管堵塞故障 实验三制冷剂冲注量过载故障 实验四压缩机的西沽口堵塞 实验五冷凝器脏堵 实验六蒸发器脏堵 实验七压缩机过保护器故障 实验八压缩机运行电容器故障 实验九空调器(热泵型)不能制热 实验十室外风机不转 实验十一室内风机不转 实验十二温控器不灵 实验十三遥控器不灵 实验十四电源电路故障 实验十五室内侧温水 实验十六制冷系统异常保护 第一章制冷技术基础实验 实验一绝对压力、表压力、真空度 一、试验目的 1.压力表的零点对应的是大气压力 2.绝对压力=表压+大气压力

3.真空度=|表压| 二、实验设备 带压力表的三通修理阀一个,制冷剂一瓶,真空泵一台冰箱实验系统(上海东方教具有限公司) 图 三、实验内容和步骤 1.大气压在压力表上的读书 在三通阀的压力表上可以读出,大气压在压力表上的读数为○ 2.当气压大于大气压或小于气压在压力表上的读数 ①电冰箱的制冷系统的高、低压侧均有压力表,用真空泵在低压侧惊醒抽真空,观察到压力表的指针指向-0.1mpa,同时真空泵也无气体排除,则制冷系统内为真空,此时:表压Pg=-0.1mpa,绝对的压力P为0,真空度Pv=1pg1=0.1mpa ②用雪中管线连好制冷系统低压侧和制冷剂瓶。(注意用高压的制冷剂气体排走雪中管内的空气)对制冷系统注制冷剂控技压力为0.005mpa ③开机运行一段时间,读出高,低压侧的表压,绝对压力真空度(低于大气压时)。 将有关数据填于表1—1 表格 四、填写实验报告 思考: 1.大气是否处处相等? 2.在广州使用的压力表带到西藏区使用,会带来误差吗? 实验二。压力与液体沸点的关系 一、实验目的 1.理解液体的沸点随压力升高而升高,下降而下降的关系 2.进一步理解蒸汽压缩循环的原理 二、实验设备 图 真空泵一台,雪种(制冷剂)一瓶,上海东方教具有限公司的空调实验系统。 三、实验内容及步骤 1.制冷系统抽真空 用真空泵连接系统的截止阀工进行抽真空,观察高低压侧的压力表,当压力表的读数为-0.1mpa且真空泵也无气体排出时,系统便为真空。 2.冲注制冷剂,控制蒸发温度低于0℃ 卸下真空泵,连接制冷剂瓶(注意一定要用高压的制冷剂气体排走雪种管内的空气)后,充注制冷剂,控制压力为0.4mpa,然后开机,观察低压表的读数,毛细管后的管路应结

冰箱的工作原理及如何实现冰箱节能

冰箱的工作原理及如何 实现冰箱节能 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冰箱的工作原理及如何实现冰箱节能 摘要:冰箱保持恒定低温的一种制冷设备,也是一种使食物或其他物品保持恒定低温冷态的民用产品。目前世界上91~95%的电冰箱属于压缩式电冰箱。我们来简单谈论压缩式电冰箱的工作原理和怎么样使用冰箱更为节能。 一.冰箱的工作原理 (一)概述 目前家用电冰箱绝大多数都是采用蒸汽压缩式制冷循环原理来制冷的,即利用压缩机增加制冷剂的压力,使制冷剂在制冷系统循环中循环流动,气化与液化的来回转换,如此周而复始地将箱内冷藏冷冻食物中的热量“搬出”箱外,实现制冷目的。 (二)冰箱的主要部件 冰箱由箱体、制冷系统、控制系统和应用附件组成。 1.箱体:有外壳、内胆、隔热材料和箱门构成。其功能是围护隔热,是冰箱内外空气隔绝,以保持箱内的低温。 2.制冷系统:是一个封闭的循环系统。运转时不断吸收箱内被冷却物品的热量,并将其转移、传递给箱外的空气或水,以实现制冷。 3.控制系统:用于控制箱内温度,保证安全运转及自动除霜等。(三)冰箱的制冷系统 (1)制冷系统的构件 1.压缩机 压缩机是制冷系统的心脏,它的制药任务是把电能转换为机械能,推动活塞转动产生吸排气和压缩功能,用于进行热交换,并使之冷系统在系统中循环往复。 压缩机是一个封闭结构,家用电冰箱的压缩机多为单相电机,压缩机的工作包括压缩、排气、膨胀、吸气四个过程。 2.冷凝器 冷凝器由金属线构成,分为外漏冷凝器和内藏式冷凝器。冷凝器利用特殊的结构迅速散热,使压缩机送来的高温高压的气态制冷剂很快变为液态,家用电冰箱因功率较小,所以冷凝器均为自然对流空气冷却式。

实验五 电冰箱制冷系统分析

实验五电冰箱制冷系统 一、实验目的 1. 了解电冰箱的分类特点,了解电冰箱的技术指标、结构、分类等; 2. 熟悉电冰箱的制冷系统,对其能进行简单维护维修。 二、实验原理 (一)电冰箱的技术性能 (1)类型分冷藏箱C、冷冻箱D、冷藏冷冻箱CD。(2)电源包括额定电压、额定频率和使用电压范围等。 (3)电动机的额定输入功率(W)。(4)耗电量(kW·h/24h)。(5)外形尺寸(深×宽×高)。 (6)重量(kg,分为毛重和净重)。(7)总有效容积(L)。包括冷冻室有效容积和冷藏室有效容积。 (8)制冷系统性能。包括压缩机型号、输入功率、起动电流、起动继电器型号、过载保护继电器型号、冷凝器、蒸发器、毛细管、干燥过滤器的规格、制冷剂型号及灌注量。(9)冷冻室和冷藏室性能。包括冷冻室能力、星级、气候类型、冷藏室温度等。(10)气候类型。分热带型(T)、亚热带型(ST)、温带型(N)和亚温带型(SN)等4种。我国大多使用亚热带型(ST)和温带型(N)。 (二)电冰箱的结构、分类 电冰箱的箱体是电冰箱的基础结构。箱体结构形式直接影响着冰箱的结构性能、耐久性和经济性。箱体的质量在一定程度上标志着冰箱的质量。 电冰箱的箱体由壳体、箱门、台面及其他一些必要附件组成。壳体和箱体形成一个能存放物品的密封容器。台面主要起装饰和保护作用。箱体首先要有长时间的保温作用,其次是美观、平整、光洁。 1.电冰箱按箱内冷却方式不同,可分为直冷式和间冷式两种,其中,直冷式又分单门和双门电冰箱两种。若按制冷剂不同又分“有氟”、“无氟”电冰箱等。 (1)直冷式单门电冰箱 直冷式单门电冰箱中的蒸发器吊装在电冰箱内体的上部。当制冷剂(氟利昂)在其管路中低压沸腾时,进行低温吸热,而由蒸发器围成的空腔就形成了冷冻部位(冷冻室)。蒸发器下面的冷藏部位(冷藏室)则依靠冷空气下降、热空气上升,进行冷热的自然对流,对存放在冷藏部位的食品进行冷却。这种电冰箱冷冻部位空间的最低温度一般能达到-6~-12℃;而冷藏部位通过电气自动控制系统中的温度控制继电器,可将温度控制在0~8℃。直冷式单门电冰箱的结构如图8所示。 (2)直冷式双门电冰箱 直冷式双门电冰箱设有二个蒸发器。冷冻室空间的平均温度可达到-18℃以下,而冷藏室温度为0~8℃。直冷式双门电冰箱的结构如图9所示。 (3)间冷式电冰箱 间冷式电冰箱大都做成双门双温式。冷冻室的温度可达到-18℃以下,而冷藏室的温度为0~8℃。采用这种冷却方式和全自动化霜控制的电冰箱,称为“无霜汽化式”双门双温电冰箱。它特别适用于沿海地区或空气湿度较大的地区。间冷式电冰箱的结构如图10所示。 (4)“无霜”电冰箱 霜是热的不良导体。如果蒸发器表面积有厚霜,将阻碍蒸发器冷量的传递,导致箱内温度下降变慢,使蒸发器由于冷量不易传出而导致制冷效率降低,耗电量增大等,这对电冰箱

相关主题
文本预览
相关文档 最新文档