当前位置:文档之家› 复变函数第四讲

复变函数第四讲

第三章 复变函数得积分(答案)

复变函数练习题第三章复变函数得积分 系专业班姓名学号 §1 复变函数积分得概念§4原函数与不定积分 一.选择题 1.设为从原点沿至得弧段,则[ ] (A) (B) (C) (D) 2、设就是,从1到2得线段,则[ ] (A) (B) (C) (D) 3.设就是从到得直线段,则[ ] (A) (B)(C)(D) 4.设在复平面处处解析且,则积分[ ] (A) (B) (C) (D)不能确定 二.填空题 1.设为沿原点到点得直线段,则 2 。 2.设为正向圆周,则 三.解答题 1.计算下列积分。 (1) (2) (3) (4) 2.计算积分得值,其中为正向圆周: (1) (2) 3.分别沿与算出积分得值。 解:(1)沿y=x得积分曲线方程为 则原积分 (2)沿得积分曲线方程为 则原积分

1 20 1 1 3224300 [()](12)3112 [32(1)][()]2.2233I i t it it dt t t i t dt t t i t t i =--+=--+-=--+-=-+?? 4.计算下列积分 (1) ,C:从到得直线段; C 得方程: 则原积分 (2) ,C:上沿正向从1到。 C 得方程: 则原积分 复变函数练习题 第三章 复变函数得积分 系 专业 班 姓名 学号 §2 柯西-古萨基本定理 §3 基本定理得推广-复合闭路定理 一、选择题 1. 设在单连通区域内解析,为内任一闭路,则必有 [ ] (A) (B) (C) (D ) 2.设为正向圆周,则 [ ] (A) (B ) (C) (D) 3.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分 [ ] (A) (B) (C ) (D)不能确定 二、填空题 1.设为正向圆周,则 2.闭曲线取正方向,则积分 0 。 三、解答题 利用柯西积分公式求复积分 (1)判断被积函数具有几个奇点; (2)找出奇点中含在积分曲线内部得, 若全都在积分曲线外部,则由柯西积分定理可得积分等零; 若只有一个含在积分曲线内部,则直接利用柯西积分公式; 若有多个含在积分曲线内部,则先利用复合闭路定理,再利用柯西积分公式、 1.计算下列积分 (1) 、

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

第一章复数与复变函数解读

第一章复数与复变函数 一、学习要求 1.熟练掌握复数的运算。 2.掌握复数的几种表示法及互换关系,能正确求出复数的实部、虚部、模与辐角。 3.了解各种区域。 4.了解共轭复数的性质。 5.理解复数几何意义。 6.理解复函的极限与连续,知道复函极限存在与连续的充要条件。二、考核知识点 1.复数的定义。 2.复数的代数运算。 3. 共轭复数的定义与性质。 4.复平面和复数的点表示法、复数的向量表示法。 5.复数的代数式、三角式及指数式。 6.常用曲线的复数方程。 7.复数的积与商。 8.复数的幂与方根。 9.点的邻域。 10.区域。 11.复函定义。 12.复函极限与连续。

第一节复数 本节主要对复数与复数的运算作一次复习. 一、复数 一个复数可表示为,其中x,y为实数,分别为复数z的实部与虚部,记 为x=ReZ,y=ImZ;(即)——虚单位。复数的上述表示称为复数的代数式。 讨论:1)实部为零的复数称为纯虚数,虚部为零的复数z=x称为实数。全体实数只是全体复数的一部分。 2)若实部x=0,虚部y=0,则z=0——复数零,即: 二、复数的四则运算 1)相等: 2)和差: 3)积: 4)商: 从复数的运算法则的定义中很明显的得出复数运算的交换律、结合律和分配律,即交换律: 结合律: 分配律: 全体复数在引入相等关系和运算法则以后,称为复数域。在复数域中,复数没有大小。 三、复平面 如果把x和y当作平面上的点的坐标,复数z就跟 平面上的点一一对应起来,这个平面叫做复数平面或z平 面,x轴称为实轴,y轴称为虚轴。 在复平面上,从原点到点所引的矢量 op

与复数z也构成一一对应关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系。 四、复数的三角形式和指数形式 用极坐标r,θ代替直角坐标x和y来表示复数z,有 则复数z可表示为:——三角式 利用欧拉公式:,复数z可表示为: ——指数式 叫做复数z的模,θ称为复数z的幅角,记为Argz.讨论: i).复数的幅角不能唯一地确定。如果是其中一个幅角,则 也是其幅角,把属于的幅角称为主值幅角,记为argz。 ii).复数“零”的幅角无定义,其模为零。 iii).当r=1时,称为单位复数. 利用复数的指数形式作乘除法比较简单,如:

Matlab在复变函数中应用解读

Matlab在复变函数中应用 数学实验(一) 华中科技大学数学系 二○○一年十月

MATLAB在复变函数中的应用 复变函数的运算是实变函数运算的一种延伸,但由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,且在引入了Taylor级数展开Laplace 变换和Fourier变换之后而使其显得更为重要了。 使用MATLAB来进行复变函数的各种运算;介绍留数的概念及MAT–LAB的实现;介绍在复变函数中有重要应用的Taylor展开(Laurent展开Laplace变换和Fourier变换)。 1 复数和复矩阵的生成 在MATLAB中,复数单位为)1 j i,其值在工作空间中都显示为 =sq rt = (- 0+。 .1 i 0000 1.1 复数的生成 复数可由i z+ =。 a =语句生成,也可简写成bi a z* + b 另一种生成复数的语句是) exp(i theta r =,也可简写成) =, z* exp(theta * i r z* 其中theta为复数辐角的弧度值,r为复数的模。 1.2 创建复矩阵 创建复矩阵的方法有两种。 (1)如同一般的矩阵一样以前面介绍的几种方式输入矩阵 例如:)] i A* * i i = + 3[i * - + * , ), 23 5 33 6 exp( 2 3 , exp( 9 (2)可将实、虚矩阵分开创建,再写成和的形式 例如: )2,3( re=; rand im=; )2,3( rand

im i re com *+= ] 5466.07271.05681.02897.07027.05341.08385.03420.03704.03412.03093.06602.0[i i i i i i com ++++++= 注意 实、虚矩阵应大小相同。 2 复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real 和imag 实现。 调用形式 )(x real 返回复数x 的实部 )(x imag 返回复数x 的虚部 2.共轭复数 复数的共轭可由函数conj 实现。 调用形式 )(x conj 返回复数x 的共轭复数 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs 和angle 实现。 调用形式 )(x abs 复数x 的模 )(x angle 复数x 的辐角 例:求下列复数的实部与虚部、共轭复数、模与辐角 (1) i 231 + (2)i i i --131 (3)i i i 2)52)(43(-+ (4)i i i +-2184 由MATLAB 输入如下:

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答 3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系? 【答案 单连通 无关,复连通 有关】 3.2 计算积分 ||z ? 【答案 0】 3.3 计算积分 22d L z z a -? :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+= 【答案 (1)0;(2)πi a ; (3)πi a -】 3.4 计算积分 Im d C z z ?,其中积分曲线C 为 (1)从原点到2i +的直线段; (2)上半圆周 ||1z =,起点为1,终点为1-; (3)圆周|| (0)z a R R -=>的正方向(逆时针方向) 【答案 2(1)1i /2;(2)π/2;(3)πR +--】 3.5 计算积分 d ||C z z z ? 的值, (1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】 3.6 计算积分的值 π2i 0 cos d 2z z +? 【答案 1/e e +】 3.7计算下列积分的值 (1) ||1d cos z z z =? ;(2)2||2d z ze z =? 21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++?? 【答案(1)0;(2) 0;(3) 0;(4) 4πi 4i +】 3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+?????? 【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】 3.9 计算积分 (1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --??? 【答案 13(1)s i n 1c o s 1; (2)i ; (3)1c o s 1i [s i n (1)1]- -+-】

复变函数与积分变换试题及答案(10)

复变函数与积分变换试题与答案 一、填空(每题2分) 1.z=i 的三角表示式是: 。指数表示式是 。 2.|z -1|=4在复平面上表示的曲线是一个 。 3.38的全部单根是: , , 。 4.函数在f (z )=|z |2在z 平面上是否解析 。 5.设C 是正向圆周|z |=1,积分?c z dz 2 = 。 6.函数2 2 1 )1()(z e z f -=的弧立奇点是 和 ,其中 是极点, 是本性奇点。 7.级数 +++++n z z z 21在|z |<1时的和函数是 。 8.分式线性映射具有 , , 。 二、判断题(每题2分,请在题后括号里打“√”或“×”)。 1.零的辐角是零。 ( ) 2.i <2i . ( ) 3.如果f (z )在z 0连续,那么)(0z f '存在。 ( ) 4.如果)(0z f '存在,那f (z )在z 0解析。 ( ) 5.z e e -=2 ( ) 6.解析函数的导函数仍为解析函数 ( ) 7.幂级数的和函数在其收敛圆内解析。 ( ) 8.孤立奇点的留数在该奇点为无穷远点时其值为1--β

9.单位脉冲函数)(t δ与常数1构成一个傅氏变换对。 ( ) 10.共形映射具有保角性和伸缩率的不变性。 ( ) 三、计算题(每题6分) 1.dz z z c ?3sin (其中C 为正向圆周|z|=1) 2.?=?? ? ??-++4||3211z dz z z (积分沿正向圆周进行) 3.dz z ze z z ?=-2||21 (积分沿正向圆周进行) 4.求函数) 2()(1 )(10-+= z i z z f 在无穷远点处的留数 四、求解题(每题6分) 1. 求函数22),(y x y x u -=的共扼调和函数),(y x v 和由它们构成的解析函数 )(z f ,使f (0)=0。 2. 求函数2 ) 1(1 )(z z z f -= 在1|1|0<-

复变函数疑难问题分析

复变函数疑难问题分析 1. 设z z z f 1sin )(2=,{}11|<-=z z D 。 1)函数)(z f 在区域D 中是否有无限个零点?2) 若上小题的答案是肯定的,是否与解析函数零点的孤立性相矛盾?为什么? 答: 有无限个零点。可以具体写出其所以零点; 不矛盾。因为这无限多个零点均为孤立零点;不可以展开为洛朗级数。因为0=z 为非孤立的奇点。 2. “函数sin z 在z 平面上是有界的”是否正确? sin z 在z 平面上无界。 这是因为sin 2iz iz e e z i --=,令(0)z iy y =<,则|sin |||()2iz iz e e z y i --=→∞→-∞ 3. “函数z e 为周期函数” 是否正确? z e 是以2k i π为周期的函数。因为z C ?∈,221z k i z k i z z e e e e e ππ+==?=,k 为整数 4. “()f z z =是解析函数” 是否正确? ()f z z =在z 平面上不解析。因为()f z z x iy ==-,所以(,)u x y x =,(,)v x y y =- 所以1u x ?=?,1v y ?=-?,0u y ?=?,0v x ?=? 但是 11u v x y ??=≠-=??,所以(,)u x y ,(,)v x y 在z 平面上处处不满足..C R -条件 所以()f z z =在z 平面上不解析。 5.根据教材中建立起球面上的点(不包括北极点N )复平面上的点间的一一对应,试求解下列问题。

(1 )复球面上与点1)对应的复数; (2)复数1+i 与复球面上的那个点; (3)简要说明如何定义扩充复平面。 解:(1)建立空间直角坐标系(以O 点为原点,SON 为z 轴正半轴),则过 点,,1)22P 与点(0,0,2)N 的直线方程 为21z -==-。当0z =时 ,x y == ,所以,,1)22 对应。 (2)复数1i +的空间坐标为(1,1,0)。则直线方程2112 x y z -==-与球面222(1)1x y z ++-=相交,其交点为222(,,)333 ,(0,0,2)N (3)z 平面上以个模为无穷大的假想点一北极N 相对应,复平面上加上∞后称为扩充复平面。 6.说明复变函数可微性与解析性的关系。 复变函数()w f z =在点0z 处可导,又称为可微,而()f z 在0z 处的某个邻域内任一点处均可导(可微),则称()f z 在0z 处是解析的。 所以(1)()w f z =在点0z 处可导(可微),但不一定在0z 处是解析的, (2)()f z 在0z 处解析是指在0z 处的某个邻域内任一点处均可导, (3)()f z 在区域D 内可微与在区域D 内解析是等价的。 7.()1sin f z z =在区域D :01z <<上解析且有无穷多个零点,但在区域D 上()f z 不恒等于零,这与解析函数零点孤立性定理相矛盾吗?为什么? 1()sin f z z =在区域D ,01z <<内有无穷多个零点1k z k π =,但lim 0k k z →∞=,但0D ?,而区域D 是去心邻域,()f z 在0z =点无意义,所以()f z 在0z =处是

第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则22 32 (4) C z z dz z -+=-? 10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02i z i i z i i i e dz e e e ππππππ---= =-=?

(2) 2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππ ππππ------?? ==- ????? --=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分 ||C z dz z ?的值,其中C 为正向圆周: (1)

复变函数在中学数学中的应用1

毕业论文 学生姓名林文强学号160901074 学院数学科学院 专业数学与应用数学 题目复变函数在中学数学中的应用 熊成继 指导教师 (姓名)(专业技术职称/学位) 2013 年 5 月

毕业论文独创性声明 本人郑重声明: 本论文是我个人在导师指导下进行的研究工作及取得的研究成果。本论文除引文外所有实验、数据和有关材料均是真实的。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果。其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 作者签名: 日期:

摘要:本文通过对代数、几何以及三角函数等问题的探讨来说明复数在中学数学中的应用。将一些解决起来非常复杂的非复数问题,依据题目所给出的条件的特性,将该题目经过一定方式转换成复数问题,然后运用复数的性质及意义解决它。例如在代数问题中,利用复数模的性质;几何问题中,可以利用复数的几何意义及其与向量的关系;在三角函数中,可以利用复数的三角形式。运用复数解题的方法突破了常规的解题方法,有助于培养学生的创新思维。 关键词:复数;代数;几何;三角函数

Abstract:Based on the algebra, geometry and trigonometry problems to illustrate the application of the complex in the middle school mathematics.Some solutions are very complicated non complex problems, according to the characteristics of the given conditions, the title after a certain conversion into a complex problem, and then use the nature and meaning of complex number to easily solve.For example, in the algebraic problem, using the properties of complex modes; geometric problems, can the geometric meaning of complex utilization and its relationship with the vector; in the trigonometric function, can use the triangle form of complex https://www.doczj.com/doc/746362411.html,ing the method of complex problem solving through the method of solving problems of conventional, contributes to the cultivation of students' creative thinking. Keyword:Complex Number; Algebra; Geometry; Trigonometric Function

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

复变函数在信号处理分析中的应用

复变函数在信号分析处理中的应用 班级021161 姓名张秋实 学号02116013

前言 复变函数学了一个学期了,不敢说自己学习十分认真努力,也不敢说自己理解这个学科,有自己的见解,很多对复变函数的理解仅仅建立在人云亦云的基础之上。而且,对于信号的分析处理这门更加复杂,更需要科研精神的学科,我之前根本就没有多少的关注,对此我感到十分惭愧。基于以上几点,这篇文字对于我来说没有多少东西是真正属于我的,大部分为参考资料和前人的论文得来的,希望老师理解。 何为复变函数?何为信号分析? 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。而复变函数在工程领域有很多的应用,其中在电气电子领域中,用的比较多的就是在信号的分析和处理上了。那么什么是信号分析与处理呢? 为了充分地获取信息和有效利用信息,必须对信号进行分析和处理。信号分析就是通过解析方法或者测试方法找出不同信号的特征,从而了解其特性,掌握它随时间或频率变化的规律的过程。 通过信号分析,可以将一个复杂的信号分解成若干个简单信号的分量之和,或者用有限的一组参量去考察信号的特性。信号分析是获取信号源或信号传递系统特征信息的重要手段,人们往往通过对信号特征的深入分析,得到信号源或者系统特征、运行情况甚至故障等信息,这正是故障的诊断基础。 而信号分析的基本方法有:时域分析法;频域分析法;复频域分析法。时间信号的频域分析和复频域分析中,复变函数的应用比较典型。 一、连续时间信号的频域分析 在时域中,将信号分解为不同时延、强度的冲激信号;在频域中,信号可以分解为不同频率、相位及振幅的简单信号(傅氏变换与反变换)。频率特性是信号的第二个特性,频率特性就是通过变换将时间变量转变为频率变量,在频域中分析信号的方法。

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y =Θ ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y =Θ ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 656121213 1 3121311+-=-++=??? ??++

复变函数基本定义(2020年10月整理).pdf

定义 邻域-定义1.1点的邻域指: 聚点、内点、孤立点-定义1.2给定点集,及点。称为的聚点或极限点指:的任一邻域内都有的无穷多个点。若,但非的聚点,则称为的孤立点; 若,又非的聚点,则称为的外点。若有一邻域全含于内,则称为的内点。若的任一邻域内,同时有属于和不属于的点,则称为的边界点。边界点的全体称为的边界。记作。 开集、闭集-定义1.3若点集的每个聚点都属于,则称为闭集;若点集的点皆为内点,则称为开集。 有界性-定义1.4点集称为有界集,若使有。 区域-定义1.5非空开集称为区域,若是连通的,即:中任意两点可用全在中的折线连接。 闭域-定义1.6区域加上它的边界称为闭域,记为:。 约当曲线-定义1.7设是实变数的两个实函数,在闭区间上连续,则由方程 所决定的点集,称为复平面上的一条连续曲线。上式称为的参数方程分别称为的起点和终点。

单连通区域-定义1.8设为复平面上的区域,若在内无论怎样划简单闭曲线,其内部仍全含于,则称为单连通区域;非单连通区域称为多连通区域。 复变函数-定义1.9设为一复数集,若对内每一复数,有唯一确定的复数与之对应,则称在上确定了一个单值函数。若对内每一复数,有几个或无穷多个与之对应,则称在上确定了一个多值函数。 复变函数的极限-定义1.10设,为的聚点。若存在一复数,使,,只要,就有 则称沿于有极限,并记为。 连续函数-定义1.11设子点集上有定义,为的聚点,且。若 即对任给的,,只要,,就有 则称沿于连续。 复球面复平面加上点后称为扩充复平面,与它对应的就是整个球面,称为复球面。 无穷远点考虑平面上一个以原点为心的圆周,在球面上对应的也是一个圆周。当圆周的半径越大时,圆周就越趋北极。北极可以看成是与平面上的一个模为无穷大的假想点相对应,这个假想点称为无穷远点,并记为。 主要定理 约当定理-定理 1.1任一简单闭曲线将平面唯一地划分成三个点集且满足

复变函数考试试题一解读

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 § 1■留数 1.(定理6.1柯西留数定理): 2.(定理6.2):设a为f(z)的m阶极点, 其中在点a解析,,则 3. (推论6.3):设a为f(z)的一阶极点, 则 4. (推论6.4):设a为f(z)的二阶极点则 5. 本质奇点处的留数:可以利用洛朗展式 6. 无穷远点的留数: 即,等于f(z)在点的洛朗展式中这一项系数的反号 7. (定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 &计算留数的另一公式:

§ 2■用留数定理计算实积分 型积分一引入 注:注意偶函数 型积分 1.(引理6.1大弧引理):上 2.(定理6.7)设为有理分式,其中 为互质多项式,且符合条件: (1)n-m> 2; (2)Q(z)没有实零点 于是有 注: 可记为 型积分 3.(引理6.2若尔当引理):设函数g(z)沿半圆周充分大上连续,且 在上一致成立。则 4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:

(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成: ——及—— 四■计算积分路径上有奇点的积分 5.(引理 6.3小弧引理): 于上一致成立,则有 五■杂例 六■应用多值函数的积分 § 3■辐角原理及其应用 即为:求解析函数零点个数 1■对数留数: 2.(引理6.4):( 1)设a为f(z)的n阶零点,贝U a必为函数------ 的一阶极点,并且 (2)设b为f(z)的m阶极点,贝U b必为函数--- 的一阶极点,并且 3. (定理6.9对数留数定理):设C是一条周线,f(z)满足条件:

复变函数的学习与中学数学教学解读

复变函数的学习与中学数学教学 现在不少大学生不能充分利用大学四年的宝贵时间和有利的学习条件,并且说学这些有用吗?下面我们就数学教育开设的复变函数与中学数学教学谈一些粗浅的看法,希望能对在校学生的学习有所启发。 复数一直是高中数学的教学内容,尤其对理科学生。学生在学习复数之前,一直是在实数域中考虑问题。虽说实数是从自然数、整数、有理数演变、扩展而来,但还是容易理解和直观化的。学生在学习复数时,首先得接受虚数“i ”,然后才是复数“bi a +”。再接下来才是对应于实数系中的运算。当然应包括相应的直观化,即几何表示。我们都知道,学生接受专门知识的过程如同他们接受批评教育的过程,也如同我们吸收营养的过程,对于不同的方法和途径所产生的效果是不一样的。我们的学生一学期学完复变函数,有些学生认为这些东西没什么用,事实上仅从实数系发展到复数系,就已能反映出数学发展的规律及数学发展的动力。如果一个教师自己都对这些不清楚,又怎么要求中学生们清楚呢?又怎么能让他们接受复数并产生兴趣呢?在复数引入后,利用其几何表示,会使不少几何问题的解决变得简单,利用复数的三角表示又会使许多代数问题的求解变得简单,利用复数运算的几何意义又会使许多问题的解决变得容易,由此让学生们明白:新工具的引入会使原来不能解决的问题得到解决,会使原来复杂的解决过程变得简单,这些思想是学生产生发散性思维的动力,是学生创新的内在动力。 众所周知,学生要有一滴水,教师应有一桶水,这是说明教师只有具备较大的知识储备,才能备课自如,释疑解惑自如,从而轻松驾驭教室,虽说“居高未必能够临下”,但没有居高就不会能临下,我们知道,高中数学中有相当一部分内容是研究几个基本初等函数的特殊情形。如果我们熟练掌握了复变函数中的这些内容,就能对初等数学中的相关内容游刃有余,才能给学生解惑。例如,有人证明 ,04=π其证明如下: 因),11(21112i x i x i x +--=+有,2110002???+--=+t t i t i x dx i x dx x dx 于是,,ln 2 1i t i t arctgt i +-=令,1=t 则.01ln 81)11ln(8111ln 21144==+-=+-==i i i i i i i arctg π毛病出在哪里呢?出在01ln =,事实上,在复数域中,对数函数是多值的,πk i 21ln =(k 为整数)仅当0=k 时,01ln =,假如在上式中取1=k ,就不会有04=π 了。 学过复变函数,还会让你对基本初等函数有一些本质性的了解。在中学范围内,看不

复变函数的应用.docx

复变函数的应用 数学与应用数学班 数学是一门很抽象的学科,而复变函数更是如此,如果直接想象很难和实际 联系起来。经过两年的大学学习就目前学习的知识而言,感觉和复变函数联系比 较紧密的是有两方面,一是电流方面;二是在信号方面。 我们日常中的电流都是交流三相的,而相位如果通过三角函数计算的话较为复 杂和抽象,很多工程问题无法解决,引入虚数则较大简化了计算的过程,是很多 工程问题迎刃而解。可以通过 RCL 电路我们也用虚数去处理相角关系,但电感本身 并不是虚的。这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。成功而且巧妙的解决了电流的相位问题。 我们打电话,发短信是通过电磁波传递信号,在信号方面也极大的应用了复 变函数。信号分析和其他领域使用复数可以方便的表示周期信号。模值 |z|表示信号 的幅度,辐角 arg(z)表示给定频率的正弦波的相位。利用傅立叶变换可将实信号表 示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:其 中ω对应角频率,复数z 包含了幅度和相位的信息。于是当我们要的信息得以传递。 所以,不管是我们使用家用电器,用手机问候远方的朋友,还是使用卫星电 视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——复变函数。 一、复变函数的简介 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数 开平方的情况 ,它的一般形式是: a bi ,其中 i 是虚数单位。 多复分析是数学中研究多个复变量的全纯函数的性质和结构的分支学科,它和单 复变函数有着很强的渊源,但其特有的困难和复杂性,导致在研究的重点和方法上,都和单复变函数论有明显的区别 .因为多复变全纯函数的性质在很大程度上由定义区 域的几何和拓扑性质所制约,因此,其研究的重点经历了一个由局部性质到整体性 质的逐步的转移 .它广泛地使用着微分几何学、代数几何、拓扑学、微分方程等相邻 学科中的概念和方法,不断地开辟前进的道路,更新和拓展研究的内容和领域。 就像微积分的直接扩展统治了十八世纪的数学那样,复变函数论的全面发展是 在十九世纪,这个新的分支统治了十九世纪的数学 .当时的数学家公认复变函数论 是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学 中最和谐的理论之一 .为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔, 法国的 Laplace 也随后研究过复变函数的积分,他们都是创建这门学科的先 驱 .。 二、复变函数的应用 近代有些函数论研究工作是考虑把具有某种性质的一族函数合在一起研究。事 实上, P·蒙泰尔的解析函数正规族就应属于这种类型的研究,并且显示了其威 力 .从这种观点出发的研究有了很大发展 .它与其他数学分支产生了较密切的联 系 . 复变函数理论从一个变数推广到多个变数是十分自然的想法,总称为复分析 . 但是多变数时,定义域的复杂性大大增加了,函数的性质较之单变数时也有显著的差异,它的研究需要借助更多的近代数学工具 .。

相关主题
文本预览
相关文档 最新文档