当前位置:文档之家› 基于新型全数字锁相环的同步倍频技术

基于新型全数字锁相环的同步倍频技术

基于新型全数字锁相环的同步倍频技术
基于新型全数字锁相环的同步倍频技术

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频 单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY 这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0 即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率) 在PLL(锁相环)程序执行前 内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR 时钟合成寄存器 、REFDV 时钟分频寄存器 、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令 使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构 VCOFRQ[1:0]控制压控振动器VCO的增益 默认值为00 VCO的频率与VCOFRQ[1:0]对应表

锁相环的基本原理和模型

1.锁相环的基本原理和模型 在并网逆变器系统中,控制器的信号需要与电网电压的信号同步,锁相环通过检测电网电压相位与输出信号相位之差,并形成反馈控制系统来消除误差,达到跟踪电网电压相位和频率的目的。一个基本的锁相环结构如图1-1所示,主要包括鉴相器,环路滤波器,压控振荡器三个部分。 图1-1 基本锁相环结构 鉴相器的主要功能是实现锁相环输出与输入的相位差检测;环路滤波器的主要作用应该是建立输入与输出的动态响应特性,滤波作用是其次;压控振荡器所产生的所需要频率和相位信息。 PLL 的每个部分都是非线性的,但是这样不便于分析设计。因此可以用近似的线性特性来表示PLL 的控制模型。 鉴相器传递函数为:)(Xo Xi Kd Vd -= 压控振荡器可以等效为一个积分环节,因此其传递函数为:S Ko 由于可以采用各种类型不同的滤波器(下文将会讲述),这里仅用)(s F 来表示滤波器的传递函数。 综合以上各个传递函数,我们可以得到,PLL 的开环传递函数,闭环传递函数和误差传递函数分别如下: S s F K K s G d o op )()(=,)()()(s F K K S s F K K s G d o d o cl +=,) ()(s F K K S S s H d o += 上述基本的传递函数就是PLL 设计和分析的基础。 2.鉴相器的实现方法 鉴相器的目的是要尽可能的得到准确的相位误差信息。可以使用线电压的过零检测实现,但是由于在电压畸变的情况下,相位信息可能受到严重影响,因此需要进行额外的信号处理,同时要检测出相位信息,至少需要一个周波的时间,动态响应性能可能受到影响。 一般也可以使用乘法鉴相器。通过将压控振荡器的输出与输入相乘,并经过一定的处理得到相位误差信息。 在实际的并网逆变器应用中还可以在在同步旋转坐标系下进行设计,其基本的目的也是要得的相差的数值。同步旋转坐标系下的控制框图和上图类似,在实际使用中,由于pq 理论在电网电压不平衡或者发生畸变使得性能较差,因而较多的使用dq 变换,将采样得到的三相交流电压信号进行变化后与给定的直流参考电压进行比较。上述两种方法都使用了近似,利用在小角度时正弦函数值约等于其角度,因而会带来误差,这个误差是人为近似导致的误差,与我们要得到的相位误差不是一个概念,最终的我们得到相位误差是要形成压控振荡器的输入信号,在次激励下获得我们所需要的频率和相位信息。 2.1乘法鉴相器

实验三:模拟锁相环与载波同步

实验三:模拟锁相环与载波同步 一、实验目的 1.模拟锁相环工作原理以及环路锁定状态、失锁状态、同步带、捕捉带等基本概念。 2.掌握用平方法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3.了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、实验步骤 本实验使用数字信源单元、数字调制单元和载波同步单元。 1.熟悉载波同步单元的工作原理。接好电源线,打开实验箱电源开关。 2.检查要用到的数字信源单元和数字调制单元是否工作正常(用示波器观察信源NRZ-OUT(AK)和调制2DPSK信号有无,两者逻辑关系正确与否)。 3. 用示波器观察载波同步模块锁相环的锁定状态、失锁状态,测量环路的同步带、捕捉带。 环路锁定时u d 为直流、环路输入信号频率等于反馈信号频率(此锁相环中 即等于VCO信号频率)。环路失锁时u d 为差拍电压,环路输入信号频率与反馈信号频率不相等。本环路输入信号频率等于2DPSK载频的两倍,即等于调制单元CAR信号频率的两倍。环路锁定时VCO信号频率等于CAR-OUT信号频率的两倍。所以环路锁定时调制单元的CAR和载波同步单元的CAR-OUT频率完全相等。 根据上述特点可判断环路的工作状态,具体实验步骤如下: (1)观察锁定状态与失锁状态 打开电源后用示波器观察u d ,若u d 为直流,则调节载波同步模块上的可变电 容C 34,u d 随C 34 减小而减小,随C 34 增大而增大(为什么?请思考),这说明环路 处于锁定状态。用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT,可以看到两个信号频率相等。若有频率计则可分别测量CAR和CAR-OUT频率。在 锁定状态下,向某一方向变化C 34,可使u d 由直流变为交流,CAR和CAR-OUT频 率不再相等,环路由锁定状态变为失锁。

激光倍频实验报告

篇一:激光谐振腔与倍频实验 激光谐振腔与倍频实验 a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容] 1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。 2、掌握腔外倍频技术,并了解倍频技术的意义。 3、观察倍频晶体0.53?m绿色光的输出情况。[实验基本原理] 1、激光谐振腔 光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。 图1 激光谐振腔示意图 (1)组成: 光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。 (2)工作原理: 谐振腔中包含了能实现粒子数反转的激光工作物质。它们受到激励后,许多原子将跃迁到激发态。但经过激发态寿命时间后又自发跃迁到低能态,放出光子。其中,偏离轴向的光子会很快逸出腔外。只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。这些光子成为引起受激发射的外界光场。促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。 (3)种类:图2 谐振腔的种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。 如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔(满足,否则称为不稳定腔(满足1?g1.g2或0?g1.g2)。上述列举的谐振腔都属0?g1.g2?1) 稳定腔。 (4)本实验中的激光谐振腔: 本实验采用的是外腔式钕玻璃激光器。外腔式激光器的两个反射镜是放在激光棒的外侧,长度可调,频率可变,在激光棒的两侧按一定的角度贴有布儒斯特窗片。由于布儒斯特窗对p 偏振分量具有100%的透过率,从而输出线偏光。 2、激光倍频 (1)非线性光学基础 极化强度矢量和入射长的关系为: p??(1)e??(2)e2??(3)e3??(1) ……分别是线性极化率,二阶非线性极化率,三阶非线性极化率……,?(2) ,?(1),?(3),且每加一次极化,?值减小七八个数量级。在入射光场比较小的时候,?

PLL锁相环时钟设定

PLL锁相环时钟设定 未配置锁相环时(OSCCLK_PLLSEL=0): 总线频率=外部晶振频率(OSCCLK)/2 配置锁相环时(OSCCLK_PLLSEL=1): 系统时钟由锁相环提供,总线频率=倍频后频率(PLLCLK)/2 时钟频率计算方法 Fvco=2*Fosc*(SYNDIN+1)/(REFDIV+1) Fpll=Fvco/(2*POSTDIV)当POSTDIV=0时,Fpll=Fvco Fbus=Fpll/2 CRGFLG_LOCK==1时,说明PLLCLK稳定,可输出。 锁相环从设定到稳定需要时间,故期间应加几条空语句。 例程: void CLK_Init(void) { CLKSEL=0x00; //选择OSCCLK为系统时钟源16M PLLCTL_PLLON=1; //开启锁相环,锁相环电路允许 //频率设定80M时 SYNR = 0xc0 | 0x09; REFDV = 0x80 | 0x01; POSTDIV = 0x00; // PLLCLOCK=2*osc*(1+SYNR)/(1+REFDV)=160MHz; _asm(nop);_asm(nop); while(!CRGFLG_LOCK); // 时钟频率已稳定,锁相环频率锁定CLKSEL_PLLSEL=1; //使能锁相环时钟 }

PWM模块 PWME:PWM允许寄存器,置1时允许输出。 PWMPOL:极性寄存器。置1时首先输出高电平。 2、3、6、7、置1时clock SB 作为时钟源,置0时clock B作为时钟源 PWMCAE:居中对齐允许寄存器,只有当通道输出禁止时才能设置此寄存器置1时为居中对齐,置0时左对齐 PWMSCLA:比例因子寄存器A;用于提供clock SA的比例因子 Clock SA的时钟频率= clock A/(2*PWMSCLA)当PWMSCLA为0时比例因子默认为256. CLOCKSB 计算方法类似,寄存器为PWMSCLB。PWMCNTx:通道计数寄存器,一般设置值为0x00; PWMPERx:周期寄存器; 左对齐时周期计算方法:PWMxPeriod=指定时钟周期乘以PWMPERx的值居中对齐时=指定时钟周期乘PWMPERx的值再乘2;

锁相环pll工作原理及verilog代码

锁相环的组成和工作原理 #1 1.锁相环的基本组成 . 许多电子设备要正常工作, 通常需要外部的输入信号与内部的振荡信 许多电子设备要正常工作, 号同步,利用锁相环路就可以实现这个目的。 号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路, 锁相环路是一种反馈控制电路,简称锁相环 )。锁相环的特点是 (PLL)。锁相环的特点是:利用外部输入的 )。锁相环的特点是: 参考信号控制环路内部振荡信号的频率和相 位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 所以锁 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 相环通常用于闭环跟踪电路。锁相环在工作的过程中, 相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出 于闭环跟踪电路 信号的频率与输入信号的频率相等时, 信号的频率与输入信号的频率相等时,输出电压与输入电压保 持固定的相位差值,即输出电压与输入电压的相位被锁住,这 持固定的相位差值,即输出电压与输入电压的相位被锁住, 就是锁相环名称的由来。 就是锁相环名称的由来。 ( ) 锁相环通常由鉴相器 PD) 环路滤波器 LF) 、 ( ) 和压控振荡器 VCO) ( ) 三部分组成, 所示。 三部分组成,锁相环组成的原理框图如图 8-4-1 所示。 锁相环中的鉴相器又称为相位比较器, 它的作用是检测输入信号和输 锁相环中的鉴相器又称为相位比较器, 出信号的相位差,并将检测出的相位差信号转换成 uD(t)电压信号 出信号的相位差, ) 输出, 该信号经低通滤波器滤波后形成压控振荡器的控制电压 u(t) 输出, , C ) 对振荡器输出信号的频率实施控制。 对振荡器输出信号的频率实施控制。 施控制 2.锁相环的工作原理 . 锁相环中的鉴相器通常由模拟乘法器组成, 利用模拟乘法器组成的鉴 锁相环中的鉴相器通常由模拟乘法器组成, 相器电路如图 8-4-2 所示。 所示。

菜鸟学arm之arm时钟系统与锁相环的学习(基于arm7内核)

ARM7内核的时钟系统与锁相环(PLL) ——基于LPC2103(arm7内核)的讲解 注:该内容适用于大部分arm7内核的芯片 By:小飞胡 Q1906723068

概述:学过51单片机的孩子都知道单片机的时钟频率这个概念,也经常根据频率来做一些定时方面的实验。是的,51的时钟系统是比较简单的,芯片的时钟频率就等于外部所接晶振的频率,而一个机器周期又等于12个时钟周期,即6拍。关于51的时钟内容就这么多,关系也很清楚,所以很容易就可以使用。但对于arm芯片来说,时钟系统是比较复杂的,它有一个专门的时钟管理的部件。由于arm芯片要求CPU高速工作,但芯片的各个外设又不能速度太快,可见直接把所有部件的时钟同一为单一时钟源显然不合适,有时芯片又要根据不同的工作来改变不同的时钟频率,这就要求芯片内部的时钟是可以认为设定的。但芯片外接的时钟源或晶振的值一般都是确定的,这怎么解决,下边我要讲的就是这个问题。 我们先来了解一下arm7的晶体振荡器,以LPC系列的为例,其他型号的芯片可以详细查阅相关资料。 晶体振荡器输入端XTAL1可接受1MHz--50MHz占空比为50%的时钟信号,内部振荡电路支持1MHz--30MHz的外部晶体。如果片内PLL系统或引导装载程序被使用,输入时钟将被限制到10MHz-- 25MHz,先看一个图 振荡器输出频率称为Fosc,ARM处理器时钟频率成为cclk.除非使用PLL,否则Fosc和cclk的值相同。 振荡器可以工作在两种模式下:从属模式和振荡模式。

从属模式下,输入时钟信号与一个100pf相连,其幅值不少于200mVrms,X2管脚不连接。如果选用从属模式,Fosc信号的频率被限制在1MHz--50MHz。如果器件振荡器工作在振荡模式,Fosc时钟被限制在1MHz--30MHz。 注:以上的一些数值会因不同的型号而不尽相同,具体的数值要根据具体型号的芯片数据手册确定,这里我只是要让你明白其原理与思想。其实很多事重要的都是想法,只要想法是对的,剩下的就只是去把想法给变为实际行动了,这是比较简单的。

锁相环的组成和工作原理

锁相环的组成和工作原理 时间:2011-11-23 来源:作者: 关键字:锁相环工作原理 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。 鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为:

式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为: 上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,uc(t)随时间而变。 因压控振荡器的压控特性如图8-4-3所示,该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压uc(t)的变化而变化。该特性的表达式 上式说明当uc(t)随时间而变时,压控振荡器的振荡频率ωu也随时间而变,锁相环进入“频率牵引”,自动跟踪捕捉输入信号的频率,使锁相环进入锁定的状态,并保持ω0=ωi的状态不变。 8.4.2锁相环的应用 1.锁相环在调制和解调中的应用 (1)调制和解调的概念 为了实现信息的远距离传输,在发信端通常采用调制的方法对信号进行调制,收信端接收到信号后必须进行解调才能恢复原信号。 所谓的调制就是用携带信息的输入信号ui来控制载波信号uC的参数,使载波信号的某一个参数随输入信号的变化而变化。载波信号的参数有幅度、频率和位相,所以,调制有调幅(AM)、调频(FM)和调相(PM)三种。 调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波信号的幅度相等,相位随输入信号幅度的变化而变化。调幅波和调频波的示意图如图8-4-4所示。

实验三 模拟锁相环与载波同步

实验三 模拟锁相环与载波同步 一、实验目的 1.掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2.掌握用平方环法从 2DPSK 信号中提取相干载波的原理及模拟锁相环的设计方法。 3.了解2DPSK 相干载波相位模糊现象产生的原因。 二、实验原理 通信系统常用平方环或同相正交环(科斯塔斯环)从 2DPSK 信号中提取相干载波。本实验使用平方环提取想干载波,其载波同步原理方框图如图 l 所示。 图1 载波同步方框图 锁相环由鉴相器(PD )、环路滤波器(LF )、及压控振荡器(VCO )组成,如图2所示。 图2 锁相环方框图 模拟锁相环中,PD 是一个模拟乘法器,LF 是一个有源或无源低通滤波器。锁相环路是一个相位负反馈系统,PD 检测 u i (t)与 u o (t)之间的相位误差并进行运算形成误差电压 u d (t),LF 来滤除乘法器输出的高频分量(包括和频及其他的高频噪声)形成控制电压 u c (t),在 u o (t)的作用下、u o (t)的相位向u i (t)的相位靠近。设u i (t)=U i sin [ωi t+θi (t)],u o (t)=U o sin [ωo t+θo (t)],则 ud(t) =Udsin θe (t),θe (t) =θi (t)- θo (t),故模拟锁相环的 PD 是一个正弦PD 。设u c (t)=u d (t)F (P),F (P )为LF 的传输算子,VCO 的压控灵敏度为K ,则环路的数学模型如图 3 所示。 图3 模拟环数学模型 当6)(π θ≤t e 时,U d sin =)(t c θU d e θ,令d d U K =为PD 的线性化鉴相灵敏度、单位为V/rad ,则环路线性化数学模型如图4所示。

倍频激光原理

倍频激光器的原理 激光 激光是受激辐射光的简称,其原理是: 当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。受激辐射产生的光就叫做激光。 激光器 要使受激辐射起主要作用而产生激光,必须满足三个前提条件: 1.有提供放大作用的增益介质作为激光工作物质,(Y AG激光器采用掺钕离子的钇铝石榴 石制成的晶体棒)。 2.有外界激励能源,使介质上下能级产生粒子数反转分布。(Y AG激光器,采用氪灯或氙 灯或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到YAG晶体上)。 3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜, 一块全反镜构成,激光由半反镜输出)。 谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。 因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。 YAG激光器 YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(Y AG),即简称YAG激光器。 泵浦源 泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。 YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。 不同的激光有不同的泵浦源。 倍频绿激光 YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光

锁相环常见问题解答要点

ADI官网下载了个资料,对于PLL学习和设计来说都非常实用的好资料,转发过来,希望对大家有帮助(原文链接 https://www.doczj.com/doc/753445886.html,/zh/content/cast_faq_PLL/fca.html#faq_pll_01) ?参考晶振有哪些要求?我该如何选择参考源? ?请详细解释一下控制时序,电平及要求? ?控制多片PLL芯片时,串行控制线是否可以复用? ?请简要介绍一下环路滤波器参数的设置? ?环路滤波器采用有源滤波器还是无源滤波器? ?PLL对于VCO有什么要求?以及如何设计VCO输出功率分配器? ?如何设置电荷泵的极性? ?锁定指示电路如何设计? ?PLL对射频输入信号有什么要求? ?PLL芯片对电源的要求有哪些? ?内部集成了VCO的ADF4360-x,其VCO中心频率如何设定? ?锁相环输出的谐波? ?锁相环系统的相位噪声来源有哪些?减小相位噪声的措施有哪些? ?为何我测出的相位噪声性能低于ADISimPLL仿真预期值? ?锁相环锁定时间取决于哪些因素?如何加速锁定? ?为何我的锁相环在做高低温试验的时候,出现频率失锁? ?非跳频(单频)应用中,最高的鉴相频率有什么限制? ?频繁地开关锁相环芯片的电源会对锁相环有何影响? ?您能控制PLL芯片了么?,R分频和N分频配置好了么?

?您的晶振输出功率有多大?VCO的输出功率有多大? ?您的PFD鉴相极性是正还是负? ?您的VCO输出频率是在哪一点?最低频率?最高频率?还是中间的某一点?VCO 的控制电压有多大? ?您的PLL环路带宽和相位裕度有多大? ?评价PLL频率合成器噪声性能的依据是什么? ?小数分频的锁相环杂散的分布规律是什么? ?到底用小数分频好还是整数分频好? ?ADI提供的锁相环仿真工具ADISimPLL支持哪些芯片,有什么优点? ?分频–获得高精度时钟参考源? ?PLL,VCO闭环调制,短程无线发射芯片? ?PLL,VCO开环调制? ?时钟净化----时钟抖动(jitter)更小? ?时钟恢复(Clock Recovery)? 问题:参考晶振有哪些要求?我该如何选择参考源? 答案:波形:可以使正弦波,也可以为方波。 功率:满足参考输入灵敏度的要求。

简述锁相环

南京机电职业技术学院 毕业设计(论文) 题目 40MHz简易锁相环的设计 系部电子工程系专业电子信息技术工程 姓名王鑫学号 G1210145 指导教师吕彬森 2015 年 04 月09日

摘要 在无线收发信机电路中,除了发射机和接收机外,还有一个非常重要的部分就是本地振荡电路。为了保证本地振荡模块输出信号的频率稳定性和较低的相位噪声,通常本振采用锁相环技术来实现,特别在无线通信领域。 本文阐述了锁相环的基本结构和工作原理,从锁相环稳定性的角度出发,给出了无线通信电路中使用40MHz 锁相环的电路设计,并且将方案中锁相环电路进行了仿真,最终满足40MHz 锁相环的设计要求。 关键词:锁相环;鉴相器;压控振荡器

Abstract(外语专业的需要) 【英文摘要正文输入】 In the wireless transceiver circuit, in addition to the transmitter and the receiver, there is a very important part of the local oscillator circuit is. In order to ensure the stability of the local oscillator module, output signal frequency and low phase noise, the vibration by using phase locked loop technique, especially in the field of wireless communications. This paper introduces the basic structure and working principle of the phase-locked loop PLL, starting from the stability of the 40MHz PLL circuit design is given of the use of wireless communication circuit, and the scheme of PLL circuit simulation, and ultimately meet the design requirements of 40MHz phase locked loop. Keywords: Attenuation network; Attenuation quantity; Amplifier; broadband

锁相环PLL的组成和工作原理

锁相环的组成和工作原理#1 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡 器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1 所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入 信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电 路如图8-4-2所示。 鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压 分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为: 即(8-4-4) 则,瞬时相位差θd为 (8-4-5)

PLL时钟

什么是PLL 2007-01-18 16:53 1580人阅读评论(0) 收藏举报PLL 是Phase-Locked Loop(锁相环)的缩写。 什么是锁相环?锁相环是指一种电路或者模块,它用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。或者说,对于接收 到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。 由于锁定情形下(即完成捕捉后),该仿制的时钟信号相对于接收到的信号 中的时钟信号具有一定的相差,所以很形象地称其为锁相器。 而一般情形下,这种锁相环的三个组成部分和相应的运作机理是: 1 鉴相器:用于判断锁相器所输出的时钟信号和接收信号中的时钟的相差的幅度; 2 可调相/调频的时钟发生器器:用于根据鉴相器所输出的信号来适当的调节锁相器 内部的时钟输出信号的频率或者相位,使得锁相器完成上述的固定相差功能; 3 环路滤波器:用于对鉴相器的输出信号进行滤波和平滑,大多数情形下是一个低通 滤波器,用于滤除由于数据的变化和其他不稳定因素对整个模块的影响。 从上可以看出,大致有如下框图: ┌─────┐┌─────┐┌───────┐ →─┤鉴相器├─→─┤环路滤波器├─→─┤受控时钟发生器├→┬─→ └──┬──┘└─────┘└───────┘│ ↑↓ └──────────────────────────┘ 可见,是一个负反馈环路结构,所以一般称为锁相环(PLL: Phase Locking Loop) 锁相环有很多种类,可以是数字的也可以是模拟的也可以是混合的,可以用于恢复载波 也可以用于恢复基带信号时钟。

基于锁相环的时间同步机制与算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/753445886.html, Journal of Software, Vol.18, No.2, February 2007, pp.372?380 https://www.doczj.com/doc/753445886.html, DOI: 10.1360/jos180372 Tel/Fax: +86-10-62562563 ? 2007 by Journal of Software. All rights reserved. 基于锁相环的时间同步机制与算法 ? 任丰原 +, 董思颖 , 何滔 , 林闯 (清华大学计算机科学与技术系 , 北京 100084 A Time Synchronization Mechanism and Algorithm Based on Phase Lock Loop REN Feng-Yuan+, DONG Si-Ying, HE Tao, LIN Chuang (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China + Corresponding author: Phn: +86-10-62772487, Fax: +86-10-62771138, E-mail: renfy@https://www.doczj.com/doc/753445886.html, Ren FY, Dong SY, He T, Lin C. A time synchronization mechanism and algorithm based on phase lock loop. Journal of Software, 2007,18(2:372?380. https://www.doczj.com/doc/753445886.html,/1000- 9825/18/372.htm Abstract : In this paper, the analysis model of computer clock is discussed, and the characteristic of the existing

基于数字锁相环的同步倍频器设计

一、主要内容与要求 1.掌握应用电子设计自动化(EDA)技术设计电子系统的方法; 2.采用超高速集成电路硬件描述语言(Verilog)设计一种基于数字锁相环的倍频器; 3.重点设计数字环路滤波器和数控振荡器; 4.利用计算机仿真技术进行验证; 5.阅读并翻译3000单词以上的英文资料。 二、主要技术要求 n倍频;2 1.系统能够实现输出信号为输入信号的2.改变系统参数可以得到不同的倍频信号,且始终能够使输出信号与输入信号保持同步; 3.用Verilog语言编写设计程序,利用计算机仿真予以验证。 三、研究方法 1.在查阅大量技术资料的基础上,进行设计方案的比较; 2.确定全数字锁相环系统的设计方案; 3.采用自顶向下的设计方法,进行系统模块的划分,并确定用Verilog设计各功能模块的算法; 4.编写系统设计程序,并进行仿真验证,经过反复修改使电路系统达到设计要求。 四、工作进度安排 1.2012年12月学习掌握Verilog设计技术,收集和整理与毕业设计有关的资料; 2.2013年1月在分析和整理资料的基础上写开题报告,确定设计方案和研究技术路线; 3.2013年3月完成环路滤波器和数控振荡器的设计与仿真; 4.2013年4月完成全数字倍频器的系统设计与仿真; 5.2013年5月撰写毕业设计说明书和准备毕业答辩稿; 6.2013年6月初毕业答辩。 指导教师 南华大学本科生毕业设计(论文)开题报告

设计(论文)题目基于数字锁相环的同步倍频器设计 省部级课题设计(论文)题目来源起止时工程设计2012.12013.6 设计(论文)题目类 一、设计(论文)依据及研究意义 锁相(phase-locked loop是一种反馈控制电路,作用是实现设备外部输入信号与内部的震荡信号同步其基本组成包括鉴相 phasedetector环路滤波器loopfilter)和压控振荡器 voltagecontroloscillato) 倍频器frequencymultiplie)是使输出信号频率等于输入信号频率整倍的电路利用非线性电路产生高次谐波或者利用频率控制回路都可以构成倍器倍频器也可由一个压控振荡器和控制环路构成它的控制电路产生一控制压,使压控振荡器的振荡频率严格地锁定在输入频f的倍乘fnf 因为非线性变换过程中产生的大量谐波使输出信号相位不稳定所以其构的倍频器,倍频噪声较大。倍频次数越高,倍频噪声就越大,使倍频器的应用到限制在要求倍频噪声较小的设备中可采用根据锁相环原理构成的锁相环步倍频器 模拟锁相环主要由相位参考提取电路压控振荡器相位比较器控制电等组成压控振荡器输出的是与需要频率很接近的等幅信号把它和由相位参提取电路从信号中提取的参考信号同时送入相位比较器用比较形成的误差通控制电路使压控振荡器的频率向减小误差绝对值的方向连续变化实现锁相而达到同步 数字锁相环主要由相位参考提取电路、晶体振荡器、分频器、相位比较器脉冲补抹门等组成分频器输出的信号频率与所需频率十分接近把它和从信中提取的相位参考信号同时送入相位比较器比较结果示出本地频率高了时就过补抹门抹掉一个输入分频器的脉冲相当于本地振荡频率降低相反若示本地频率低了时就在分频器输入端的两个输入脉冲间插入一个脉冲相当于本振荡频率上升,从而达到同步。.

PLL 锁相环原理

什么是锁相环(PLL)工作原理及对硬件电路连接的要求锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同 步。PLL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,在 比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟相位,直到两个信号的相位同步。 在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz 和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。 通过锁相环同步多块板卡的采样时钟所需要的编程技术会根据您所使用的硬件板卡的不同而不同。对于基于PCI总线的产品(M系列数据采集卡,PCI数字化仪等),所有的同步都是通过RTSI总线上的时钟和触发线来实现的;这时,其中一块版板卡会作为主卡并且输出其内部时钟,通过RTSI线,其他从板卡就可以获得这个用于同步的时钟信号,对于基于PXI总线的产品,则通过将所有板卡的时钟于PXI内置的 10MHz背板时钟同步来实现锁相环同步的。 锁相环(PLL)的工作原理 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,锁相环组成的 原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。

锁相环分析

几种常见锁相环分析 并网变换器对锁相环的基本要求: (1)电网电压经常发生跌落、闪变等动态电能质量问题,并且这些异常的出现均是不可预计而且需要及时补偿的。所以要求并网变换器能够对电网电压相位的变化在ms级的时间内能做出快速的响应,即要求并网变换器的锁相方法要有良好的动态性能,保证当电压跌落和骤升时不对锁相性能造成太大影响。 (2)三相电压不平衡时,要求电力电子装置的锁相方法能够捕获正序基波分量的相位,对三相不平衡情况有很强的抑制作用。 (3)锁相环应该能快速检测到电网电压发生相位、频率突变等问题。 (4)要求锁相方法对畸变电压要有很强的抑制作用。 (5)对于一些电力补偿装置如动态电压恢复器,锁相方法不仅要实时检测网侧电压的相位,而且要实时监测网侧电压的幅值变化状况用来判断并决定电力补偿装置的工作模式 1、基于低通滤波器的锁相方法 Karimi-Ghartemani.M和Reza Iravani.A提出了基于低通滤波器的锁相方法,其原理如图所示。三相电网电压从三相静止坐标系转换为两相静止坐标系,利用常见的低通滤波器滤除电网中的谐波干扰,然后对信号进行标么化处理,从而得到电网电压的相位,旋转矩阵R用于补偿滤波器所造成的相位滞后。 原理及R 优点:避免检测过零点带来的问题 缺点:1、在设计低通滤波器时,需要在系统滤波器的鲁棒性和动态响应之间做出折中的选择,较低的截止频率可以抑制系统谐波对相位检测的干扰,但是也相应的降低了系统的响应速度。2、这种方法需求得反三角函数值,计算速度较慢,尤其在系统频率变动和三相电压不平衡时,对畸变电压的抑制作用弱,因此无法正确锁相。 参考文献Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency 2、基于空间矢量滤波器(SVF)的锁相方法 空间矢量滤波器是一种用于空间矢量滤波的新型滤波器,它是基于电网电压的αβ分量相互关系相互影响的基础上提出的。这时候电压矢量可以视为以恒定的幅值和频率旋转,有两个输入量 原理

锁相环原理及应用

锁相电路(PLL)及其应用 自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。 目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。 一、锁相环路的基本工作原理 1.锁相环路的基本组成 锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。 图1 锁相环路的基本组成框图 将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。 在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出

控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。 2.锁相环路的捕捉与跟踪过程 当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。锁相环由失锁到锁定的过程,人们称为捕捉过程。系统能捕捉的最大频率范围或最大固有频带称为捕捉带或捕捉范围。 当锁相环路锁定后,由于某些原因引起输入信号或压控振荡器频率发生变化,环路可以通过自身的反馈迅速进行调节。结果是VCO 的输出频率、相位又被锁定在基准信号参数上,从而又维持了环路的锁定。这个过程人们称为环路的跟踪过程。系统能保持跟踪的最大频率范围或最大固有频带称为同步带或同步范围,或称锁定范围。 捕捉过程与跟踪过程是锁相环路的两种不同的自动调节过程。 由此可见,自动频率控制(AFC )电路,在锁定状态下,存在着固定频差。而锁相环路控制(PLL )电路,在锁定状态下,则存在着固定相位差。虽然锁相环存在着相位差,但它和基准信号之间不存在频差,即输出频率等于输入频率.这也表明,通过锁相环来进行频率控制,可以实现无误差的频率跟踪.其效果远远优于自动频率控制电路. 3.锁相环路的基本部件 1)鉴相器(PD —Phase Detector ) 鉴相器是锁相环路中的一个关键单元电路,它负责将两路输入信号进行相位比较,将比较结果从输出端送出。 鉴相器的电路类型很多,最常用的有以下三种电路. (1)模拟乘法器鉴相器,这种鉴相器常常用于鉴相器的两路输入信号均为正弦波的锁相环电路中。 (2)异或门鉴相器,这种鉴相器适合两路输入信号均为方波信号的锁相环电路中,所以异或门鉴相器常常应用于数字电路锁相环路中。 (3)边沿触发型数字鉴相器,这种鉴相器也属于数字电路型鉴相器,对输入信号要求不严,可以是方波,也可以是矩形脉冲波.这种电路常用于高频数字锁相环路中。 图2 是异或门鉴相器的鉴相波形与鉴相特性曲线。

相关主题
文本预览
相关文档 最新文档