当前位置:文档之家› 中国航空发动机研究院招聘岗位信息表.doc

中国航空发动机研究院招聘岗位信息表.doc

中国航空发动机研究院招聘岗位信息表.doc
中国航空发动机研究院招聘岗位信息表.doc

附件1

中国航空发动机研究院招聘岗位信息表

2020清华大学航空发动机研究院考研考研大纲目录参考书考研经验考研难度解析-盛世清北

2020清华大学航空发动机研究院考研大纲目录参考书考研经验考研 难度解析-盛世清北 航空发动机被誉为“工业皇冠上的明珠”,是世界上公认的核心技术门槛最高、整体结构最复杂的工业产品,反映了一个国家的科技、工业和国防的综合实力。近年来,清华大学多措并举促进航空发动机研究发展。学校已依托航天航空学院、能源与动力工程系、汽车工程系等成立了多学科交叉的航空发动机研发平台,此外,清华大学还承担了航空发动机和燃气轮机等相关项目研究100余项。 揭牌仪式上,清华大学校长邱勇表示,清华大学具有开展航空发动机研究的良好基础,同时积聚了相关的人才和学科支持。航空发动机研究院将立足国家发展前景,聚焦基础科学人才培养,加强与航空产业界紧密合作,共同推动我国航空发动机事业的创新发展。 据介绍,清华大学航空发动机研究院具有工科基础齐全雄厚、国际交流便利及军民融合深入三大优势。研究院计划在2020年完成科研机构设置和100人左右的队伍建设,并利用2025年到2029年五年时间对标国际化的航空发动机先进技术,在部分核心技术上具备比较优势。2030年到2039年能够形成新一代航空发动机创新理论和关键技术,成果产出和转化显著,为“高、远、快、智”飞行器动力提供支撑。 一、招生目录 盛世清北老师解析: 清华大学航空发动机研究院为清华大学2018年12月18日新成立的学院,将通过人才培养、学科支持等途径,进一步加强与产业界深度融合,推动我国航空发动机事业创新发展。 清华大学航空发动机研究院,设计专业有航空宇航科学与技术,其专业研究方向为行家哦那个宇航科学与技术,初试科目①101 思想政治理论②201 英语一或 202 俄语③301 数学一④960 理论力学,复试内容:材料力学。 盛世清北,专注专注清北考研-保研-考博10年品牌,只为报考清华北大硕博考生及清华北

航空发动机发展的瓶颈

中国航空发动机发展的瓶颈 发表日期:2012-11-3 16:32:03 航空发动机一直就是中国的软肋。 从周恩来总理在世时评论中国飞机的“心脏病”开始,到现在50多年了。中国的发动机依然是兵器工业最大的软肋。 不仅仅是你提到的歼击机和大运的涡扇发动机,就是直升飞机的涡轴发动机,中型运输机的涡浆发动机,大型舰船的燃气轮机,中小型舰船和坦克的柴油发动机……无一例外,都是中国的软肋。航空发动机,更是软肋中的软肋。 与美国至少差距30年,什么意思,差一代到一代半吧。这个是事实,没有争议的。 但是另外两个问题就有争议了。一个是这样落后的原因是什么。另一个是,我们究竟什么时候能赶上去。其实这两个问题有内在关系的,搞清楚原因是什么,就更好判断什么时候赶上去。简要提供一些个人的看法,不一定正确。 落后的原因 一:底子太差 新中国建国时,工业基础太差。别说航空发动机,像样的工具钢都没有。要不是朝鲜战争,中国人用大量年轻士兵的无价鲜血去消耗美国的廉价钢铁,换来苏联人把涡轮喷射发动机的制造技术给我们,中国是不可能在1957年就能生产涡喷-5发动机的。 二:航空发动机工业的涉及面太广 虽然同样底子差,同样有文革的挫折,同样有改革开放的机遇,为什么航空发动机就是赶不上来? 对比之下,中国造电冰箱、电视,甚至造手机、雷达、火箭、飞船都慢慢赶上来了:洛阳光电展上曝光的歼击机最新航电系统直追F22,美国人看了也吃一惊;中国空空导弹专家悠然的说,我们距离美国人,也就10年吧,一脸的骄傲自满;美国官方认为,中国的空警2000,在技术体制先进性上超过了美国现有装备一代。真的,兵器上,我们很多东西距离美国的差距就是10年。什么意思,就是至少没有代差。 而航空发动机呢,差一代到一代半。原因在于,航空发动机工业涉及的面太

最新中国高空台建设计划(航空发动机)

世界航空强国" 高空台" 一瞥及二十一 世纪中国" 高空台" 建设计划 航空发动机是飞机的心脏,是提高飞机性能和更新换代的决定因素之一。作为典型的高科技军民两用产品,航空发动机对科学技术和国民经济的发展具有重要的意义,是一个国家科技、工业和国防实力的重要标志。我国至今还没有实现从引进、仿制到自行设计的战略转变,没有一个发动机型号走过自行研制的全过程并装备部队。目前,我国不仅民用航空动力市场几乎已全部被外国占领,而且所有已研制的的军用飞机也是在买装或仿制国外发动机,这种状况不但与我国在世界上有重要影响的大国地位极不相称,而且一旦国际形势突变,或者在周边地区发生局部战争,我空军将因动力受制于人而陷入极大的被动。落后就要挨打! 这种局面令人十分担忧!造成这种局面的原因是多方面的。客现上,航空发动机技术复杂,研制难度大、花钱多、周期长,国家工业和技术基础薄弱;主观上,对航空发动机研制的复杂性和规律性认识不足,技术储备不够,经验少;加之摊子大,战线长,重复建设,造成力量分散,包袱重,投资不足;引进、仿制机种过多又没有良好地消化、吸收和创新,特别是一直比较注重型号研制,而对预先研究、打基础的工作却重视不够。世界肮空动力发展的历史说明,一个国家想成为航空强国,建立强大的、高水平的国家级航空发动机试验条件是十分必要的。 从1937 年德国建立起第一座冲压式发动机高空试验设备起,全世界已有德、美、英、法、前苏联和中国相继建立了包括不同类型的高空台在内的大型航空动力装置试验研究基地几十个,高空试验舱近百个,以及不计其数的部件试验设备,这对世界航空动力装置的快速发展起到了极大的推动作用。 世界各国航空动力装置试验条件建设的发展历程 1、二十世纪40 年代至60 年代中期的蓬勃发展阶段 这一时期,由于航空涡轮喷气发动机的诞生和发展使飞机突破了音障,并很快发展到两倍以上的音速。这样,单从部件试验和海平面试车台的试验结果己难以准确地确定发动机高空性能和工作稳定性。因此,大型试验设备建设在美、英、苏、法等国得到大力发展。 在这段时间内,美国了建立近10 个试验基地,拥有10 座高空台,包括几

航空发动机发展史

航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,

中国全部国产航空发动机的型号及参数

涡喷-5 涡喷-5是沈阳航空发动机厂根据苏联BK-1φ发动机的技术资料仿制的第一种国产涡喷发动机。 涡喷-5是一种离心式?单转子?带加力式航空发动机,属于第一代喷气发动机。首批涡喷-5发动机在1956年6月通过鉴定,开始投入批量生产。截至1985年涡喷-5系列发动机停产,沈阳航空发动机厂和西安航空发动机厂共生产9658台,主要用于米格-15系列和国产歼-5系列战斗机。 涡喷-5发动机的研制成功,标志着中国航空发动机工业已从制造活塞式发动机时代发展到了喷气式发动机的时代,成为了当时世界上为数不多的几个可以批量生产喷气式发动机的国家之一。 涡喷-5发动机净重989公斤,最大推力状态26千牛(2650公斤),加力状态推力37千牛(3800公斤)涡喷-5系列主要有以下改型: 涡喷-5甲:沈阳黎明发动机公司于1957年仿制的ВК-1А发动机,命名为涡喷-5甲。1963年开始转到西安航空发动机公司生产,1965年6月首批涡喷-5甲通过考核验收试车,8月投入批生产,用于轰-5、轰教-5及轰侦-5飞机。 涡喷-5乙:西安航空发动机公司于1966年试制成功,用于米格-15比斯飞机。 涡喷-5丙:西安航空发动机公司于1976年试制成功,用于米格-17飞机。 涡喷-5丁:西安航空发动机公司于1965年试制成功,用于歼教-5飞机。

涡喷-6是沈阳发动机厂在苏制PA-9B喷气发动机基础上仿制并发展而形成的一个发动机系列型号。涡喷-6于1959年7月定型,是中国首型超音速航空发动机,属于轴流式单转子带加力燃烧室的涡轮喷气发动机。1984年沈航首次将中国独创的沙丘驻涡火焰稳定器(北航高歌发明)成功应用于涡喷-6的改进型,彻底解决了PA-9B所固有的振荡燃烧现象。涡喷-6系列发动机是产量最大国产航空发动机,总产量高达29316台,主要用于歼-6系列和强-5系列国产战机,目前仍有相当数量在役。 最主要的是沈阳航空发动机厂研制的涡喷6甲和成都航空发动机厂研制的涡喷6A/B性能: 直径:0.6686 米、长度:2.91 米、净重:708.1公斤 空气流量:43.3 公斤/秒 转速:11150 转/分 增压比:7.14 涡轮前温度:870摄氏度 耗油率:1.63公斤/公斤/小时 推力:3187公斤 推重比:4.59 WP-6为我国首型超音速航空发动机。其压气机由离心式发展至轴流式,技术上是一次重大进步。1984年沈航首次将我国独创的沙丘驻涡稳定性理论(北航高歌发明)成功应用于WP-6甲改进型,彻底解决了PⅡ-9B所固有的振荡燃烧现象。

我国涡扇10航空发动机内幕

我国涡扇10航空发动机内幕 八十年代初期,中国航空研究院606所(中国航空工业第一集团公司沈阳发动机设计研究所)因七十年代上马的歼九、歼十三、强六、大型运输机等项目的纷纷下马,与之配套的研发长达二十年的涡扇六系列发动机也因无装配对象被迫下马,令人扼腕,而此时中国在航空动力方面与世界发达国家的差距拉到二十年之上。面对中国航空界的严峻局面,国家于八十年代中期决定发展新一代大推力涡扇发动机,这就是涡扇10系列发动机。依据装配对象的不同,涡扇10系列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。这里说句题外话,网上有人说涡扇10是在F404 基础上放大而成,性能直逼F414,似乎也不无道理,因为核心机技术来源较多,不能单纯说由那一家发展而来

结构: 涡扇10/10A是一种采用三级风扇,九级整流,一级高压,一级低压共十二级,单级高效高功高低压涡轮,即所谓的3+9+1+1结构结构的大推力高推重比低涵道比先进发动机。黎明在研制该发动机机时成功地采用了跨音速风扇;气冷高温叶片,电子束焊整体风扇转子,钛合金精铸中介机匣;,挤压油膜轴承,刷式密封,高能点火电嘴,气芯式加力燃油泵,带

航空发动机重大专项近期出台 投入高达千亿

航空发动机重大专项近期出台投入高达千亿中国证券报记者日前从有关渠道了解到,备受各界瞩目的航空发动机重大科技专项,日前已经上报国务院,并有望于近期出台。 根据已有信息,该专项预计投入至少千亿元资金支持国产航空发动机的自主研发与制造,这是迄今为止所有重大专项中投资规模最大的一个。 业内人士预计,高达千亿的专项研发资金如果能落实到位,将有效弥补国产飞机发动机自主研发制造能力不足这一长期短板。而随着专项的实施,国内航空发动机市场规模将进一步扩大,市场对于中航工业航空发动机板块的整合预期,也将进一步增强。 政策落地在即 “我们已经开始准备报项目了。”一位业内人士向中国证券报记者透露,该专项由工信部而非早先认为的科技部牵头制定。按照工信部等有关部委要求,目前有航空发动机业务的相关企业正在积极准备项目申报,希望能争取到更多专项资金。“该专项资金预计最先投入到基础研究与材料领域,随后会向生产制造环节逐步倾斜。” 这意味着,从去年开始酝酿的航空发动机重大科技专项,出台时间已经愈发临近。去年11月,两院院士师昌绪向国务院建议,将航空发动机列入国家科技重大专项。今年6月传出消息,由师昌绪牵头提出的“我国航空发动机和燃气轮机工程咨询研究报告”封笔,航空发动机被列为国家重大科技专项已经板上钉钉。

长期以来,飞机制造领域受到发动机自主研发能力不足的困扰。今年7月印发的《“十二五”国家战略性新兴产业发展规划》,将航空装备产业列为高端装备制造产业中的第一个项目,明确提出要突破航空发动机核心关键技术,加快推进航空发动机产业化。 今年9月4日-6日,国务委员马凯、工信部部长苗圩、国资委主任王勇、中航工业总经理林左鸣等一同前往陕西,调研了包括西安航空发动机在内的多家航空企业,这是新中国成立以来国务院领导首次带队对中国航空工业进行为期3天的调研,足以说明国家的重视程度。 “目前业内普遍预期专项资金规模是1000亿元甚至更高,我们现在都等着方案最终出台。”一位买方航空分析师对中国证券报记者表示。 业内人士分析,参照“十一五”有关重大科技专项政策,预计专项方案中除了设立专项资金,支持相关技术装备研制和产业关键共性技术研发外,或还将通过制定相关采购管理办法以及税收优惠政策来鼓励航空发动机的研发制造。 弥补长期短板 在整个飞机制造过程中,航空发动机投入最大、研制周期最长、技术难度最高,是影响整个飞机性能和可靠性的关键所在。因此被誉为“制造业皇冠上的明珠”,也是国内飞机制造业木桶上的一块短板。 飞行器结构力学和复合材料专家、中国工程院院士杜善义早先在接受媒体采访时表示,过去国内航空发动机以引进为主,在此基础上进行发展、改进或仿制。

航空发动机故障诊断技术综述

航空发动机故障诊断技术综述 作者:王英, 沙云东, WANG Ying, SHA Yun-dong 作者单位:沈阳航空工业学院飞行器动力与能源工程学院,辽宁,沈阳,110034 刊名: 沈阳航空工业学院学报 英文刊名:JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期):2007,24(2) 被引用次数:7次 参考文献(12条) 1.钟秉林;黄仁机械故障诊断学 1997 2.李庆杰PW4000发动机振动故障研究[学位论文] 2005 3.胡守仁;余少波;戴葵神经网络导论 1993 4.翟红春;王珍发小波变换在航空发动机故障诊断的应用[期刊论文]-中国民航学院学报 2001(04) 5.苏厚军;杨家军;王润卿基于小波分析的信号检测研究与应用[期刊论文]-武汉理工大学学报 2005(01) 6.龙兵;宋立辉航天器故障诊断技术回顾与展望[期刊论文]-导弹与航天运载技术 2003(03) 7.尚建亮飞机地面空调车齿轮箱的故障诊断[学位论文] 2002 8.吴伟力小波分析理论及其在航空发动机机械故障诊断中的应用[学位论文] 2000 9.张永峰飞行试验中航空发动机振动监测[学位论文] 2003 10.江磊;江凡基于小波神经网络的旋转机械故障诊断[期刊论文]-汽轮机技术 2004(03) 11.张兆宁小波分析、模糊理论及神经网络在电力系统综合自动化中的应用研究[学位论文] 2002 12.Dimitrios Moshoua;Ivo Hostens Dynamic muscle fatigue detection using self-organizing maps 2005(05) 本文读者也读过(10条) 1.欧阳运芳.沈勇.马婧小波神经网络在航空发动机故障诊断中的应用[期刊论文]-航空科学技术2009(6) 2.陈思兵.汤宇红.童万军基于小波和球结构支持向量机的航空发动机故障诊断[期刊论文]-航空科学技术2008(5) 3.马建仓.叶佳佳.MA Jian-cang.YE Jia-jia基于小波包分析的航空发动机故障诊断[期刊论文]-计算机仿真2010,27(2) 4.郑波.朱新宇.ZHENG Bo.ZHU Xin-yu航空发动机故障诊断技术研究[期刊论文]-航空发动机2010,36(2) 5.丁平.白杰基于RBF神经网络的航空发动机故障诊断[期刊论文]-中国民航大学学报2007,25(z1) 6.李华强.费逸伟航空发动机故障诊断技术及其发展[期刊论文]-航空维修与工程2007(5) 7.可成河.巩孟祥.宋文兴.Ke Chenghe.Gong Mengxiang.Song Wenxing某型发动机整机振动故障诊断分析[期刊论文]-航空发动机2007,33(1) 8.马婷婷.郭迎清.Ma Tingting.Guo Yingqing基于离散小波变换的某型航空发动机故障诊断研究[期刊论文]-计算机测量与控制2010,18(2) 9.江龙平.徐可君.隋育松航空发动机故障诊断技术[期刊论文]-航空科学技术2002(2) 10.瞿红春.王珍发小波变换在航空发动机故障诊断中的应用[期刊论文]-中国民航学院学报2001,19(4) 引证文献(7条) 1.徐涛.张勇基于CLIPS的某型航空发动机故障诊断专家系统知识库构建[期刊论文]-电脑知识与技术 2013(14) 2.陈景明.蒋东翔.徐洪志基于模型的双转子-支撑系统快速故障识别方法[期刊论文]-航空动力学报 2013(12) 3.王古常.鲍传美.郑幸.孙烨无人机发动机野外试车系统的研制[期刊论文]-计算机测量与控制 2010(6)

2020年中国航空研究院624所招生简章

2020年中国航空研究院624所招生简章 2016年硕士招生简章 中国航空研究院624所(又名中国燃气涡轮研究院)隶属中国航空工业集团公司,是我国大型航空发动机预先研究中心和综合试验研究基地。现有专业技术人员1200余人(其中工程院院士1人,国家级专家4人,省部级专家21人,省学术与科技带头人5人,研究员48人,高级工程师312人)。拥有比较完整配套的整机试验设备--大型连续气源航空发动机高空模拟试车台(简称高空台),以及大、中型零部件试验设备37台(套),其中1/3的试验设备属于国内领先水平或是独一无二的。高空台(亚洲唯一)在96年被评为'95全国10大科技成就之一,97年荣获全国科技进步特等奖,并确定为原中国航空工业总公司重点试验室。另外还配有比较先进的计算机系统和具有国际先进水平的发动机设计软件。 中国航空研究院624所是国内高性能航空动力装置预先研究的技术抓总单位、航空发动机核心机的总设计单位,已取得各项技术成果1600多项,其中获国家和省部级以上科研成果180多项,部分成果达到国际先进水平。与美、俄、英、法、德、日、加拿大、印度等国建立了国际合作关系,经常进行学术交流和技术合作。 中国航空研究院624所在读硕士、博士研究生140余人,研究生导师46人。设有博士后科研工作站,多年来与北航、西工大、南航等高校共同致力于高层次航空人才的培养。 目录说明 一、工学硕士专业:航空宇航推进理论与工程(14人);航空制造工程(1人) 二、招收的研究生均为定向培养,从录取报到之日起即为我单位职工,免交学费,定期发放生活补贴并根据成绩享受奖学金,毕业后留单位工作,待遇从优。

世界航空发动机发展史

世界航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速

中国研制航空发动机的故事

中国研制航空发动机的故事 这个历史太长了,有50多年,我记的后面的更清楚一些,先从后忘前讲吧——也就是说,先讲涡扇,再讲涡喷 涡扇发动机是在涡喷发动机的基础上加装了风扇和外函道的一种航空动力装置,西方从70年代开始,逐步用涡扇换了涡喷 现在世界上评价第三代战机的一个很重要的标准,就是看你是不是用了涡扇发动机。其实呢,中国研制的起步时间并不是很晚,大概是1962年开始的———— 呵呵——开讲第一种——涡扇5—— 涡扇5,起于1962年,当时有部队(废话,当然是空军)提出一个主意,想用涡喷6改型为涡扇发动机之后,装在H5飞机上,当时的涡扇机是世界上的一个发展方向。各国都在研制自己的第一代产品,其实,当时中国和世界各国站在一个起跑线上,也算跟上了时代的节奏了—— 1963年1月设计方案出来了,反正是涡扇5比涡喷6好用的多了,油耗下降30%,推力也增大了不少 把这种发动机装在轰5上,航程和作战半径增加了30%,是有进步的,黑黑。涡扇5的样机是1965年——不好意思,孩子刚才哭的厉害 接着说——1965年啊,总装出来了,结果呢,风扇叶片不合格,出现断裂,到了1965年7月才解决叶片问题。 到了1970年才试车,71年换了发动机的飞机开始试飞(H5),哈哈,就在这个时候呢,轰5的改装计划被取消了,于是,涡扇5的研制就终止了,第一次歇菜—— 1964年的时候,中国开始研制F9和A6战机,歼9大家听说过吧,强6就是强5的新一代产品,这里我习惯用西方的标示符号来表示中国的战机,于是我用的是F9和A6。 为了适应新的飞机的要求,中国开始研制新的发动机,大家知道,刚才的涡扇5用在轰炸机上,现在的涡扇6用的是战机和攻击机,显然,原先的涡扇5的设计是不能用的,于是64年开始干活,当时设计单位是沈阳航发设计所,当时据说搞了22个方案,设计推力70.6千牛,推重比是6的一款发动机。

航空发动机发展史

航空发动机发展史 航空发动机诞生一百多年来,主要经过了两个阶段:前40年(1903~1945),为活塞式发动机的统治时期;后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋翼,构成所有直升机的动力装置。著名的活塞式发动机有:美国普拉特·惠特尼公司(简称普·惠公司)的“黄蜂”系列星形气冷发动机,气缸7~28个,功率970~2500kW,广泛用于各种战斗机、轰炸机和运输机。 带螺旋桨的活塞式发动机的最大缺点是飞行速度受到限制(800km/h以下)。

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

西安各大研究所待遇(超详细)

很多虫子在此发帖问及研究所待遇情况,在此搜罗一些资料供大家参考,很多都来自互联网,本人曾在以下某研究所工作多年,了解一些行情。(2012年4月以后的数据) 第一,中国航空工业第一集团公司第618所 主要业务:飞控,惯导,光学;主要对口空军。公认西安第一所,确实!大多数部门都不错,基本年总收入超过10万,差点的部门也超过8万。地理位置好,福利不错。工作强度适合工大学生,不是太忙,但也不闲,时不时的加班。建议去。 第二,中国兵器工业集团公司第203研究所(西安现代控制技术研究所)、主要业务:陆军总体单位。陆军兵种基本都涉及到,非常好!人均收入可以说超过了618,由于是总体单位,所以项目很多。南理工,北理工的学生多,工作强度与618相似。地理位置也不错,位于丈八东路上。也可以建议去以下配套单位,收入近今年增幅较大,逐渐与总体单位持平。 中国兵器工业集团公司第204研究所(西安近代化学研究所):含能材料研究,主要面对海陆空常规武器弹药研发,同时具备民用爆破、液晶材料、无弗催化剂、农药等民用材料的研究能力;薪酬待遇含年终奖(1.5万-4万不等),硕士工程师(5-7万/年),博士及高级工程师(6-9万/年),研究员(8-12万/年);中国兵器工业集团公司第205研究所(西安应用光学研究所):光学制导技术研究;薪酬待遇含年终奖(2万-4万不等),硕士工程师(6-7万/年),博士及高级工程师(6-10万/年),研究员(9-12万/年); 中国兵器工业集团公司第206研究所(西安电子工程研究所):兵器电子技术研究;薪酬待遇含年终奖(1万-3万不等),硕士工程师(5-7万/年),博士及高级工程师(6-8万/年),研究员(8-10万/年); 第三, 中国航空工业第一集团公司504所 兵器集团206所主要业务:地面雷达,面向陆军兵种。。。也属于总体单位,人均收入7-9万。福利好!504所主要业务:卫星导航,空间天线等。。。面向空军。。。收入实际没有大家说的那么高人均(也就7-10万),福利也还可以,同学聚会时聊到这两个所:觉得206比504好一些,缺点:都是长安县,优势:房子便宜,两个能去就去,较好。 第四,中电20所,航空631所(并列) 20所主要业务:通讯产品,海军雷达,导航;面向海军,空军。内部计算出的2010年全所平均收入超过7万(不算车间的工人),有分房可能性,工作强度也不大,福利还可以。 631所主要业务:机载计算机产品,面向空军。收入略高于20所,比20所累一点,分房可能性不大。 20,631离得比较近,地理位置都不错,周围学校较多,后代上中小学很方便。总的来说能去就去吧,也不错的。 第五,6院11所,623所,212所,213所 其他不说了,收入基本都是5万,也凑活,没其他offer去这几个所,混个温饱,找个媳妇生个娃,也能混。 中国航空工业第一集团公司第630研究所(中国飞行试验研究院)。 中国航空工业第一集团公司第631研究所(西安航空计算技术研究所);

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

航空发动机发展史

航空发动机发展历程及趋势 1、活塞式发动机时期 早期液冷发动机居主导地位 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 以后,在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架时法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的"斯佩德"战斗机。这种发动机的功率已达130~220kW, 功重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m。 当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。 两次世界大战之间的重要技术发明 在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。 从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普·惠公司先后发展出单排的"旋风"和"飓风"以及"黄蜂"和"大黄蜂"发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研制成功,发动机功率已提高到

航空发动机行业现状及发展趋势预测分析

航空发动机行业现状及发 展趋势预测分析 Prepared on 24 November 2020

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应 的生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中 军用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规 模将突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集 中了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是 一个国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独 立研制航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家, 而全球民用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械 系统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机 领域,以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的 采用极大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重 要参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视, 发动机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发 动机运行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性 能退化情况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部 位及发展趋势,根据具体情况采取必要的维护措施。这类电子状态监视与故障 诊断系统对航空发动机早期故障诊断征兆的及时发现与及时处理具有重要作 用,可以避免相关事故的发生,保障飞行安全,同时还可以“视情维修”,大大 节省维修成本与维修时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新 飞机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动 机参数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

航空发动机原理图文解析

航空发动机原理图文解析 航空发动机原理--螺桨风扇发动机 螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。 螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。 根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。

由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。 同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。 当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的气动设计也是目前研究的难点所在。 -------------------------------------------------------------------------------- 航空发动机原理——涡轮风扇喷气发动机

航空发动机产业全景解析

航空发动机产业全景解析

查行业数据,就用行行查 ? https://www.doczj.com/doc/7518755316.html, 航空发动机行业的发展水平是一个国家工业基础、科技水平和综合国力的集中体现,也是国家安全和大国地位的重要战略保障。 航空发动机是航空器的“心脏”-为航空器提供飞行所需动力的装置,约占到飞机整机价值量的20%~30%。 全球航空发动机主要分为涡扇发动机、涡喷发动机、涡轴发动机、涡浆发动机四类,其中涡扇发动机是目前最为核心的航空发动机。 目前,世界上能够独立研制高性能军用航空发动机的国家只有美、俄、英、中等少数几个国家,民用领域则由美、英两国垄断,技术工艺门槛较高。 中国的航空发动机历经“引进—仿制—自主研发”,目前已全面进入涡扇阶段。

资料来源:《航空发动机—飞机的心脏》 根据空天界发布的航空发动机产业现状与趋势,2019年各类航发总产量14144台,总产值728亿美元,其中涡扇发动机6322台,数量占比为44.7%,其高昂的制造价格使得其价值占比在90%以上。 战斗机(例如F-35、F-22、歼-20、歼-31)和民航客机(C919、波音、空客的绝大多数客机),都采用的是涡扇发动机,军用战斗机多采用小涵道比,民用客机多为大涵道比。 预计未来15年间航发生产结构大致稳定,总产量23.8万台,总价值1.3万亿美元,其中涡扇发动机11万台,总价值占比92.9%。 资料来源:民生证券

涡扇发动机:军民用飞机主要动力 涡扇发动机由涡轮喷气发动机发展而成,在核心机基础增加了风扇和低压涡轮。由风扇、外涵道、压气机、燃烧室和涡轮组成,涡扇发动机相当于是涡喷发动机加上风扇及其外涵道的部分。 20世纪60年代出现风扇化热潮,70~80年代以后涡扇发动机高速发展,开始取代涡喷发动机成为军民用飞机的主要动力,分别向小涵道比的军用加力发动机和大涵道比的军民共用发动机两个方向发展。 涵道比(Bypass ratio,简称BPR)是指外涵道与内涵道空气流量之比,又称为流量比,是影响涡扇发动机性能好坏的一个重要参数。高涵道比涡轮风扇发动机的迎风面积大,不宜于作超声速飞行,因此一般战斗机用的加力涡轮风扇发动机的涵道比一般小于1.0。 目前除了尚未退役的部分二代战斗机用涡喷发动机外,大多数已被涡轮风扇发动机所取代,当前小型涡喷发动机主要应用于中高空无人机、靶机和弹道导弹领域。 根据战斗机的性能,现役及在研的战斗机的代数可以分为五代,与之对应的航空发动机也被划分为五代。当前,发达国家装备主战机种是第三代战斗机,未来将逐步过渡到四代战机。 第五代涡扇发动机出现在21 世纪初,以美国的F135 和英、美联合研制的F136 发动机为代表,推重比为12-13。 目前,在国际市场上,大型飞机发动机的研制主要依赖GE、PW和R&R三大公司,各公

相关主题
文本预览
相关文档 最新文档