当前位置:文档之家› 变压器短路故障原因分析及处理

变压器短路故障原因分析及处理

变压器短路故障原因分析及处理
变压器短路故障原因分析及处理

变压器短路故障原因分析及处理

杨卫钢

上海高桥捷派克石化工程建设有限公司

摘要:在变压器事故中,发生概率较高,对设备威胁较大的是变压器短路事故,特别是变压器低压侧发生短路故障,现就对短路故障后的原因分析和处理方法予以阐述。

关键词:变压器短路;事故;处理

引言

随着电力事业的飞速发展与社会对电力供应可靠性的要求的提高,保证供电质量是每个运行、检修人员应尽的义务。电力变压器是电力系统电网安全性运行的重要设备,是输变电系统的心脏。电力变压器短路故障是所有故障中较为严重的一种。

1变压器短路故障因素分析

1.1铁芯和夹件局部短路过热(有的兼有多点接地)

1.1.1紧固螺栓夹件磁铁芯是铁芯局部短路

1.1.2穿芯螺栓绝缘破裂或炭化了引起铁芯局部短路

1.1.3焊渣或其他金属异物引起局部短路

1.1.4穿芯螺母座套过长

1.1.5接地片过长,紧贴铁芯引起局部短路

1.1.6上下铁轭拉杆端头锁定螺母松动

1.2高压匝层间电弧放电

1.2.1接地不良,累计或操作过电压作用

1.2.2 绝缘严重受潮

1.2.3绝缘裕度不够(如薄绝缘);电压器出口短路事故

1.3 低压匝层箱短路放电,低压相间短路放电

1.3.1匝间绝缘裕度不够或绝缘老化

1.3.2雷击或操作过电压的作用

1.3.3 接头焊接不良

1.3.4 出口短路冲击

1.4保护系统有死区,动作失灵,导致变压器承受稳定短路电流作用时间长,在成绕组变形,粗略统计结果表明在遭受外部短路时,因不能不时跳闸而发生损坏的变压器占短路损坏事故的 %

1.5 变压器在遭受突发短路时,高低压侧都将受到很大的短路电流冲击,在断路器来不及断开的很短时间内,短路电流产生与电流平方成正比的电动力将作用与变压器的绕组上,此电动力可分为辐向力和轴向力,在短路时,作用在绕组上的辐向力将使高压绕组受到张力,低压绕组受到压力,由于绕组为圆形,圆物受压力比受张力更容易变形。因此,低压绕组更容易变形。在突发短路时产生的轴向力使绕组压缩、扭曲、鼓包和匝间短路。使高压低压绕组发生轴向位移,轴向力也作用于铁芯和夹件。

因变压器在遭受突发短路时最容易发生变形的是低压绕组和平衡绕组,后使高中压绕组、铁芯和夹件。所以,变压器短路事故的拉闸主要是检查绕组、铁芯、夹件以及其它部件。

2变压器遭受短路故障后的试验及检查

由于变压器短路时,在电动力作用下,绕组同时受到压拉、弯曲等各种力的作用,其造成的故障有时较隐蔽,不容易检查和修复,所以短路故障后对绕组情况应予重点检查。

2.1变压器油及气体分析

变压器遭受短路冲击后,在气体继电器内部会积聚大量气体,因此在变压器事故后可收取继电器内的气体和对变压器内部的油进行化验分析,可判断事故性质。

2.2 变压器直流电阻的测量

根据变压器直流电阻的测量值来检查绕组的直流电阻不平衡率与以往测量值相比较,能有效地考察变压器绕组受损情况。例如,某台变压器短路事故后低压侧A相直流电阻增加了约10%。因此判断绕组可能有断股情况,后经绕组吊出检查,发现A相绕组断股。

2.3变压器绕组绝缘电阻测量

在变压器检修前后,以及干燥时应用2500V摇表测各绕组对地以及绕组之间

的绝缘电阻吸收比,绕组的绝缘电阻通常应大于500MΩ且不应低于初次测得值的70%。按电力变压器运行规程的要求,对油浸电力变压器绕组的绝缘电阻的允许值见下表,合格与否应以浸入油中所测得的数值为准。注油后应静放5~6h再进行测量。

油浸电力变压器绕组的绝缘电阻允许值单位:MΩ

2.4 变压器绕组电容量的测量

绕组的电容由绕组匝间、层间及饼间电容和绕组发电容构成。比电容和绕组与铁芯及地的间隙、绕组与铁芯的间隙、绕组匝间、层间及饼间间隙有关。当绕组变形时,一般是S形弯曲,这就是导致绕组对铁芯的间隙距离变小,绕组对地的电容量将变大,而且间隙越小,电容量变化越大。因此绕组的电容量可以间接地反映绕组的变形程度。

2.5 吊罩后的检查

变压器吊罩后,如果检查出变压器内部有熔化的铜渣或铝渣或高密度电缆纸的碎片,则可判断绕组发生了较大程度的变形和断股等。另外,从绕组垫块移位或脱落、压板等位、压钉位移等也可以判断绕组的受损程度。

2.6铁芯与夹件的检查

变压器的铁芯应具有足够的机械强度,铁芯的机械强度是靠铁芯上的所有加紧件的强度及连接件来保证的。当绕组产生电动力时,绕组的轴向力将被夹件的反作用力抵消。如果夹件、拉板的强度小于轴向力时,夹件、拉板和绕组将受到损坏。因此,应仔细检查铁芯、夹件、拉板及其连接件情况。

2.6.1 检查铁芯上铁轭芯片是否有上下窜动情况。

2.6.2 应测量穿芯螺杆与铁芯的绝缘电阻,检查穿芯螺杆外套是否受损,检查拉板、拉板连接件是否损坏。

2.6.3 因在变压器短路时,压板与夹件之间可能发生位移。使压板与压钉上铁轭的接地连片拉断或过流烧损,所以还应该检查绕组的压钉及上铁轭的接地连接是否可靠。

3 变压器短路故障处理中应注意的事项

在彻底查清事故原因后应对变压器做认真、仔细的检修,还应注意一下几点

3.1 更换绝缘件时应保证绝缘性能,且符合要求方可使用。特别对引起支架木地的绝缘应引起重视。木块在安装前应置于80℃左右的热变压器油浸渍一段时间,以保证木块的绝缘良好。

3.2变压器绝缘测试应在变压器注油静止24小时后进行,由于某些受潮的绝缘件在热油浸泡较长时间后,水分会扩散到绝缘件表面。如注油后就试验往往检查不出来。例如一台3

4.5MVA的110KV变压器低压侧处理时更换了10KV铜牌的支架木块,变压器注油后试验一切正常。10KV低压侧对铁芯、夹件及地电阻减小为约1M?。后经吊罩检查,发现10KV铜排的支架木块绝缘非常低,因此绝缘测试应在变压器注油静止24小时候进行较为可靠。

3.3铁芯回装应注意其夹角,并不是测量油道间绝缘。特别要注意油道处的芯片夹角,要防止芯片搭接造成芯片多点接地。例如一台120MVA的220KV变压器,在低压侧更换绕组回装上铁轭时,由于回装时没注意芯片夹角,又没有不时测量油道间绝缘,安装完毕后测量油道间绝缘为0,最后花费了较长的时间才找到是由于铁芯芯片尖角短接了油道。

3.4更换抗短路能力较强的绕组材料,改进结构,变压器绕组的机械强度主要是由下面两个方面决定的:一是由绕组自身结构的因素。二是绕组内径侧的支撑及绕组轴向压紧结构和拉板、夹件等制作工艺所决定的。当前,大多数变压器厂家采用半硬铜线或自粘性换位导线来提高绕组的自身抗短路能力,采用质量更好的硬纸板筒或增加撑条的数量来提高绕组受径向力的能力,并采用拉板或弹簧钉等提高绕组受轴向力的能力。

3.5变压器的干燥,由于受变压器短路冲击后一般需要较长时间进行检修,为防止变压器受潮,可采取两种措施

3.5.1一是在每天收工前将变压器扣罩,使用真空泵对变压器进行抽真空,以抽去变压器器身表面的游离水。第二天开工时,使用干燥的氮气或干燥的空气??真空,一般变压器在检修后热油循环24小时即可直接投入运行。

3.5.2二是每天收工后,对变压器采取防雨措施,在工作全部完工后,对变压器采用热油喷淋法进行干燥,这种方法一般需要7~10天的时间。

结束语

以上

参考文献

操敦奎许淮宗阮国方变压器运行维护与故障分析处理中国电力出版社 2008

变压器突发短路故障的缺陷分析

变压器突发短路故障的 缺陷分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV 及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目

1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。 1.2 绝缘电阻试验 变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。 1.3 绕组直阻试验

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

变压器短路事故分析

变压器短路事故分析 变压器事故时有发生,而且有增长的趋势。从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。 变压器经常会发生以下事故:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。变压器短路损坏的主要形式有以下几种: 1、轴向失稳。这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形。 2、线饼上下弯曲变形。这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。 3、绕组或线饼倒塌。这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。 4、绕组升起将压板撑开。这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。 5、辐向失稳。这种损坏主要是在轴向漏磁产生的辐向电磁力作用

下,导致变压器绕组辐向变形。 6、外绕组导线伸长导致绝缘破损。辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。 7、绕组端部翻转变形。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。 8、内绕组导线弯曲或曲翘。辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

全国110kV及以上等级电力变压器短路损坏事故统计分析_金文龙

全国110kV及以上等级 电力变压器短路损坏事故统计分析 金文龙 陈建华 国家电力公司安全运行与发输电部,100031北京 李光范 王梦云 薛辰东 国家电力公司电力科学研究院,100085北京清河 STATISTICS A ND ANALYSIS ON POWER TRA NFORMER DAMAGES CAUSED BY S HORT-CIRCUIT FAULT I N110kV A ND HIGHER VOLTAGE CLASSES Jin Wenlong Chen Jianhua Department of Safety Operatio n,Genera tion and Tra nsmissio n,Sta te Pow er Co rpora tion of China Beijing,100031China Li Guang fa n Wang Meng yun Xue Chendong Electric Pow er Resea rch Institute,State Pow er Co rpo ra tion o f China Beijing,100085China ABSTRAC T According to the information on transformer faults provided by major electric pow er companies in China from1990to1998,the statistics and analysis on the trans-former damages caused by short-circuit faults in110kV and higher voltage classes are carried out.The general situation of high capacity pow er transformer damage caused by short-circuit is summarized,the feature and regular patterns of these faults are put forw ard.The result of analysis can be used as a good guidance of improving pow er transformer se-cure operation and provides an objective foundation for the manufacturers of high capacity anti-break-down transformers in China. KEY W ORDS pow er transformer;short-circuit fault;dam-age of transformer 摘要 根据1990~1998年全国各网省(市)电力公司提供的变压器事故统计数据,对全国110kV及以上电压等级变压器的短路损坏事故进行分析,总结了全国大型电力变压器的短路事故特点和规律,为运行部门提高设备安全运行管理水平、变压器制造厂提高设备抗短路能力,提供了依据。 关键词 变压器 短路事故 统计分析 1 前言 通过历年对全国电力变压器运行情况和事故的统计分析,发现因外部短路故障引起的设备损坏事故逐年增多。截止1996年底,全国110kV及以上等级电力变压器因外部短路故障造成损坏的事故达到事故总数的50%。扼制此类事故的上升势头,已成为提高电力变压器安全运行水平的关键。 本文统计的因短路事故造成损坏的变压器共有145台。包括:各网省电力公司报送的1990~1996年全国110kV及以上等级事故变压器中因外部短路损坏的变压器124台;由19个网省(市)电力公司于1998年8~10月报送的110kV及以上等级的短路损坏变压器21台(实际上报数为62台,但其中41台变压器在1990~1996年报送样本中已出现过)。 按各网省电力公司历年上报的数据,全国110kV及以上等级变压器在1990~1996年期间,共发生事故409台次,事故总容量为32306MV A;其中因短路损坏的变压器共124台次,容量8432.6MV A。 1990~1996年间变压器短路损坏事故台次和容量见图1、图2。图3为1990~1996年间变压器短路损坏事故占总事故的百分比。 图1 1990~1996年间每年变压器短路损坏台次 Fig.1 Transf ormer damaged by short-circuit between1990and1996(by sets) 自1990年以来,110kV及以上等级变压器的短路损坏事故明显增多。从最初每年两三台到1995、1996年的29台。到1996年,全国110kV及以上电压等级变压器的短路损坏事故台次已经占统计总事故台次的50%。因外部短路引起变压器损坏的事故已成 第23卷第6期1999年6月 电 网 技 术 Po we r System T ech no lo gy V ol.23N o.6 Jun. 1999 DOI:10.13335/j.1000-3673.pst.1999.06.021

变压器突发短路故障的缺陷分析详细版

文件编号:GD/FS-8626 (解决方案范本系列) 变压器突发短路故障的缺 陷分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

变压器突发短路故障的缺陷分析详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经

验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目 1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

大型电力变压器短路事故统计与分析_王梦云

大型电力变压器短路事故统计与分析王梦云 凌 愍(电力工业部电力科学研究院,北京100085) 摘要:针对1991~1995年110kV及以上电压等级变压器的事故情况,统计分析了因外部短路引起电力变压器损坏事故的主要原因,提出了减少这类事故的措施。 关键词:变压器 短路 事故 统计 分析 Statistics and Analysis on Short-Circuit Faults of Large Power Transformers Wang Mengyun and Ling Min Elect ric Power Research Insti tute,Ministry of Electric Pow er,Beijing100085 Abstract: Based on the faults of110kV pow er transformers and above occur red in 1991~1995,the main reasons of faults caused by ex ter nal short-circuit are analyzed s tatistically in this paper,and th e steps taken to decrease th ese faults are presented. Key words: Transformer,Short-circuit,Fault,Statistics,Analysis 1 前言 电力变压器在电力系统中运行,发生短路是人们竭力避免而又不能绝对避免的,特别是出口(首端)短路,巨大的过电流产生的机械力,对电力变压器危害极大。因此,国家标准GB1094和国际标准IEC76均对电力变压器的承受短路能力作出了相应规定,要求电力变压器在运行中应能承受住各种短路事故。然而,近五年来对全国110kV及以上电压等级电力变压器事故统计分析表明,因短路强度不够引起的事故已成为电力变压器事故的首要原因,严重影响了电力变压器的安全、可靠运行。 本文就因外部短路造成电力变压器损坏事故的情况作一统计分析,进而提出了减少这一类事故的措施,试图以此促进制造厂对电力变压器产品的改进和完善,同时促使运行部门进一步提高运行管理水平。2 大型电力变压器短路事故情况根据1991~1995年的 不完全统计,全国110kV及以上电压等级电力变压器共发生事故317台次,事故总容量为25348.6MV A。以台数计的平均事故率为0.83%,以容量计的平均事故率为 1.10%。在这些事故中,因外部短路引起电力变压器损坏的有93台次,容量为6677.6MV A,分别占同期总事故台次的29.3%,占总事故容量的26.3%(详见表1)。 由表1不难看出,电力变压器短路强度不 表1 1991~1995年全国电力变压器短路事故 台次及容量统计 第34卷 第10期1997年10月 变压器 TRANSFORM ER Vol.34 No.10 Octo ber 1997

变压器的常见故障分析及维护措施实用版

YF-ED-J1765 可按资料类型定义编号 变压器的常见故障分析及维护措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变压器的常见故障分析及维护措 施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要: 在中国高速的现代化发展中,电 力工业的安全运行起着关键作用。本文主要从 变压器的常见故障的原因进行分析,并对变压 器的维护提出一点建议。 关键词:变压器故障原因输电线路 变压器是电力系统的重要设备,其状态好 坏,直接影响电网的安全进行。由于变压器在设 计、制造、安装和进行维护等方面原因使绝缘 存在缺陷,抗短路能力降低,因此近年来主变的 事故较多,其中威胁安全最严重的为绕组局部放

电性故障。根据国家电力公司对 2001 年全国110kV 及以上主变事故的调查,得知绕组的事故占总事故台数的 74.6%(福建省网为80%)。因此,提高变压器安全运行是极其重要的。 1 变压器故障原因分析 多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。 1.1 雷击 雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于

变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。 (1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 (2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。 (3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。 (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。 (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

变压器常见故障分析

电力变压器状态监测与故障诊断 内容摘要; 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文简要介绍了电力变压器的分类和结构组成,并针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,分析了这些故障对变压器的危害及针对这些故障进行了分析,对消除故障的方法进行了归纳总结,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 特别介绍我在工作中遇到的一些变压器故障(局部放电)进行的探索及通过一些方法进行认证的过程。 关键词:变压器、故障诊断、故障处理、局部放电

目录 内容摘要 ............................................................ I 引言 (1) 1 电力变压器简要介绍 (2) 1.1 电力变压器的分类 (2) 1.2 电力变压器的主体结构 (2) 1.2.1 油浸电力变压器 (2) 1.2.2 干式变压器 (3) 2 电力变压器常见的故障类型及故障产生原因 (4) 2.1 变压器发生故障的原因 (4) 2.1.1 制造工艺存在缺陷 (4) 2.1.2 、缺乏良好的管理及维护 (5) 2.1.3 、绝缘老化 (5) 2.2 变压器故障按严酷程度分类 (5) 2.3 变压器故障按部位分类分析 (5) 2.3.1 、绕组故障分析 (5) 2.3.2 、铁心故障分析 (6) 2.3.3 、分接开关故障分析 (6) 2.3.4 、引线故障分析 (7) 2.3.5 、套管故障分析 (7) 2.3.6 、绝缘故障分析 (7) 2.3.7 、密封不良 (8) 2.4 从变压器的异常声音判断故障 (8) 2.5 变压器温度异常导致原因 (9) 2.6 喷油爆炸导致原因 (10) 2.7 油位显著下降及严重漏油导致原因 (10) 2.8 油色异常,有焦臭味导致原因 (10) 3 变压器中的局部放电的预防及局部放电产生后处理 (11) 4 结论 (16) 参考文献: (17)

变压器短路损坏的常见部位(正式版)

文件编号:TP-AR-L9930 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 变压器短路损坏的常见 部位(正式版)

变压器短路损坏的常见部位(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以下几种。 1.对应铁轭下的部位 该部位发生变形原因有: (1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大; (2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变

形; (3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。 2.调压分接区域及对应其他绕组的部位 该区域由于: (1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象; (2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

配电变压器常见故障分析

何金奎 (中铝山西分公司氧化铝一分厂,山西河津043300) 摘要:本文介绍了配电变压器常见的一些故障,并提出了相应的判断方法,为准确判定变压器常见故障提供了一定的借鉴。 关键词:变压器;故障判断; 响声;油温 配电变压器是电力设备的主体设备,关系到电网安全经济运行。随着系统容量的增大和电网规模的扩大,配电变压器故障给电网安全经济运行带来的影响越来越大;系统的稳定和经济运行也对变压器提出了越来越高的要求。因此,对配电变压器进行在线检测,及时掌握设备的状态,一直是电力工作者的梦想和追求。变压器的状态检测,就是通过对有关参数、信号的采集和分析,生产主管部门立即组织人员进行综合分析,诊断设备的状态,减少损失, 避免恶性事故的发生, 将传统的定期维护转为状态维护,从而提高电网的安全经济运行,改善对用户的服务质量。对变压器常见在线故障现象可通过以下几方面判断分析,进而采取相应的措施。 1 从变压器的声音判断故障 其方法是用木棒的一端顶在变压器的油箱上,另一端贴近耳边仔细听声音,据其异常声音可判断以下故障: (1)变压器过负荷:变压器过负荷严重时,会发出很高而且沉重的“嗡嗡”声。 (2)电压过高:当电源电压过高时,会使变压器过励磁,响声增大且尖锐。 (3)绕组发上短路:音响中夹有水的沸腾声,发出"咕噜、咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。此时,应立即停止变压器运行,进行检修。 (4)调压分接开关不到位或接触不良:当变压器投入运行时,分接开关不

到位,将发出较大的“啾啾”响声,严重时造成高压熔丝熔断;如果分接开关接触不良,就会产生轻微的“吱吱”火化放电声,一旦负荷加大,就有可能烧坏分接开关的触头。遇到这种情况,要及时停电修理。 (5)掉入异物和穿芯螺杆松动:当变压器夹紧铁心的穿芯螺杆松动,铁心上遗留有螺帽零件或变压器中掉入小金属物件时,变压器将发出“叮叮当当”的敲击声或“呼…呼…”的吹风声以及“吱啦、吱啦”的象磁铁吸动小垫片的响声,而变压器的电压、电流和温度却正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (6)变压器的铁心接地线断:当变压器的铁心接地断线时,变压器将产生“哗剥哗剥”的轻微放电声。 (7)内部放电:送电时听到“噼啪噼啪”的清脆及铁声,则是导电引线通过空气对变压器外壳的放电声;如果听到通过液体沉闷的“噼啪”声,则是导体通过变压器的油面对外壳的放电声。如属绝缘距离不够,则应停电吊心检查,加强绝缘或增设绝缘隔板。 (8)变压器高压套管脏污或裂损:当变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面闪络,听到“嘶嘶”或“哧哧”的响声,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。 (9)外部线路断线或短路:当线路在导线的连接处或T接处发生断线,在刮风时时接时断,接触时发生弧光或火花,这时变压器就发出像青蛙的“唧哇、唧哇”的叫声;当低压线路发生接地或出现短路事故时,变压器就发出“轰轰”的声音;如果短路点较近,变压器将发出像老虎的吼叫声。 (10)声响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些

相关主题
文本预览
相关文档 最新文档