(整理)实验六函数的极值.
- 格式:doc
- 大小:333.50 KB
- 文档页数:9
函数求极值的方法总结函数求极值的方法总结数学主要以函数为研究对象,而函数极值无论在初等数学还是在高等数学里都是函数部分的一个重要问题,下文是函数求极值的方法,希望对同学们有帮助!一、利用二次方程的判别式求极值在求某一类分式函数的极值时,若其分子或分母是关于x的二次式,可将其变为关于x的一元二次方程,根据x在实数范围内有解,由判别式求的。
例1、求函数y=求函数极值的若干方法的极值。
解:将原函变形为关于x的二次方程(y-1)x 求函数极值的若干方法 -2yx-3y=0∵x∈R,且x≠3,x≠-1,∴上方程在实数范围内一定有解。
△= (-2y) 求函数极值的若干方法 -4 (-3y)(y-1)= 4y(4y-3)≥0解之得y≤0 或y≥ 求函数极值的若干方法这里虽然y无最大(小)值,但对应于y=0和y= 求函数极值的若干方法的x分别为x=0和x=-3,所以当x=0时,y有极大值0,当x=-3时,y有极小值求函数极值的若干方法。
例2、求函数y= 求函数极值的若干方法的值域。
解:将原函数变形得:y+yx 求函数极值的若干方法 =2x∵x∈R,∴△= 4-4y 求函数极值的若干方法≥0,解之得:-1≤y≤1∴函数y= 求函数极值的若干方法值域为[-1,1]由上面两例可以看出,用二次方程的判别式求函数的极值时,实际上就是将y看作x的系数,利用函数的定义域非空,即方程有解,将问题转化为解一元二次不等式。
但要注意的是:在变型过程中,可能会将x的取值范围扩大,但所求函数的极值一定在不等式的解集内,此时,要注意检验,即招2出y取极值时的x是否有意义,若无意义必须舍去,再重新考虑其极值。
二、利用倒数关系求极值对于有些分式函数,当其分子不含变量时,可由分母的极值来求整个函数的极值。
例3、求函数y=2- 求函数极值的若干方法的最小值。
解:∵x 求函数极值的若干方法 -2x+6 = (x-1) 求函数极值的若干方法 +5>0∴函数的定义域为一切实数,又由x 求函数极值的若干方法-2x+6=(x-1) 求函数极值的若干方法 +5 知当x=1时,求函数极值的若干方法取最小值求函数极值的若干方法 ,∴ 求函数极值的若干方法取最大值求函数极值的若干方法 ,此时 y=2- 求函数极值的若干方法取最小值 2- 求函数极值的若干方法 ,即当x=1时,有y的最小值是 2- 求函数极值的若干方法。
研究函数的极值与最值问题在数学中,研究函数的极值和最值问题是非常重要的。
通过研究函数的极值和最值,我们可以了解函数的性质,并解决许多实际问题。
一、极值问题函数的极值是指在一定范围内的最大值或最小值。
为了求得函数的极值,我们需要先求出函数的导数,然后令导数为零并解方程,得到极值对应的自变量值。
接下来,可以通过代入自变量值进入原函数来求得极值。
举个例子,考虑函数 f(x) = 2x^3 - 3x^2 - 12x + 4 在区间 [-2, 3] 上的极值问题。
首先,我们求得导数 f'(x) = 6x^2 - 6x - 12。
令 f'(x) = 0,解方程可以得到x = -1 和 x = 2。
接着,我们将这两个值代入原函数 f(x) 中,可以得到 f(-1) = -7 和 f(2) = 6。
所以,在区间 [-2, 3] 上,函数 f(x) 的最小值为 -7,对应的自变量 x = -1,函数 f(x) 的最大值为 6,对应的自变量 x = 2。
二、最值问题函数的最值是指函数在整个定义域内的最大值或最小值。
为了求得函数的最值,我们需要先求得函数的导数,并研究其在定义域内的增减性以及边界情况。
根据导数和边界的关系,可以找到函数在定义域内的最值。
以函数 g(x) = x^2 + 4x - 3 为例,我们可以求得导数 g'(x) = 2x + 4。
通过观察导数的符号,我们可以发现在 x < -2 时,导数为负数,表示函数 g(x) 单调递减;在 x > -2 时,导数为正数,表示函数 g(x) 单调递增。
由于函数 g(x) 是一个二次函数,我们可以知道当 x 趋近无穷大或无穷小时,函数的值无限增大,因此函数g(x) 在无穷大时没有最大值。
另外,函数 g(x) 在定义域内都是连续的,所以可以确定函数 g(x) 存在最小值。
为了找到函数 g(x) 的最小值,我们可以考虑其导数为零的情况。
实验六 函数极值及零点的求解一、实验目的熟悉函数极值及零点的求解方法及相关指令二、实验原理1. 函数的极值的求解全局极小值:绘制函数曲线,粗略观察全局极小值范围,然后在此范围内利用下面的局部极小值求解函数求极小值。
局部极小值:fminbnd 函数:只能用于一元函数极小值求解,调用格式为[x,fval,exitflag,output]=fminbnd(fun,x1,x2,options)fun 为待求解的函数,可以用字符串、内联对象、匿名函数或函数文件句柄表达,x1,x2为求解时自变量的取值区间。
x 为搜索到的最小值对应的自变量值,fval 为函数最小值,exitflag 返回是否搜索到最小值标志,output 给出优化算法及迭代次数等信息。
fminsearch :一元或多元函数极小值求解,调用格式为[x,fval,exitflag,output]=fminsearch(fun,x0,options)x0是由各变量构成的搜索起点,也可以是多个搜索起点构成的矩阵,每一列代表一个搜索起点,此时找到多个极值。
fval 为搜索到的单个极小值或多个极值中最小的那个函数值。
其他参量与fminbnd 函数参量含义相同。
2.函数零点的求解fzero 函数:只能用于求解一元函数零点,调用格式为[x,fval]=fzero(fun,x0)fun 是字符串、内联对象、匿名函数或函数文件句柄表达的函数式,求解函数式等于零时的解,x0为搜索范围或在其附近搜索解。
fsolve 函数:可用于求解一元或多元函数零点,调用格式为[x,fval]=fsolve(fun,x0)求解多元函数零点时,各变量需写成一个列向量作为一个变量。
参数与fzero 含义及使用方法一致。
三、实验内容及步骤1.求函数5.08.1)2cos(5.1))5(sin()(206.02++-=t t t e t t f t 在区间[-5,5]中的最小值点。
2. 求0))sin(sin(105.02.0=-+--t e t t 的实数解。
函数的极值与最值的求解(导数法)函数的极值与最值是数学中重要的概念,它们在数学建模、优化问题等方面具有广泛的应用。
在本文中,我们将介绍如何使用导数法求解函数的极值与最值问题。
一、函数的极值与最值在介绍如何求解函数的极值与最值之前,我们首先需要明确这两个概念的定义。
对于函数f(x),如果存在一个区间I,对于区间内的任意x,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么f(x0)就是函数在区间I内的极小值(或极大值)。
而函数f(x)在整个定义域内的最小值和最大值则被称为函数的最小值和最大值。
二、导数法求解极值与最值导数法是求解函数极值与最值常用的方法之一。
通过求解函数的导数和判断导数的正负,可以找到函数的极值点及其对应的极值。
1. 求解函数的极值点首先,我们需要求解函数f(x)的导数,并令导数等于零,即f'(x)=0。
解这个方程可以得到函数的临界点(即导函数为零的点),也就是可能的极值点。
2. 判断极值类型在求得了函数的临界点之后,我们需要判断每个临界点对应的极值类型,即是极小值还是极大值。
我们可以通过求解导数的二阶导数来判断,即求解f''(x),其中f''(x)表示函数f(x)的二阶导数。
若f''(x) > 0,则说明该临界点对应的极小值;若f''(x) < 0,则说明该临界点对应的极大值;若f''(x) = 0,则需要进行其他方法进一步判断。
3. 比较端点值除了求解临界点之外,我们还需要比较函数在区间的端点值,并找出其中的最大值和最小值。
三、实例分析为了更好地理解导数法求解极值与最值的过程,我们举一个实例来进行说明。
假设我们要求解函数f(x)=x^3-3x^2+2x在区间[-1, 3]的极值和最值。
1. 求解导数和临界点首先,求解函数f(x)的导数,得到f'(x)=3x^2-6x+2。
函数的极值知识点总结
函数的极值是数学中一个重要的知识点,它在微积分和数学建
模中起着关键作用。
极值包括最大值和最小值,下面我将从定义、
求解方法以及应用等多个角度对函数的极值进行总结。
首先,函数的极值是指在定义域内取得的最大值和最小值。
具
体来说,对于函数f(x),如果存在使得f(x)≥f(x0)(或
f(x)≤f(x0))成立的x0,那么f(x0)就是函数f(x)的最大值(或
最小值)。
这里需要注意的是,极值点可以是函数的端点,也可以
是函数的驻点(即导数为0的点)。
其次,求解函数的极值可以通过导数的方法来进行。
首先,找
出函数的驻点,即求解f'(x)=0的点,然后通过一阶导数的符号变
化来判断极值的情况。
具体来说,如果f'(x)在x0的左侧由正变负,那么x0是函数的极大值点;如果f'(x)在x0的左侧由负变正,那
么x0是函数的极小值点。
需要注意的是,这只是判断极值的充分条件,还需要验证端点的情况。
此外,函数的极值在实际问题中有着广泛的应用。
比如在经济
学中,利润函数的极大值可以帮助企业确定最优产量;在物理学中,
某些物理量的最大值可以对问题进行优化等等。
综上所述,函数的极值是数学中一个重要的知识点,通过对其定义、求解方法以及应用的全面了解,可以更好地理解和应用函数的极值。
希望以上总结对你有所帮助。
函数的极值与最值求解的方法和步骤在数学中,函数的极值与最值是研究函数性质的重要内容之一。
通过求解函数的极值与最值,我们可以找到函数的最高点和最低点,从而更好地理解函数的特性。
本文将介绍一些常见的方法和步骤,帮助读者更好地理解和应用这一概念。
一、函数的极值与最值的定义在开始讨论求解方法之前,我们首先需要明确函数的极值与最值的概念。
对于定义在某个区间上的函数f(x),如果存在一个点c,使得在c的邻域内,对于任意的x都有f(x)≤f(c) 或f(x)≥f(c),那么我们称c为函数f(x)的极值点。
如果函数在整个定义域上的极值点中有一个最大值或最小值,那么我们称之为函数的最值。
二、求解函数极值与最值的方法1. 导数法导数法是求解函数极值与最值的常用方法之一。
通过求解函数的导数,我们可以找到函数的极值点。
具体步骤如下:(1)求出函数f(x)的导函数f'(x);(2)解方程f'(x)=0,求得函数的驻点;(3)通过二阶导数判别法,判断驻点是极大值点还是极小值点;(4)将驻点代入原函数f(x),求得函数的极值。
2. 区间法区间法是一种直观且易于理解的方法。
通过将函数在给定区间内的所有值进行比较,我们可以找到函数的最大值和最小值。
具体步骤如下:(1)确定函数f(x)的定义域;(2)将定义域分成若干个子区间;(3)在每个子区间内求出函数的值,并进行比较;(4)找出子区间中的最大值和最小值,即为函数的最值。
3. Lagrange乘数法Lagrange乘数法是一种用于求解约束条件下的极值问题的方法。
当我们需要求解函数在一定条件下的最值时,Lagrange乘数法可以帮助我们进行求解。
具体步骤如下:(1)建立拉格朗日函数L(x,y,...,λ)=f(x,y,...)-λg(x,y,...),其中f(x,y,...)为目标函数,g(x,y,...)为约束条件;(2)对拉格朗日函数求偏导数,得到一组方程;(3)求解方程组,得到函数的驻点;(4)通过二阶导数判别法,判断驻点是极大值点还是极小值点;(5)将驻点代入原函数f(x,y,...),求得函数的极值。
实验报告课程名称:MATLAB语言与应用技术实验名称:函数的极值院(系):机电学院专业班级:工程机械1101姓名:甘超学号:110730123指导教师:郑建校2013 年11 月12日实验六:函数的极值实验地点:大楼五楼八号机房 试验时间:2013年11月12日 实验目的:1. 多元函数偏导数的求法。
2. 多元函数自由极值的求法 3. 多元函数条件极值的求法.4. 学习掌握MATLAB 软件有关的命令。
实验内容练习1 求函数32824-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y)结果为ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x yz y x x z +-=∂∂-=∂∂再求解正规方程,求得各驻点的坐标。
一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。
求解正规方程的MATLAB 代码为:>>clear;>>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y')结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数:>>clear; syms x y;>>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2)结果为A=2*x^2 B =-8 C =4由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。
当然,我们可以通过画函数图形来观测极值点与鞍点。
>>clear;>>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y); >>Z=X.^4-8*X.*Y+2*Y.^2-3; >>mesh(X,Y,Z)>>xlabel('x'),ylabel('y'),zlabel('z') 结果如图6.1图6.1 函数曲面图可在图6.2种不容易观测极值点与鞍点,这是因为z 的取值范围为[-500,100],是一幅远景图,局部信息丢失较多,观测不到图像细节.可以通过画等值线来观测极值.>>contour(X,Y,Z, 600) >>xlabel('x'),ylabel('y') 结果如图6.2图6.2 等值线图由图6.2可见,随着图形灰度的逐渐变浅,函数值逐渐减小,图形中有两个明显的极小值点)2,4(--P 和)2,4(Q .根据提梯度与等高线之间的关系,梯度的方向是等高线的法方向,且指向函数增加的方向.由此可知,极值点应该有等高线环绕,而点)0,0(Q 周围没有等高线环绕,不是极值点,是鞍点.练习2 求函数xy z =在条件1=+y x 下的极值..构造Lagrange 函数)1(),(-++=y x xy y x L λ求Lagrange 函数的自由极值.先求L 关于λ,,y x 的一阶偏导数>>clear; syms x y k >>l=x*y+k*(x+y-1); >>diff(l,x) >>diff(l,y) >>diff(l,k)得,1,,-+=∂∂+=∂∂+=∂∂y x L x y L y x L λλλ再解正规方程 >>clear; syms x y k>>[x,y,k]=solve('y+k=0','x+k=0','x+y-1=0','x','y','k')得,21,21,21-===λy x 进过判断,此点为函数的极大值点,此时函数达到最大值.练习3 抛物面22y x z +=被平面1=++z y x 截成一个椭圆,求这个椭圆到原点的最长与最短距离.这个问题实际上就是求函数222),,(z y x z y x f ++=在条件22y x z +=及1=++z y x 下的最大值和最小值问题.构造Lagrange 函数)1()(),,(22222-+++-++++=z y x z y x z y x z y x L μλ求Lagrange 函数的自由极值.先求L 关于μλ,,,,z y x 的一阶偏导数>>clear; syms x y z u v>>l=x^2+y^2+z^2+u*(x^2+y^2-z)+v*(x+y+z-1); >>diff(l,x) >>diff(l,y) >>diff(l,z) >>diff(l,u) >>diff(l,v)得μλμλμλ+-=∂∂++=∂∂++=∂∂z z L y y y L x x x L 2,22,22 1,22-++=∂∂-+=∂∂z y x L z y x L μλ 再解正规方程>>clear;>>[x,y,z,u,v]=solve('2*x+2*x*u+v=0','2*y+2*y*u+v=0','2*z-u+v=0', 'x^2+y^2-z=0','x+y+z-1=0','x','y','z','u','v')得.32,231,33117,3353 =±-==±-=±-=z y x μλ 上面就是Lagrange 函数的稳定点,求所求的条件极值点必在其中取到。
由于所求问题存在最大值与最小值(因为函数f 在有界闭集}1,:),,{(22=++=+z y x z y x z y x ,上连续,从而存在最大值与最小值),故由359.)32,231,231(=±-±-f 求得的两个函数值,可得椭圆到原点的最长距离为359+,最短距离为359-。
练习4 求函数72422+--+=y x y x z 在上半圆0,1622≥≤+y y x 上的最大值和最小值。
首先画出等高线进行观测,相应的MATLAB 程序代码为:>>clear;>>x=-4:0.1:4; y=-4:0.1:4; >>[X,Y]=meshgrid(x,y); >>Z=X.^2+Y.^2-4*X-2*Y+7; >>contour(X,Y,Z,100) >>xlabel('x'),ylabel('y')结果如图6.3观测图6.3可看出,在区域D 内部有唯一的驻点,大约位于)1,2(在该点处汉书趣的最小值。
在圆弧与直线的交点处取得最大值,大约位于)2,4(-。
下面通过计算加以验证。
求函数在区域D 内的驻点,计算相应的函数值。
求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^2+y^2-4*x-2*y+7; >>diff(z,x) >>diff(z,y)结果得,22,42-=∂∂-=∂∂y yzx x z 解正规方程 >>clear; [x,y]=solve('2*x-4=0','2*y-2=0','x','y')得驻点为(2,1),相应的函数值为2。
求函数在直线边界44,0≤≤-=x y 上的最大值和最小值。
将0=y 代入原函数,则二元函数变为一元函数.44,742≤≤-+-=x x x z首先观测此函数图形,相应的MATLAB 程序代码为:>>x=-4:0.01:4; y=x.^2-4*x+7; >>plot(x,y);>>xlabel('x'),ylabel('z')结果如图6.4所示由图6.4可看出,当4-=x 时函数取得最大值,2=x 时函数取得最小值。
下面用计算验证。
对函数求导>>clear; syms x ; >>z=x^2-4*x+7; diff(z,x) 得42-=x dxdz,可知驻点为2=x ,而边界点为4±=x ,计算着三个点上的函数值可得当4-=x 时函数取得最大值39,2=x 时函数取得最小值3。
求函数在圆弧边界线上0,1622≥≤+y y x 的最大值和最小值。
此边界线可用参数方程π≤≤==t t y t x 0,sin 4,cos 4表示。
则二元函数变为一元函数23sin 8cos 16+--=t t z首先观测此函数图形,相应的MATLAB 程序代码为:>>t=0:0.01*pi:pi; z=-16*cos(t)-8*sin(t)+23;>>plot(t,z);>>xlabel('t'),ylabel('z')结果如图6.5所示图6.5 函数图由图6.5可看出,当5.0≈t 时函数取得最小值,π=x 时函数取得最大值。
下面用计算验证。
对函数求导>>clear; syms t ;>>z=-16*cos(t)-8*sin(t)+23; diff(z,t) 得t t dtdzcos 8sin 18-=,解正规方程>>clear;>>t=solve('16*sin(t)-8*cos(t)=0','t') >>numeric(t) %求出t 的数值得4636,021arctan ≈=t,边界点为π,0=t ,计算着三个点上的函数值可得当4636.0=t 时函数取得最小值0.5111,)0,4(,=-==y x t π时函数取得最小值39。