当前位置:文档之家› 地基事故案例[1]

地基事故案例[1]

地基事故案例[1]
地基事故案例[1]

软土地基事故案例分析

杨光华

地基软弱下卧层的问题

案例1:

案情:

某九层框架建筑物,建成不久后即发现墙身开裂,建筑物沉降最大达58cm,沉降中间大,两端小,产生这一问题的原因是什么?目前情况如何处理?这是大家关心的问题。

进一步了解发现,该建筑物是一箱基基础上的框架结构,原场地中有厚达9.5~18.4m厚的软土层、软土层表面为3~8m的细砂层,地质剖面见图1。设计者在细砂层面上回填砂石碾压密实,然后把碾压层作为箱基的持力层。在开始基础施工到装饰竣工完成的一年半中,基础最大沉降达58cm,由于沉降差较大,造成了上部结构产生裂缝。如图2所示。

图1

原因:

该案例产生过大沉降并影响上部结构安全,关键原因是对地基承载力的认识不够完整。地基承载力是取决于基础应力影响所到的受力范围,不仅仅是基础底附近的土体承载力。同时,地基承载力应包含两层内容,一是地基强度稳定,二是地基变形。本工程基础长×宽为60×20m,其应力影响到地基下部的软土层,在上部结构荷载作用下软土产生固结沉降,随着时间的增长,沉降逐步发展,预计总沉降量会达约100cm,目前沉降量约为总沉降量的60%。由于沉降量过大,沉降不均匀,同时上部结构刚度也不均匀,从而在结构刚度突变处产生了裂缝。

图2

处理:

该工程必须要对地基进行加固处理,加固采用静压预制砼桩方案。但设计时要考虑桩土的共同作用,同时充分考虑目前地基已承担了部分荷载,加固桩只需承担部分荷载即可,而不必设计成由加固桩承担全部荷载,从而达到节省的目的。启示:

1、地基的承载力要考虑下卧软土层的承载力,地基设计应要进行沉降计算,尤其是场地存在软弱土层的地基,必须要进行沉降验算。

2、这种地基的加固设计应考虑已有土体先发挥作用,已承担了部分荷载的特点,设计的加固桩与地基共同作用承担部分荷载,从而达到更经济合理的设计。某水厂水池群地基处理

案例2

一、工程概况

某水厂各水池平面布置如图1所示,水池建成后进行充水使用,当充水一段时间后,发现水池产生较大沉降,典型沉降如图2所示。由于沉降较大,且沉降存在不均匀性,因此,马上进行放水。查找和分析沉降和不均匀沉降的原因。提出处理方案。

沉降观察点位置示意图

左生化池

右生化池

23`

24`

22`

20`

19`21`1`

2`

3`

18`

17`

4`

5`

16`

15`

6`

12`

11`

10`

13`

9`14`7`

8`

右水解池

左水解池

观测点布置图

右水解池

右水解池

左生化池

右生化池

累计沉降量mm

二、地质情况

经查,其场地中典型的地质剖面如图3所示。显然,场地表层有厚约3.5m左右的填土层,填土层以下为深后的淤泥质土层。

三、地基处理方案

本工程原地基处理方案为深层搅拌桩复合地基,搅拌桩直径Φ=600mm ,矩形布置,间距1.0m ,桩长6m ,地基承载力要经现场压板试验检测,要求地基承载力特征值大于150kPa 。在实施过程中,地基处理方案修改为强夯处理填土层并经现场原位压板试验检测,检测承载力满足要求后进行水池的施工。 四、沉降及不均匀沉降原因分析

原地基经强夯压实并经现场原位压板试验后是合格的,而实际建筑物完成后却产生这样大的沉降和不均匀沉降,原因何在呢?

据观测到的部分的沉降情况分析,水池产生沉降的主要原因是由于下卧软土层的固结沉降,目前沉降还未完成,在两个水池紧靠的地方沉降量是最大的。这主要是由于应力叠加相互影响,使该处沉降最大。如图2所示。

填土层软土层软土层

填土层

图4尺寸效应下卧软层

软层

软层

硬层

硬层

图5下卧硬层情况

压板静载检测试验时,地基承载力是够的,且沉降较小,但为什么水池施工后沉降远大于试验时的沉降呢?这主要是由于压板试验的尺寸较小,常规地基压板荷载试验时压板直径为0.79m ,其应力影响的深度有限,当应力影响在3倍尺寸范围时,压板试验检测到的主要是经强夯后压实的填土层的承载力,而反映不到其软弱下卧层,但当实际水池受荷时,其尺寸远大于压板试验时的尺寸,这样水池荷载的应力将扩散到软弱下卧层,从而使软弱下卧层产生变形,如图所示。因此,水池荷载作用下的沉降主要是由于下卧软土层产生的沉降,且在应力叠加最严重区沉降最大。 五、启示

设计人员要有明确的力学概念,不要被原位试验结果所蒙蔽,要清楚试验条件与实际建筑物边界条件的异同,用好试验结果,明确试验的局限性,尤其是尺寸效应,这是工程中遇到软弱下卧层时要注意的问题。像这种有软弱下卧层的情况直接用压板试验结果是错误和不安全的。

但另一方面,若下卧层是硬层,则直接应用这样的试验结果则又是偏于保守的,如图所

示,因这时压板试验主要反映的是上部软层的承载力,而对下部硬层的承载特性未能反映。

二、施工顺序的影响

案例3

1、工程概况

某城市防洪挡土结构示意图如图1所示,该场地原为一斜坡,为美化城市,现要施工一挡土结构如图1所示,靠岸一侧为墙,用作挡土和挡水。靠河一侧为框架柱子,顶部作为一个街景平台。

由于场地存在软土层,因而采用桩基进行处理。

图1.

2

、施工顺序及事故情况

施工顺序为先打桩,完成地梁施工以及11.8m 高程以下的侧墙及梁柱,然后在墙后岸上的斜坡进行填土至11.8m ,再继续施工11.8m 高程以上的结构和回填靠河一侧7.2m 高程处的反压土坡。

当施工完成后,发现柱子倾斜,11.8m 高程处的横梁产生裂缝,后进一步开挖,发现地梁也有断裂破坏。

现场调查发现,靠河一侧的柱子有明显的倾斜和弯曲,在11.8m 横梁处为分界点,下部向外倾斜而上部则向内倾斜,示意图如图2所示,现场照片则如图3和图4所示。

图2 图3 景观护岸结构

图4 柱子倾斜情况

3、事故原因分析

据分析,产生这一原因主要是施工顺序不合理所产生。

本工程中两侧填土是不平衡的,再加上靠河一侧反压土体未填之前,靠岸一侧土体先填筑至11.8m高程,造成两侧土压更大的不平衡。由于场地为软土地质,在两侧不平衡土压力作用下,软土体产生侧移,把其下的桩向河一侧推移,使桩顶向河一侧产生水平位移,而桩顶以上的结构体则整体向河一侧产生水平侧移,因而11.8m高程以下的柱子是向外倾斜的。

当在11.8m高程再往上施工时,如果顺着柱子的倾斜方向向上,则结构更倾斜,为减少倾斜,

控制柱顶与柱脚在同一垂线上,则11.8m高程以上的柱子必须向内倾斜,由此施工后,则得到现场所看到的情况。

4、启示

由以上的原因分析可见,在软土地基中,施工顺序会对结构受力产生重要影响。软土在不平衡的土压力下会产生明显的侧向移动,带动其中的结构物侧移。按本工程情况,结构物两侧的填土应均衡,同时填筑,以保证两侧土压力的平衡,从而使结构两侧受力均衡,避免软土侧移的产生。对同类情况,实际工程中应充分重视不平衡土压力对软土地基的影响。5、处理

由于地梁已开裂,同时还担心结构进一步变形,后来的处理措施是开挖并重做地梁,同时在地梁下新增加微形钢管桩,以帮助承担荷载。工程处理后试用多年,未见新的变形产生。

某引桥挡墙侧向变形问题

案例4

一、工程概况

某城市引桥的挡土墙剖面如图1所示,引桥两侧采用衡重式砼挡土墙结构,墙体外侧分别要施工两条地下水管。由于场地中存在软土层,设计时地基处理采用了搅拌桩复合地基。

水管

图1.

二、事故情况

当两挡土墙之间的路基填土完成后,发现挡墙下沉了11cm,墙体一侧墙顶部向路基内倾斜,另一侧墙脚则向路外移动。引桥情况如图2 照片所示,墙顶向路内侧移如图3照片1所示,墙脚向路外侧移如图4照片所示。显然,是什么原因导致两侧挡土墙产生不同的位移?这是需要分析的。

图2 引桥情况

图4 墙脚向路外侧移

图3 墙顶向路内侧移

图5.

后开挖

先开挖

水管

水管

图6

三、原因分析

经现场了解,墙体沉降、侧移主要原因是填土作用下的地基下沉和挡土墙外侧水管埋设时基坑开挖顺序和变形的影响所致。

挡墙顶部向填土的路内一侧位移,主要是由于路基填土使地基沉降变形所产生。据观测路基下软土层经搅拌桩处理,但在填土荷载作用下仍产生了12cm 的沉降,此沉降会引起挡墙在填土区一翼基础的沉降,从而带动墙体向填侧内移所造成。如图6所示。

至于挡墙墙脚向填土外侧移动,主要是该侧在填土后在墙脚外侧埋设水管时进行基坑开挖,而基坑开挖采用的是刚度较小的钢板桩支护,而此时路基填土已基本完成,在强大的路基填土荷载作用下,钢板桩变形大,土体侧移,从而引起挡墙脚部向外侧移。而另一侧不产生墙脚侧移的原因是因为该侧的水沟开挖是在路基填土之前完成的。因此,施工顺序的不同会产生不同的变形。 四、启示

1、 挡墙的位移不都是向非填土侧的,当地基土软弱时,在填土荷载作用下,填土一侧地基

沉降较大,此时挡土墙会向填土一侧倾斜,这是软土地基上挡墙变形的一种特点。 2、 软土地基施工采用不同的施工顺序对受力是有影响的,实际工程中应充分考虑施工顺序

不同可能会产生的影响,合理安排施工顺序。

三、地基的变形协调问题

案例5

1、工程情况

在许多水利工程的堤防中,往往有很多穿堤的涵洞,由于变形的不均而存在安全隐患。如图1所示,剖面图如图2所示。由于河岸附近一般都是软弱地基,而堤防中填土作用在涵洞上的荷载相应较大,因此,一般涵洞下软土地基承载力不满足要求,因而通常会在涵洞下采用砼桩基处理,以保证涵洞的安全,而一般砼桩基的底部均会置于可靠的持力层上,这样,涵洞的沉降一般都较小,但涵洞两侧填土较大,在填土荷载作用下其沉降远大于涵洞结构的沉降,从而会存在以下问题,

1、 会在堤顶产生裂缝,如图3照片所示,图4照片则明显可以看出涵洞两侧的沉降要大于

涵洞位置处的沉降,如图4所示。

2、 会在涵底边角处产生底板脱空,而形成集中渗流通道,当洪水来临时发生管涌则会影响

堤身的安全而形成灾害,图5照片是某水闸两侧堤防被冲垮后而造成重大灾害的情况。 3、 会对侧边的桩产生负摩阻力,由于涵侧边土沉降较大,其沉降较大于桩的沉降,从而会

对桩产生负摩阻力。

水流

图1.水利涵洞

裂缝位置

沉降线

图2水利涵洞沉降和裂缝

图3. 水利涵洞顶部的裂缝

图4 涵洞两侧的沉降大于涵洞位置处的沉降

图5 水闸两侧堤坝被冲垮

高速公路涵洞

图6

同样,对于软土地基上的一些高速公路涵洞,当对涵洞基础采用过于刚性的地基处理时,如图6所示,则会使涵洞沉降较少,而其两侧路基沉降过大,形成过大的不均沉降而影响行

车,如图7照片所示。

图7 涵洞两侧路基沉降过大

这种变形不协调的问题在建筑工程中同样存在,因人们一般较重视建筑物的安全,对建筑物今采取较强的地基处理,而对建筑物周边场地则一般不作处理,这样当周边有填土荷载时,会随着时间的增长,软土地基沉降,则会造成地面较大的沉降,造成室内外较大的沉降差,破坏室内外管道的连接,如图8所示照片。

图8 室外较大的地面沉降

二、启示

地基处理除保证主体结构的安全及变形在安全范围外,还应要注意其与周边介质的沉降变形协调,这是很多软土地基中结构物设计中容易出现的问题,要树立正确的地基基础设计理念,单用变形控制设计,是今后较好解决这类问题的重要技术措施。

软土地基中的侧向土压力问题

案例6

一、工程概况

某一工程挡土墙,墙高8m,墙身为浆砌石,墙后场地填土用作建筑用地,墙底下约有3m厚的软土层未清除,由于挡墙较重,软土的承载力不能满足要求,因此要进行基础处理,基础处理采用长为4m的松木桩基础。挡土墙边砌筑边填筑墙后的填土,当挡墙砌筑到4m 高且填土也填筑到4m时,墙体发生了明显的侧移,测量表明墙体平面的中部已产生了20cm 的水平位移,如图1所示,位移后挡墙的照片如图2 所示。由于挡墙高度完成一半,还有一半未完成,如继续施工,可能会产生更大的变形,为此,发现问题后,工程暂时停工,进

行原因分析和确定进一步的处理方案。

图1 墙体侧移的情况

图2 位移后的挡墙

二、原因分析

显然,产生侧向移动主要是侧向土压力所致,原设计挡土墙高8m,但现在仅施工4m 就产生了明显的变形,何来如此大的水平推力?据分析,主要是填土在软土层所产生的侧向压力推动木桩产生侧移。一般设计仅计算挡土墙基础面以上填土对挡土墙的侧压力,而不计算由于填土对挡土墙基础下软土的侧压力。实际上,由于软土的侧压力较大,而填土的侧压力较小,且软土在底部,填土荷载大,填土荷载作用下软土层的侧向土压力要比填土层的侧压力大,如图3所示,而木桩基础承受垂直荷载性能好,承受水平荷载能力低,因此在软土的侧压力作用下墙体发生了侧移。

三、处理方案

由于挡土墙还有4m未施工,确定产生侧移的原因后,则要消除产生侧移的原因。挡墙

后填土也已经填至4m高,对软土的垂直处理较难彻底。由于侧移主要是软土侧压力所致,

为此,在挡土墙外侧设置一排砼钻孔桩来承担水平力,桩顶加一砼连系梁,连系梁与挡土墙基础接触,以便承担墙后进一步填土所产生的侧压力。挡土桩直径0.8m,间距0.9m,桩长8m。实施完成后的照片如图4所示。处理后进一步施工至原设计高程,墙体未发生新的明显变形,说明前面分析的原因正确,处理的方案合理。

四、启示

一般对于软土层厚度不是很大的的挡土墙基础采用木桩进行地基处理在工程中较常用,方便施工,造价低廉,但当墙后有新填土荷载时,其在软土层产生的侧压力是很大的,其值甚至要大于填土层的压力,从而使挡土墙产生侧移。所以设计时不能只计算填土层对挡土墙产生的侧压力,还要计算填土在软土层中产生的侧压力的作用。

图4 处理后完建的挡土墙

桩基的负摩阻力问题

案例7

某建筑基础沉降事故原因分析

一、工程概况

事情发生于二十世纪八十年代末,在我国南方某市,一座七层房屋,结构已封顶,第一、二层墙体已砌完,此时,人们突然发现楼梯间出现严重的裂缝,裂缝从一层贯穿到顶层,把建筑物分层两块,两块沉降差明显。后经测量,发现房屋一块沉降达35cm,一块沉降达15cm,不但沉降量大,沉降差也大。如图1所示,是什么原因产生这么大的沉降?房屋的荷载还远未达到设计荷载呢!

图1 建筑基础沉降情况

为此,首先想到的可能是基础出问题了。首先了解一下基础的情况。本工程采用的是直径为450mm 的沉管灌注桩基础,设计单桩承载力为400kN ,桩基础施工完成后,对桩质量及承载力的检测分别进行了水电效应法和PDA 动力测桩法以及静载试验进行检测。PDA 法检测后提供的单桩最小承载力为530kN ,最大约达900kN ;静载试验了2根,荷载达设计承载力400kN 的2倍800kN 时,两个桩的沉降分别为11.61mm 和8.91mm ,显然,桩基检测时桩的承载力是合格的。而当事故发生时,由于结构上部荷载及使用荷载还没有加上,当时上部荷载作用于桩基上每桩也只有200kN ,远小于检测时的桩基承载力,但为何建筑物会发生如此大的沉降?这一时成为一个不解和各方争论的问题,震动了南方建筑界。

()

()

()

桩轴力800

桩身侧阻800

沉降桩土沉降

土沉降

图3土对桩产生正摩阻力

中性点

中性点

土沉降桩沉降沉降200

桩身侧阻200

桩轴力分布

()

()

()

图4中性点以上土对桩产生负摩阻力

二、原因分析

一般人们不解的主要原因是为什么上部结构施工前对桩基检测时其承载力是足够的,甚至静载试验时在800kN 荷载作用下,其沉降也不过是1cm 左右,而当上部结构施工后,上部结构荷载下桩所受的荷载仅约200kN 时,沉降却达到15cm 和35cm 如此之大?当时也有观点认为是桩基质量有问题,但若桩基质量有问题又如何解释检测试验的结果呢?为此,我们看一下场地的地质情况,场地地质剖面如图2所示,由图可见,场地中有较厚的淤泥软土

图2 建筑场地地质

层。软土层面上有约4m 厚的填土层。据查,该填土层是新近填土,显然在填土下的软土层是欠固结土层,在填土荷载作用下固结沉降还未完成,由于固结沉降的时间较长,可以是几个月,甚至几年,其沉降是一个缓慢的过程,而桩基在检测时其检测荷载如动测是瞬时完成的,静载也是短暂完成的,如24小时,因此,当桩基在检测荷载作用下,桩的沉降大

常见地基与基础工程缺陷事故案例分析

常见地基与基础工程缺陷事故案例分析 摘要:本文结合实际工程案例,分析常见地基与基础工程事故发生的原因,并提出相应的处理措施。 关键词:地基基础;缺陷事故;案例分析 地基与基础工程属于地下隐蔽工程,其位于地面以下,存在着储多的不安全因素,建筑工程竣工之后,难以全面了解其状况,在建筑物使用期间出现的事故苗头又很难察觉,一旦发生事故则难以补救,甚至造成灾难性的后果。地基与基础工程事故发生的原因很多,可能是因勘察、设计、施工及使用功能变更等因素相互作用引起的。在这些因素中,某些因素会引起突发事故,而另一些因素则可能由于消耗性逐渐发生而导致事故,从安全上讲,突发事故是危险的。困此,对地基与基础工程事故进行分析并采取有效的防止措施,是一个值得重视的课题。同时,研究并探讨地基与基础工程事故发生的原因,探究其所具有的普遍性、地方性和经验性,从中吸取经验教训,是建筑工程技术人员不断积累知识财富的途径。 1.桩基础工程质量造成的缺陷事故 当场地土质很差,不能作为天然地基,或上部荷载太大,无法采用天然地基,或要严格控制不同部位的沉降时,常用桩基础解决这些问题。若考虑桩穿越软弱土层时能加固天然地基,则桩构成人工地基(如灰土、砂石等挤土桩);若考虑通过桩将上部结构荷载传给坚硬土层,则桩成为深基础;所以桩在地基土中的工作机制是非常复杂的,特别是采用机械成孔灌注桩施工时,往往由于无法直接洞察桩孔的成孔及混凝土浇捣过程而导致质量事故的发生。 事故实例:某21层商住两用综合楼采用泥浆护壁机械冲孔灌注桩。主楼部分65根,直径为Φ1000 mm;辅楼部分23根,直径为Φ800 mm。设计单桩竖向承载力特征值分别为5820kN和3800kN,设计桩长最深36m,要求进入较完整石灰岩层不少于lm。桩顶混凝土应浇筑至设计桩顶标高以上0.5-0.8m。施工采用CZ-30 型冲孔灌注桩桩机,正循环泥浆护壁冲孔,接导管水下浇筑混凝土成桩。 该场地土层自上而下为:填土:未经压实的亚黏土,厚3-6m;淤泥:软流塑状,高压缩性,厚2-4m;淤泥质土:软塑,高压缩性,厚4-6m;可塑性黏土及少量砂层:厚3-5m;⑤破碎石灰岩:岩体破碎、孔洞较多,厚2-9 m;溶洞:填充物主要为黄色可塑性粘土,厚0.8-5m;较完整石灰岩:厚6-8 m。 1.1桩基础质量问题 桩施工完毕砼养护28天后,首先采用低应变法检测全部桩的桩身完整性,

地基基础事故分析与处理案例分析

地基基础质量事故分析与处理案例 案例1 1 工程概述 北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高—3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。 该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。地下水分为上层滞水和承压水两种。 基坑开挖完毕后,进行底版施工。一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。西侧基坑周围地面也出现大小不等的裂缝。 2 事故分析 锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。 持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。 基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。 3 事故处理 事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。 案例2 1 工程概况 某渔委商住楼为322层钢筋混凝土框筒结构大楼,一层地下室,总面积23150平方米。基坑最深出(电梯井)-6.35M

该大楼位于珠海市香洲区主干道凤凰路与乐园路交叉口,西北两面临街,南面与市粮食局5层办公楼相距3~4M,东面为渔民住宅,距离大海200M。 地质情况大致为:地表下第一层为填土,厚2M;第而层为海砂沉积层,厚7M;第三层为密实中粗砂,厚10M;第四层为黏土,厚6M;-25以下为起伏岩层。地下水与海水相通,水位为-2.0M,砂层渗透系数为K=~51.3m/d。 2 基坑设计与施工 基坑采用直径480MM的振动灌注桩支护,桩长9M,桩距800MM,当支护桩施工至粮食局办公楼附近时,大楼的伸缩缝扩大,外装修马赛克局部被振落,因此在粮食局办公楼前作5排直径为500MM的深层搅拌桩兼作基坑支护体与止水帷幕,其余区段在震动灌注桩外侧作3排深层搅拌桩*(桩长11~13M,相互搭接50~100MM),以形成止水帷幕。基坑的支护桩和止水桩施工完毕后,开始机械开挖,当局部挖至-4M时,基坑内涌水涌砂,坑外土体下陷,危及附近建筑物及城市干道的安全,无法继续施工,只好回填基坑,等待处理。 3 事故分析 止水桩施工质量差是造成基坑涌水涌砂的主要原因。基坑开挖后发现,深层搅拌止水桩垂直度偏差过大,一些桩根本没有相互搭接,桩间形成缝隙、甚至为空洞。坑内降水时,地下水在坑内外压差作用下,穿透层层桩间空隙进入基坑,造成基坑外围水土流失,地面塌陷,威胁临近的建筑物和道路。另外,深层搅拌桩相互搭接仅50MM,在桩长13M的范围内,很难保证相临的完全咬合。 从以上分析可见,由于深层搅拌桩相互搭接量过小,施工设备的垂直度掌握不好,致使相临体不能完全弥合成为一个完整的防水体,所以即使基坑周边作了多排(3~5排)搅拌,也没有解决好止水的问题,造成不必要的经济损失。 4 事故处理 采用压力注浆堵塞桩间较小的缝隙,用棉絮包海带堵塞桩间小洞。用砂白为堰堵砂,导管引水,局部用灌注混凝土的方法堵塞桩间大洞。 在搅拌桩和灌注桩桩顶做一到钢筋混凝土圈梁,增加支护结构整体性。 在基坑外围挖宽0.8M、深2.0M的渗水槽至海砂层,槽内填碎石,在基坑降水的同时,向渗水槽回灌,控制基坑外围地下水位。

质量事故案例汇编

质量事故案例汇编- - 十几个建筑事故的案例分析,有借鉴意义。 案例一: 一个1000M2左右的单层厂房施工。在施工至车间顶板浇注混凝土时,在浇注过程中由于模板整体下沉150MM左右,该顶板全部报废,重新支模二次浇注。 原因:模板竖向支撑下部虽然通铺了木架板,可是木架板下的是失陷性相当严重的回填土,虽然回填时也考虑了模板竖向支撑受力,严格控制了回填质量。可是没有考虑砼施工前模板浇水,及砼自身泌水,所有水把木架板下的回填土完全侵泡,回填土已经不能承受施工荷载,及砼本身荷载。当时快浇注完毕才发现问题, 处理办法:二次浇注时,把所有支撑都受力在地梁上,不能直接受力于地梁上的支撑满绑扫地竿,传力到地梁上,施工时注意模板浇水湿润的控制,注意砼的塌落度控制,防止砼泌水过多。这样以后施工时才没有发生模板下沉现象。 案例二: 一个车间地梁发生向上折断事故。车间竣工后半年左右地梁上部的砌体产生垂直裂缝,派人挖开地梁后发现地梁已经完全折段,裂缝达30MM的通缝,地梁中间凸起,把地梁下部掏开后发现地梁下部有一块150直径的石灰块,看来它是祸首。分析后结论是地梁下部回填土时监督不利,以至于生石灰块混在回填土内,由于雨水侵透,使生石灰块熟化,产生膨胀硬生生的把截面350*700的地梁顶断。这么小的石灰块能产生这么大的力量,确实没想到啊。(石灰块是车间地基换灰土回填时留下来的) 案例三: 我在施工剪力墙时,当时材料采购的3形扣件质量及其差,犹如铝制品,在剪力墙模板支设时采用3到4个3形扣件叠放使用,但在浇注混凝土时,剪力墙模板暴模,而且是在剪

力墙浇注快到顶部时(想一想和墙体混凝土浇注受力真是吻合),结果,第二天把这一道墙体全部砸掉,重新施工,直接损失不说,工期可是耽搁了3天,而且对后续工序造成了很大影响,所以在剪力墙模板支设时一定要注意加固不能马虎,在材料上更不能以次充好。 案例四: 绍兴市一住宅工程,多层混合结构,基础为单排φ377沉管灌注桩和宽60cm承台梁,19 95年开工建设,施工至承台完工,因客观原因停工,直至1999年有新的业主接手后,另择施工单位重新开工。该施工单位进场后发现承台混凝土质量很差,遂委托有关单位进行取样检测,结果证明,混凝土质量确实低劣,经与设计单位联系,作承台凿除重浇处理。不料承台凿除后,暴露出来的桩基质量问题更为严重。有关部门十分重视,对此质量问题展开了认真的分析并仔细研究了相应的处理办法。 1质量问题的存在形式及其特征 根据工程现场观察和有关部门的多方面严格检测,桩基严重质量问题有:①桩基偏位:共2 04根桩中143根偏位超过规范7cm的允许偏差,占总桩数的70%,而偏离轴线在一个桩径以上的桩占到总桩数的38%,计78根;②混凝土强度不足:设计的混凝土强度等级为C20,检测部门依据事前商定的抽检数量和桩位,对9根桩作混凝土强度取芯试验,结果有4根因无法固定取芯仪器而不能取得混凝土芯体,显然这4根桩的混凝土强度达不到C20的设计强度等级,其余5根桩的取芯试验结果表明只有2根桩的混凝土强度满足设计要求;③桩身质量差:表现在现场观察发现部分桩桩顶标高低于设计标高,个别桩桩身断裂,相当部分的桩钢筋存在偏位现象;50根桩的小应变动测,有11根桩为Ⅱ类桩,5根桩为Ⅲ类桩,这些桩存在程度不同的缩颈乃至断裂现象。 可见该桩基工程的质量具有普遍性、严重性、离散性的特征。所谓普遍性即不是个别桩而是大部分桩的施工质量达不到设计要求,不是在一个方面而是在有关工程施工质量的几乎各个方面存在问题;质量问题的普遍存在本身就意味着问题的严重性,质量问题的严重性还表现为实际施工质量与设计质量相差很大,如取芯的混凝土最低强度仅13kPa,只有设计强度65% ,又如桩的最大偏位达32cm,桩的中心线已在设计承台的外侧;桩的偏位呈现各向随意性,混凝土强度也或高或低,桩的完整性或好或差,分布没有规律可循,严重离散。 2常规处理办法的否定 该工程曾于1995年对两根桩作过静荷载试验,结论为承载力能满足设计要求。有专家对此

土木工程事故案例分析

土木工程事故案例 分析报告 学号: 姓名: 指导老师:

案例一 西北地区某高层综合办公楼,主楼为钢筋混凝土框-筒结构,地下1层,地上18层,总高度76.8m,总建筑面积36482m2。该建筑基础为灌注群桩,地下室外墙采用300mm厚C30自防水混凝土。标高13.6m以上混凝土标号均为C40,楼板厚度120mm。该工程于2012年6月开工,2012年9月中旬施工地下室外墙,2013年1月19日施工到结构6层梁板。该层梁板在施工的同时即发现板面出现少量不规则细微裂缝,到2月24日该层梁板底摸拆除时,发现板底出现裂缝。从渗漏水线和现场钻芯取样分析,裂缝均为贯通性裂缝。之后又对全楼己施工完毕的混凝土工程进行了详察,在地下室外墙外侧上部发现数条长度不等的竖向裂缝(其中有两条为贯通性裂缝)。在5、6两层核心筒的电梯井洞口上部连梁上的同一部位亦发现两条裂缝。而在其他的柱、墙、梁、板上则未发现裂缝。经现场实测,第6层现浇板上的裂缝均为贯通性裂缝,最大裂缝长度约4.5m(直线距离),最大裂缝宽度0.27 mm。地下室外墙竖向裂缝的最大长度约1.9m,最大裂缝宽度0. 2mm,核心筒连梁上的裂缝最大长度0.3m,裂缝最大宽度约0.1 8mm。经过近一个月的现场连续监控,未发现以上裂缝的进一步发展和新的裂缝出现。 一、原因分析:

第一,在施工的各种条件未变的情况下,从裂缝仅在六层现浇板上出现,而未在其它层现浇板上出现的事实来分析,唯一不同的是施工作业时的气候变化。如前所述,该层现浇板施工时是该地区冬季最寒冷、干燥的一个时期,最高气温仅1℃,当时的最大风速7m/s,湿度仅有30~40%,特别是每天于21时施工完毕后,混凝土正处于初凝期,强度尚未有大的发展,作业面又没有防风措施,导致混凝土失去水分过快,引起表面混凝土干缩,产生裂缝。根据有关资料记载,当风速为7m/s时,水分的蒸发速度为无风时的2倍;当相对湿度为30%时,蒸发速度为相对湿度90%时的3倍以上。假如将施工时的风速和湿度影响叠加,则可推算出此时的混凝土干燥速度为通常条件下的6倍以上。另外,从裂缝绝大多数集中在构件较薄及与外界接触面积最大的楼板上这一现象也可证实,开裂与其使用的材料关系不大,而受气象条件的影响大些。与楼板厚度接近的墙肢之所以未裂,是因为墙肢两面都有模板,不直接受大气的影响。由此可以基本断定,天气因素是导致混凝土现浇板出现干缩裂缝的主要因素。地下室外墙由于本身体积较大,又长期暴露在温湿度变化较大的环境中,特别到了2013年1月下旬,温度较施工时降低近30℃,导致混凝土温度收缩而产生裂缝。 第二,梁板所用混凝土均为C40混凝土,而根据设计院进行的技术交底要求,梁板混凝土只要达到C30强度即可,施工单位为了施工中更容易控制墙柱的质量,统一按照C40混凝土标准进

工程质量事故典型案例

我们收集了一些典型的工程质量事故案例。这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。现列举一部分,供大家参考学习。 砼麻面 现象:砼表面局部缺浆粗糙,或有许多小凹坑,但无钢筋和石子外露。 原因分析: 1、模板表面粗糙或清理不干净,粘有干硬水泥砂浆等杂物,拆模时砼表面被粘损。 2、钢模板脱模剂涂刷不均匀,拆模时砼表面粘结模板。 3、模板接缝拼装不严密,灌注砼时缝隙漏浆。 4、砼振捣不密实,砼中的气泡未排出,一部分气泡停留在模板表面。 预防措施:模板面清理干净,不得粘有干硬水泥砂浆等杂物。木模板灌注砼前,用清水充分湿润,清洗干净,不留积水,使模板缝隙拼接严密,如有缝隙,填严,防止漏浆。钢模板涂模剂要涂刷均匀,不得漏刷。砼必须按操作规程分层均匀振捣密实,严防漏捣,每层砼均匀振捣至气泡排除为止。 处理方法:麻面主要影响砼外观,对于面积较大的部位修补。即将麻面部位用清水刷洗,充分湿润后用水泥砂浆或1∶2水泥砂浆抹刷。 蜂窝 现象:蜂窝是指混凝土表面无水泥浆形成有蜂窝状的窟窿,骨料间有空隙存在,露石子深度大于5mm,但小于保护层厚度的缺陷。砼局部酥松,砂浆少石

子多,石子之间出现空隙,形成蜂窝状的孔洞。 原因分析: 1、砼配合比不合理,石、水泥材料计量错误,或加水量不准,造成砂浆少石子多。 2、砼搅拌时间短,没有拌合均匀,砼和易性差,振捣不密实。 3、未按操作规程灌注砼,下料不当,使石子集中,振不出水泥浆,造成砼离析。 4、砼一次下料过多,没有分段、分层灌注,振捣不实或下料与振捣配合不好,未振捣又下料。 5、模板孔隙未堵好,或模板支设不牢固,振捣砼时模板移位,造成严重漏浆。 预防措施:砼配料时严格控制配合比,经常检查,保证材料计量准确。采用电子自动计量。砼拌合均匀,颜色一致,其延续搅拌最短时间符合规定。砼自由倾落高度一般不得超过2m。如超过,要采取串筒、溜槽等措施下料。砼的振捣分层捣固。灌注层的厚度不得超过振动器作用部分长度的1.25倍。捣实砼拌合物时,插入式振捣器移动间距不大于其作用半径的1.5倍;对细骨料砼拌合物,则不大于其作用半径的1倍。振捣器至模板的距离不大于振捣器有效作用半径的1/2。为保证上下层砼结合良好,振捣棒插入下层砼5cm。砼振捣时,必须掌握好每点的振捣时间。合适的振捣现象为:砼不再显著下沉,不再出现气泡。灌注砼时,经常观察模板、支架、堵缝等情况。发现有模板走动,立即停止灌注,并在砼初凝前修整完好。 治理方法:砼有小蜂窝,可先用水冲洗干净,然后用1∶2或1∶2.5水泥砂

地基基础工程事故分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 地基基础工程事故分析 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8100-53 地基基础工程事故分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 【摘要】文章分析了地基基础工程事故发生的一些因素及原因,提出了相应的防止办法,同时列举了实例加以说明。 【关键词】地基基础;工程事故;工程地质 一、前言 在建筑结构的建造的使用过程中,由于地基和基础工程的质量问题,使建筑物墙体和楼盖开裂影响使用的,有碍观瞻并使人有不安全感觉的,更有甚者使建筑物倒塌的事故,近几年有上升的趋势,根据统计资料显示,其中地基和基础工程的质量问题,占总事故的确21%。在建筑结构的设计和施工过程中,人们普遍认为最难驾驭的并不是上部结构,而是该工程的地基和基础工程的问题,建筑物的上部结构尽管千变万最化,复杂万分,但是在电子计算机得普遍应用,

今天,它们基本上都是在设计和施工中可以被预知和掌握。而对于建筑群所在场地的地下土层分布则不然,一般地说,人们只能在设计前通过几个钻孔的土样的试验得知其少数信息,也只能在施工后,槽底的钎探结果了解其表层信息,至于更深层更全面的情况却不能全面的掌握,往往凭经验加以处理,这就产生误差,甚至错误造成对建筑物建成后的损坏,而且,地基基础都是地下隐蔽工程,建筑工程竣工后,难以检查,使用期间出现事故的苗头也不易察觉,一旦发生事故难以补救,甚至造成灾难性的后果。 地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。而这些因素中。某些因素引起突发事故。另一些因素可能导致消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性。地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要不断积累的知识财富。并对地基基础工程事故采取有效

上海一幢层楼倒塌工程事故案例分析

工程事故案例分析上海一幢13 层楼倒塌案例分析 一、工程简况: 1.1 工程简况 工程名称:上海市梅陇镇26 号地块商品住宅工程(莲花河畔景苑小区)建设地点:梅陇西路东,淀浦河南,莲花路西 总投资:18830 万元 建设规模(建筑面积):总建筑面积85227 ㎡,共由12栋楼及地下车库等16个单位工程组成 发生事故工程: 莲花河畔景苑7号楼位于在建车库北侧,临淀浦河。平面尺寸为长46.4m,宽13.2m,建筑总面积为6451㎡,建筑总高度为43.9m,上部主体结构高度为38.2m,共计13层,层高2.9m,结构类型为桩基础钢筋混凝土框架剪力墙结构。抗震设防烈度为7 度。 建设单位:上海梅都房地产开发有限公司(三级房地产开发企业资质)房地产三级资质:1.注册资本不低于800万元;2.从事房地产开发经营2年以上;3.房屋建筑面积累计竣工5万平方M以上。 《房地产开发企业资质管理》第十八条规定: 二级资质及二级资质以下的房地产开发企业可以承担建筑面积25万平方M以下的开发建设工程, 承担业务的具体范围由省、自治区、直辖市人民政府建设行政主管部门确定。

施工单位:上海众欣建筑有限公司(施工总承包房屋建筑工程三级市政公用工程三级 施工专业承包建筑装修装饰工程三级) 施工总承包三级企业承包的范围 (1) 14 层及以下、单跨跨度24M及以下的房屋建筑工程。 (2) 高度70M及以下的构筑物。 (3) 建筑面积6万平方M及以下的住宅小区或建筑群体。 监理单位:上海光启建设监理有限公司(房屋建筑工程乙级市政公用工程丙级) 监理范围: (1) 可承担一般房屋建筑工程:14-28层。24-36M跨度( 轻钢结构除外) 。单项工程建筑面积 10000-30000平方M。 (2) 高度70-120M的高耸构筑工程。 (3) 建筑面积6-12万平方M的住宅小区工程。 设计单位:浙江当代建筑设计研究院有限公司(甲级资质建筑设计院) 审图单位:上海宏核建设工程咨询有限公司2001年获得上海市建设和交通委员会颁发的上海市建设工程施工图设计文件审查 (一类含超限高层)机构认定书 勘察单位:上海协力岩土工程勘察有限公司 (工程勘察乙级资质) 勘察范围:20层以下的一般高层建筑,体型复杂的14层以下的高层建筑;单柱承受荷载4000kN以下的建筑及高度低于100m的高耸建筑物 1.2 事故发生前后情况该楼于2008年底结构封顶,同时期开始进行12号楼的地下室开挖。根据甲方的要求,土方单位将挖出的土堆在5、6、7 号楼与防汛墙之间,距防汛墙约10m,距离7号楼约20m,堆土高约3~4m。2009年6月1日,5、6、7号楼前的0号车库土方开挖,表层1.5m深度范围内的土方外运6月20日开挖1.5m以下土方,根据甲方要求,继续堆在5、6、7号楼和防汛墙之间,主要堆在第一次土方和6、7号楼之间20m的空地上,堆土高约8~ 9m。此时,尚有部分土方在此无法堆放,即堆在11 号楼和防汛墙之间。 6月25日11号楼后防汛墙发生险情,水务部门对防汛墙位置进行抢险,也卸掉部分防汛墙位置的堆土。 6月27日,清晨5时35分左右大楼开始整体由北向南倾倒,在半分钟内,

建筑质量事故分析实例

建筑质量事故分析实例 最近几年来,在对工程质量事故鉴定工作中,我收集了一些典型的工程质量事故案例。这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。现列举一部分,供大家参考。 关键词:质量事故实例 案例一: 某工厂新建一生活区,共14 幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm以上。 事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为 7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为 100kN, Es为4Mpa.设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为- 1.4m~2m左右。该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。 案例二 某市一商品房开发商拟建10 栋商品房,根据工程地质勘察资料和设计要求,采用振动沉管灌注桩,桩尖深入沙夹卵石层500以上,按地勘报告桩长应在9~10米以上。该工程振动沉管灌注桩施工完后,由某工程质量检测机构采用低应变动测方式对该批桩进行桩身完整性检测,并出具了相应的检测报告。施工单位按规定进行主体施工,个别栋号在施工进行到3层左右时,由于当地质量监督人员对检测报告有争议,故经研究决定又从外地请了两家检测机构对部分桩进行了抽检。这两家检测机构由于未按规范要求进行检测,未及时发现问题。后经省建筑科学研究院对其检测报告进行了审核,在现场对部分桩进行了高、低应变检测,发现该工程振动沉管灌注桩存在非常严重的质量问题,有的桩身未能进入持

地基基础事故分析与处理案例

目录 案例一 (2) 案例二 (2) 案例三 (3) 案例四 (4)

地基基础事故分析与处理案例 案例一 2005年5月10日早上,浙江萧甬铁路余姚西至驿亭区间,由于地方一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉事故,导致铁路中断行车,杭州至宁波间途经该处的旅客列车受到影响。 事故原因:为一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉。地方相关部门说,事故地段地处软土地基,地质情况比较复杂,事故原因有待进一步调查确定。 处理措施:萧甬铁路有限责任公司负责指挥现场抢修工作的陈姓工程师勘察现场后,立即制定了抢修方案:做好地基处理——先修因移位而塌陷的公路,再通过公路运石方,把下陷后悬空的铁路填平,同时稳固拱起来的流泥土,保证土层不再流动。 案例二 北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。 该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。地下水分为上层滞水和承压水两种。基坑开挖完毕后,进行底版施工。一夜大雨过后,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑,西侧基坑周围地面也出现大小不等的裂缝。 事故原因:1.锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。 2.持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。3.基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。 处理措施:事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。

建筑质量事故案例分析

筑质量事故案例分析 作者:佚名时间:2008-7-30 浏览量: 1979 摘要:最近几年来,在对工程质量事故鉴定工作中,我收集了一些典型的工程质量事故案例。这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。现列举一部分,供大家参考。 关键词: 质量事故实例 案例一: 某工厂新建一生活区,共14 幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm以上。 事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为 7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为 100kN, Es为4Mpa.设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为- 1.4m~2m左右。该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。 案例二 某市一商品房开发商拟建10 栋商品房,根据工程地质勘察资料和设计要求,采用振动沉管灌注桩,桩尖深入沙夹卵石层500以上,按地勘报告桩长应在9~10米以上。该工程振动沉管灌注桩施工完后,由某工程质量检测机构采用低应变动测方式对该批桩进行桩身完整性检测,并出具了相应的检测报告。施工单位按规定进行主体施工,个别栋号在施工进行到3层左右时,由于当地质量监督人员对检测报告有争议,故经研究决定又从外地请了两家检测机构对部分桩进行了抽检。这两家检测机构由于未按规范要求进行检测,未及时发现问题。后经省建筑科学研究院对其检测报告进行了审核,在现场对部分桩进行了高、低应变检测,发现该工程振动沉管灌注桩存在非常严重的质量问题,有的桩身未能进入持力层,有的桩身严重缩颈,有的桩甚至是断桩。后经查证该工程地质报告显示,在自然地坪以下4~6m深处,有淤泥层,在此施工振动沉管灌注桩由于工艺方面的问题,容易发生缩颈和断桩。该市检测机构个别检测人员思想素质差,一味地迎合施工单位的施工记录桩长(施工单位由于单方造价报的低,经常利用多报桩长的方法来弥补造价),将砼测试波速由3600米/秒左右调整到 4700~4800米/秒,个别桩身经实测波速推定桩身测试长度为 5.8m,而当时测试桩长为9.4m,两者相差达3.6m.这样一来,原本未进入持力层的桩,严重缩颈桩和断桩就成为了与施工单位记录桩长一样的完整桩。该工程后经加固处理达到了要求,但造成了很大的经济损失。 案例三

地基基础工程事故案例---文本资料

地基基础工程事故案列 1、1913年加拿大特朗斯康谷仓,当谷仓装到31822m3时由于地基强度破坏发生整体滑动。 2、香港宝城附近由于边坡残积土的强度本来就不高,加之雨水的渗入使强度更低从而发生滑坡。 3、阪神大地震中的地基液化。 4、某电站汇合渠3号渡槽进口槽台因地基承载力不足而发生坍塌事故。 5、比萨斜塔,地基的不均匀沉降使塔体倾斜。 6、虎丘塔,大量雨水下渗加剧地基的不均匀沉降。 7、关西机场,沉降大且不均匀沉降。 8、墨西哥市艺术宫的地基沉降。 9、浙江萧甬铁路地基整体下沉。 10、陕西韩城市人民医院住院部病房突发坍塌 11、徐州繁华路段淮海东路上的济众桥因地基渗流造成工程事故。 12、宁德蕉城区金乡琼堂104国道旁一栋五层民房因软土地基下陷导致工程事故。 13、湖南桂阳县城郊乡中心小学教室倒塌。由于没有正式设计,没有进行结构计算,砖基础的承载能力大大低于规范要

求;再加施工质量低劣,砂浆标号很低,又不饱满,进一步削弱了砖基础的承载能力。 14、福建闽侯县青口乡信用社办公楼的倒塌。因为地基是软土地基没有处理好,最终地基承载力远远不够造成地基严重下沉,房屋倾倒。这还是一起无证设计和无证施工造成的重大事故。 15、湖南沅江县建委办公楼倒塌。主要原因是砖柱基础的设计安全系数只有0.92~1.35,大大低于规范要求的2.42;再加施工采用包心砌筑,进一步削弱其承载能力。倒塌时,首先是某基础破坏,立即引起其他砖柱基础的连锁破坏。此外,基础虽埋置在老土层上,但传到地基上的最大荷载大大超出允许地耐力。这样基础的沉陷又进一步促使砖柱基础的破坏。这是一起无证设计和无证施工造成的特大事故。 16、河北遵化县西铺村织布厂布机车间倒塌案例。倒塌的主要原因是质量低劣的毛石基础,在承载能力不足的地基上,在上部结构荷载的作用下,首先发生破坏,随之房屋整体倒塌。事后现场检查,毛石基础采用块石和卵石混合砌筑,也无拉结石,又是白灰砂浆,毛石基础的整体性很差,强度也很低,基础上也没有钢筋混凝土圈梁,使荷载不能均匀传递到地基上,发生不均沉降。这样的地基和基础是承受不了上部荷载的。这是一起无证设计、无证施工造成的重大事故。

地基事故案例[1]

软土地基事故案例分析 杨光华 地基软弱下卧层的问题 案例1: 案情: 某九层框架建筑物,建成不久后即发现墙身开裂,建筑物沉降最大达58cm,沉降中间大,两端小,产生这一问题的原因是什么?目前情况如何处理?这是大家关心的问题。 进一步了解发现,该建筑物是一箱基基础上的框架结构,原场地中有厚达9.5~18.4m厚的软土层、软土层表面为3~8m的细砂层,地质剖面见图1。设计者在细砂层面上回填砂石碾压密实,然后把碾压层作为箱基的持力层。在开始基础施工到装饰竣工完成的一年半中,基础最大沉降达58cm,由于沉降差较大,造成了上部结构产生裂缝。如图2所示。

图1 原因: 该案例产生过大沉降并影响上部结构安全,关键原因是对地基承载力的认识不够完整。地基承载力是取决于基础应力影响所到的受力范围,不仅仅是基础底附近的土体承载力。同时,地基承载力应包含两层内容,一是地基强度稳定,二是地基变形。本工程基础长×宽为60×20m,其应力影响到地基下部的软土层,在上部结构荷载作用下软土产生固结沉降,随着时间的增长,沉降逐步发展,预计总沉降量会达约100cm,目前沉降量约为总沉降量的60%。由于沉降量过大,沉降不均匀,同时上部结构刚度也不均匀,从而在结构刚度突变处产生了裂缝。 图2 处理: 该工程必须要对地基进行加固处理,加固采用静压预制砼桩方案。但设计时要考虑桩土的共同作用,同时充分考虑目前地基已承担了部分荷载,加固桩只需承担部分荷载即可,而不必设计成由加固桩承担全部荷载,从而达到节省的目的。启示: 1、地基的承载力要考虑下卧软土层的承载力,地基设计应要进行沉降计算,尤其是场地存在软弱土层的地基,必须要进行沉降验算。 2、这种地基的加固设计应考虑已有土体先发挥作用,已承担了部分荷载的特点,设计的加固桩与地基共同作用承担部分荷载,从而达到更经济合理的设计。某水厂水池群地基处理 案例2

地基不均匀沉降案例分析

地基不均匀沉降案例分析 一,案例(1); 地基不均匀沉降造成的严重倾斜——苏州市 虎丘塔 l.工程事故概况: 虎丘塔位于苏州市西北虎丘公园山顶,原名云岩寺塔,落成于宋太祖建隆二年(公元961年),距今已有1000多年悠久历史。全塔七层,高47.5m。塔的平面呈八角形,由外壁、回廊与塔心三部分组成。虎丘塔全部砖砌,外型完全模仿楼阁式木塔,每层都有八个壶门,拐角处的砖特制成圆弧形,十分美观,在建筑艺术上是一个创造。中外游人不绝。1961年3月4日国务院将此塔列为全国重点文物保护单位。 1980年6月虎丘塔现场调查,当时由于全塔向东北方向严重倾斜,不仅塔顶离中心线已达2.31m,而且底层塔身发生不少裂缝,成为危险建筑而封闭、停止开放。仔细观察塔身的裂缝,发现一个规律,塔身的东北方向为垂直裂缝,塔身的西南面却是水平裂缝。 虎丘塔倾斜全景(1980年6月)

虎丘塔Ⅰ-Ⅰ地质剖面图2.事故原因分析 经勘察,虎丘山是由火山喷发和造山运动形成,为坚硬的凝灰岩和晶屑流纹岩。山顶岩面倾斜,西南高,东北低。虎丘塔地基为人工地基,由大块石组成,块石最大粒径达1000mm。人工块石填土层厚1-2m,西南薄,东北厚。下为粉质粘土,呈可塑至软塑状态,也是西南薄,东北厚。底部即为风化岩石和基岩。塔底层直径13.66m范围内,覆盖层厚度西南为2.8m,东北为5.8m,厚度相差3.0m,这是虎丘塔发生倾斜的根本原因。此外,南方多暴雨,源源雨水渗入地基块石填土层,冲走块石之间的细粒土,形成很多空洞,这是虎丘塔发生倾斜的重要原因。在十年“文革”期间,无人管理,树叶堵塞虎丘塔周围排水沟,大量雨水下渗,加剧了地基不均匀沉降,危及塔身安全。 从虎丘塔结构设计上看有很大缺点,没有做扩大的基础,砖砌塔身垂直向下砌八皮砖,即埋深0.5m,直接置于上述块石填土人工地基上。估算塔重63000kN,则地基单位面积压力高达435kPa,超过了地基承载力。塔倾斜后,使东北部位应力集中,超过砖体抗压强度而压裂。 3.事故处理方法: 首先采取加固地基的办法。 第一期加固工程是在塔四周建造一圈桩排式地下连续墙,其目的为减少塔基土流失和地基土的侧向变形。在离塔外墙约3m处,用人工挖直径1.4m的桩孔,深入基岩50cm,浇筑钢筋混凝土。人工挖孔灌注桩可以避免机械钻孔的振动。

地基基础工程事故案例

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 地基基础工程事故案列 1、1913年加拿大特朗斯康谷仓,当谷仓装到31822m3时由于地基强度破坏发生整体滑动。 2、香港宝城附近由于边坡残积土的强度本来就不高,加之雨水的渗入使强度更低从而发生滑坡。 3、阪神大地震中的地基液化。 4、某电站汇合渠3号渡槽进口槽台因地基承载力不足而发生坍塌事故。 5、比萨斜塔,地基的不均匀沉降使塔体倾斜。 6、虎丘塔,大量雨水下渗加剧地基的不均匀沉降。 7、关西机场,沉降大且不均匀沉降。 8、墨西哥市艺术宫的地基沉降。 9、浙江萧甬铁路地基整体下沉。 10、陕西韩城市人民医院住院部病房突发坍塌 11、徐州繁华路段淮海东路上的济众桥因地基渗流造成工程事故。 12、宁德蕉城区金乡琼堂104国道旁一栋五层民房因软土地基下陷导致工程事故。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

土木工程事故案例分析23页

工程事故案例分析 学号: 姓名: 指导老师: 案例一 西北地区某高层综合办公楼,主楼为钢筋混凝土框-筒结构,地下1层,地上18层,总高度76.8m,总建筑面积36482m2。该建筑基础为灌注群桩,地下室外墙采用300mm厚C30自防水混凝土。标高13. 6m以上混凝土标号均为C40,楼板厚度120mm。该工程于1998年6月开工,1998年9月中旬施工地下室外墙,1999年1月19日施工到结构6层梁板。该层梁板在施工的同时即发现板面出现少量不规则细微裂缝,到2月24日该层梁板底摸拆除时,发现板底出现裂缝。从渗漏水线和现场钻芯取样分析,裂缝均为贯通性裂缝。之后又对全楼己施工完毕的混凝土工程进行了详察,在地下室外墙外侧上部发现数条长度不等的竖向裂缝(其中有两条为贯通性裂缝)。在5、6两层核心筒的电梯井洞口上部连梁上的同一部位亦发现两条裂缝。而在其他的柱、墙、梁、板上则未发现裂缝。经现场实测,第6层现浇板上的裂缝均为贯通性裂缝,最大裂缝长度约4.5m(直线距离),最大裂缝宽度0.2 7mm。地下室外墙竖向裂缝的最大长度约1.9m,最大裂缝宽度0.2mm,核心筒连梁上的裂缝最大长度0.3m,裂缝最大宽度约0.18mm。经过近

一个月的现场连续监控,未发现以上裂缝的进一步发展和新的裂缝出现。 一、原因分析: 第一,在施工的各种条件未变的情况下,从裂缝仅在六层现浇板上出现,而未在其它层现浇板上出现的事实来分析,唯一不同的是施工作业时的气候变化。如前所述,该层现浇板施工时是该地区冬季最寒冷、干燥的一个时期,最高气温仅1℃,当时的最大风速7m/s,湿度仅有30~40%,特别是每天于21时施工完毕后,混凝土正处于初凝期,强度尚未有大的发展,作业面又没有防风措施,导致混凝土失去水分过快,引起表面混凝土干缩,产生裂缝。根据有关资料记载,当风速为7m/s时,水分的蒸发速度为无风时的2倍;当相对湿度为3 0%时,蒸发速度为相对湿度90%时的3倍以上。假如将施工时的风速和湿度影响叠加,则可推算出此时的混凝土干燥速度为通常条件下的6倍以上。另外,从裂缝绝大多数集中在构件较薄及与外界接触面积最大的楼板上这一现象也可证实,开裂与其使用的材料关系不大,而受气象条件的影响大些。与楼板厚度接近的墙肢之所以未裂,是因为墙肢两面都有模板,不直接受大气的影响。由此可以基本断定,天气因素是导致混凝土现浇板出现干缩裂缝的主要因素。地下室外墙由于本身体积较大,又长期暴露在温湿度变化较大的环境中,特别到了1999年1月下旬,温度较施工时降低近30℃,导致混凝土温度收缩而产生裂缝。

地基基础常见的质量事故处理与预防措施

地基基础常见的质量事故处理与预防措施 摘要:地基基础工程作为建设工程的核心组成部分,它的质量是整个建设工程质量的基础,其内涵是其满足国家现行的有关地基基础的法律、法规、技术标准、设计文件及工程合同中对其安全、使用等综合要求的能力。安全可靠、稳定地承受全部建设工程在施工期间和全寿命使用期限内正常使用的荷载。因此有必要对地基基础质量的特点和其常见质量事故进行分析,总结经验教训,化消极因素为积极因素,防患于未然。 关键词:地基基础质量事故处理预防措施 地基基础工程质量的可靠性,是建设工程整体安全可靠性的前提。地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。根据统计资料显示,其中地基和基础工程的质量问题,占总事故的21%。而这些因素中。某些因素引起突发事故。另一些因素可能导致消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性、地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要不断积累的知识财富。并对地基基础工程事故采取有效的防止措施,是一个值得重视的课题。 一、地基基础工程质量的特点 从地基基础质量形成特性和其质量事故发生的特点分析,地基基础工程质量问题归纳起来有以下几个特征。 1.1复杂性 中国幅员广阔,工程地质条件非常复杂,例如淤泥质土、杂填土、湿陷性黄土、冻土、季节性冻土等。此外主要在西南地区有大片的溶岩,在全国其它地区也有所分布。同时,中国又是个多地震、高震级国家,而地震对地基基础的影响是非常大的。这种复杂的地质条件对地基基础工程的勘察设计处理以及工程施工增加了难度,提出了各种复杂和大量的技术难题。 1.2多发性 由于地基基础设计或施工处理不当而导致房裂屋倒,造成严重损失的实例时有发生,因而造成工程建设中的恶性而巨额的浪费确实惊人。 1.3潜在性 从主体结构本身复杂的工序连接来看,后一道工序都在不同程度上覆盖前一道工序,工序质量具有明显的隐蔽性,这也是主体结构工程必须加强隐蔽工程检查验收,存放完整的隐蔽验收资料的内在根源。

地基基础工程事故分析

地基基础工程事故分析 【摘要】文章分析了地基基础工程事故发生的一些因素及原因,提出了相应的防止办法, 同时列举了实例加以说明。 【关键词】地基基础;工程事故;工程地质 一、前言 在建筑结构的建造的使用过程中,由于地基和基础工程的质量问题,使建筑物墙体和 楼盖开裂影响使用的,有碍观瞻并使人有不安全感觉的,更有甚者使建筑物倒塌的事故, 近几年有上升的趋势,根据统计资料显示,其中地基和基础工程的质量问题,占总事故的 确21%。在建筑结构的设计和施工过程中,人们普遍认为最难驾驭的并不是上部结构,而 是该工程的地基和基础工程的问题,建筑物的上部结构尽管千变万最化,复杂万分,但是 在电子计算机得普遍应用,今天,它们基本上都是在设计和施工中可以被预知和掌握。而 对于建筑群所在场地的地下土层分布则不然,一般地说,人们只能在设计前通过几个钻孔 的土样的试验得知其少数信息,也只能在施工后,槽底的钎探结果了解其表层信息,至于 更深层更全面的情况却不能全面的掌握,往往凭经验加以处理,这就产生误差,甚至错误 造成对建筑物建成后的损坏,而且,地基基础都是地下隐蔽工程,建筑工程竣工后,难以 检查,使用期间出现事故的苗头也不易察觉,一旦发生事故难以补救,甚至造成灾难性的 后果。 地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用 引起的。而这些因素中。某些因素引起突发事故。另一些因素可能导致消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。所以,研究并探讨地基基础工程事故发生的原因,更 具有普遍性。地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要 不断积累的知识财富。并对地基基础工程事故采取有效的防止措施,是一个值得重视的课题。 二、地基与基础的工程事故的原因及防治方法 (一)因工程地质勘查中的错误而产生的事故 工程勘察报告要全面反映建筑场地工程地质和水文地质情况,预防地基与基础的工程 事故,首先对场地工程地质和水文地质条件全面正确的了解,要做到这一点关键要搞好工 程勘查工作,要根据建筑物场地的特点,建筑物情况合理确定工程勘察目的和任务,勘查 工作是设计的重要称序,决不能忽视而不做,也不能随便做而不考虑是否适用。特别是对 复杂的、软弱的地基,更应慎重对待。即使对单层的一般性建筑,也不能不做勘查。 事故实例:某市修建的一座库房楼,该库房为两层楼房,平面呈一字型,东西向长47.28m,南北向宽10.68m,高7.50m。库房正中为楼梯间,东西各两大间,每间长10.89m、宽 10.20m。中部有两个独立柱基。内外墙均为条形基础。此楼在使用一年后。库房西侧二楼 墙上既发现有裂缝。此后裂缝数量增多,裂缝宽度展扩。据详细调查统计,大裂缝已有33 条,有的裂缝长度超过1.80m,宽度达10~30mm,且地面多处开裂。6 年之后,再度调 查,发现裂缝长达3.20m,裂缝宽为8~10mm,且内外贯通。说明6 年多来库房的沉降一 直都在发展。 事故原因分析:原勘查失误是事故的主因,原勘查报告虽有偿个钻孔资料但仅有库房 对角线的41#、46#孔分别深5.10m、5.35m,其余5个孔只有2m 多,远不及基础受压层深度。更值得注意的是有2个孔已穿过有机土和泥碳层,但却未做记录,在报告中未说明, 只是简单地建议地基计算强度为fk=100KN/M2。这是该库房发生严重质量问题的根源;设 计人员对这份粗糙的勘查报告,并未提出补做勘查的要求。此外按规范规定对于三层和三

相关主题
文本预览
相关文档 最新文档