当前位置:文档之家› 图的最短路径算法的实现

图的最短路径算法的实现

图的最短路径算法的实现
图的最短路径算法的实现

图的最短路径算法的实现

C语言

#include

#include

#include

#define INF 32767

#define MAXV 100

#define BUFLEN 1024

typedef struct

{ char name[100];

char info[1000];

} VertexType;

typedef struct

{ VertexType vexs[10];

int arcs[100][100];

int vexnum,arcnum;

} MGraph; //图结构

char** getFile(char fileName[],char *array[],int &count){ FILE *file;

char buf[BUFLEN];

int len=0; //文件读取的长度

file=fopen(fileName,"rt"); //打开graph.txt的信息if(file==NULL) //文件为空的处理办法

{

printf("Cannot open file strike any key exit!\n");

exit(1);

}

while(fgets(buf,BUFLEN,file))

{

len=strlen(buf);

array[count]=(char*)malloc(len+1);

if(!array[count])

break;

strcpy(array[count++],buf);

}

fclose(file);

return array;

}

void getInfo(int &vex,int &arc,char *array){

char buf_ch[100];

char *ch[100];

char *tokenp;

int str_count=0,str_len=0;

tokenp=strtok(array," ");

strcpy(buf_ch,tokenp);

while(tokenp!=NULL)

{

str_len=strlen(tokenp);

ch[str_count]=(char*)malloc(str_len+1);

strcpy(ch[str_count++],tokenp);

tokenp=strtok(NULL," ");

}

for(int i=0;i

if(i%2==1){

ch[i][strlen(ch[i])-1]=0;

sscanf(ch[i],"%d",&arc);

}else{

sscanf(ch[i],"%d",&vex);

}

}

}

MGraph setVertexTypeInfo(MGraph g,char *arrayVer[]){ int str_count=0;

char buf_ch[100];

char *ch[100];

char *tokenp;

for(int i=0;i

int str_len=0;

tokenp=strtok(arrayVer[i]," ");

strcpy(buf_ch,tokenp);

while(tokenp!=NULL)

{

str_len=strlen(tokenp);

ch[str_count]=(char*)malloc(str_len+1);

strcpy(ch[str_count++],tokenp);

tokenp=strtok(NULL," ");

}

}

for(int i1=2;i1

if(i1%2==1){

ch[i1][strlen(ch[i1])-1]=0;

strcpy(g.vexs[i1/2-1].info,ch[i1]);

}else{

strcpy(g.vexs[i1/2-1].name,ch[i1]);

}

}

return g;

}

//设置无向图的基本信息

MGraph setMGraphInfo(MGraph g,char *arrayMGraph[],int &count){ int str_count=0;

char buf_ch[100];

char *ch[100];

char *tokenp;

for(int i4=g.vexnum+1;i4

int str_len=0;

tokenp=strtok(arrayMGraph[i4]," ");

strcpy(buf_ch,tokenp);

while(tokenp!=NULL)

{

str_len=strlen(tokenp);

ch[str_count]=(char*)malloc(str_len+1);

strcpy(ch[str_count++],tokenp);

tokenp=strtok(NULL," ");

}

}

char *info[8];//需要匹配的字符串集合

for(int i2=0;i2

info[i2]=g.vexs[i2].name;

}

int G[50][50];//邻接矩阵初始化

for(int i3=0;i3

for(int j=0;j

G[i3][j]=INF;

int temp[100]={0}; //存储距离信息

int temp_count=0; //距离计数器

int templeft[100]={0}; //起始地址的代号信息

int templeft_count=0; //起始地址计数器

int tempright[100]={0}; //终点地址的代号信息

int tempright_count=0; //终点地址的计数器

for(int k=0;k

if(k%3==0){

for(int m=0;m

if(strcmp(info[m],ch[k])==0){

templeft[templeft_count++]=m;

}

}

}else if(k%3==1){

for(int m=0;m

if(strcmp(info[m],ch[k])==0){

tempright[tempright_count++]=m;

}

}

}else if(k%3==2){

ch[k][strlen(ch[k])-1]=0;

sscanf(ch[k],"%d",&temp[temp_count++]);

}

}

for(int i5=0;i5

G[templeft[i5]][tempright[i5]]=temp[i5];

}

for(int i6=0;i6

g.arcs[i6][j]=G[i6][j];

}

return g;

}

void DispMat(MGraph g)

{

int i,j;

for(i=0;i

{

for (j=0;j

if (g.arcs[i][j]==INF)

printf(" %5s","∞");

else

printf(" %5d",g.arcs[i][j]);

printf("\n");

}

}

void ppath(MGraph g,int path[][MAXV],int i,int j)

{

int k;

k=path[i][j];

if (k==-1) return;

ppath(g,path,i,k);

printf("%s->",g.vexs[k].name);

ppath(g,path,k,j);

}

void DisPath(MGraph g,int A[][MAXV],int path[][MAXV],int i,int j) {

if (A[i][j]==INF)

{

if (i!=j)

printf("从%s 到%s 没有路径\n",g.vexs[i].name,g.vexs[j].name);

}

else{

printf("%s->",g.vexs[i].name);ppath(g,path,i,j);printf("%s",g.vexs[j].name);

printf("\t路径长度为:%d\n",A[i][j]);

}

}

void Floyd(MGraph g,int p,int q) //弗洛伊德算法

{

int A[MAXV][MAXV],path[MAXV][MAXV];

int i,j,k,n=g.vexnum;

for (i=0;i

for (j=0;j

{

A[i][j]=g.arcs[i][j];

path[i][j]=-1;

}

for (k=0;k

{

for (i=0;i

for (j=0;j

if (A[i][j]>(A[i][k]+A[k][j]))

{

A[i][j]=A[i][k]+A[k][j];

path[i][j]=k;

}

}

}

printf("最短路径为:\n");

DisPath(g,A,path,p,q); //输出最短路径

}

int main()

{

int vex,arc;

printf(" 欢迎来到江西理工大学\n");

printf(" \n");

MGraph g; //图的定义

char *array[1]; //存储顶点和边数数据信息

char *arrayVer[10]; //存储地点信息

char *arrayMGraph[MAXV]; //存储关于图的信息

int count=0;

char fileName[]="D:\\数据结构\\shujujiegouyi\\graph.txt";

getFile(fileName,array,count);

//printf("%d\n",count);

count=0;

getInfo(vex,arc,array[0]);

g.vexnum=vex;

g.arcnum=arc;

getFile(fileName,arrayVer,count);

count=0;

g=setVertexTypeInfo(g,arrayVer);

getFile(fileName,arrayMGraph,count);

g=setMGraphInfo(g,arrayMGraph,count);

DispMat(g);

printf(" 江西理工大学校园导向图\n\n");

printf(" 功能选项:\n\n");

printf(" 1.查看所有景点\n\n");

printf(" 2.查询景点信息\n\n");

printf(" 3.查询两个景点的最短路径\n\n");

printf(" 4.退出校园导游\n\n");

printf(" 返回到所有景点请输入9(功能3辅助)\n\n");

int n=0,m=0,p=0,q=0,flag=0;int i7=0;

while(n!=4){

flag=scanf("%d",&n);

while(flag!=1)

{ fflush(stdin);

printf("对不起,您输入的有误,请重输入\n");

flag=scanf("%d",&n);

}

switch(n){

loop1: case 1:

printf("校园的景点有:\n");

for(i7=0;i7

printf(" %d.%s\n",i7+1,g.vexs[i7].name);

}

printf("需要继续查询请选择功能选项,否则按4退出\n");

break;

loop2: case 2:

printf("请选择您要查询的景点:(1-8)\n");

flag=scanf("%d",&m);

while(flag!=1)

{ fflush(stdin);

printf("对不起,您输入的不是数字,请输入数字\n");

flag=scanf("%d",&m);

}

if(m<9&&m>0){

printf("%s的信息:%s\n",g.vexs[m-1].name,g.vexs[m-1].info);

printf("需要继续查询请选择功能选项,否则按4退出\n");

}

else{

printf("您输入的数字有误,请输入(1-8)\n");

goto loop2;

}

break;

case 3:

printf("请输入您要查询第一个的景点:(1-8)\n");

loop3: flag=scanf("%d",&p);

while(flag!=1)

{ fflush(stdin);

printf("对不起,您输入的不是数字,请输入数字\n");

flag=scanf("%d",&p);

}

if(p==9){

goto loop1;

}

if(p<9&&p>0){

printf("请输入您要查询第二个的景点:(1-8)\n");

}

else{

printf("您输入有误,请重新输入要查询的第一个景点(1-8)\n");

goto loop3;

}

loop4: flag=scanf("%d",&q);

while(flag!=1)

{ fflush(stdin);

printf("对不起,您输入的数字有误,请输入数字(1-8)\n");

flag=scanf("%d",&q);

}

if(q==9)

goto loop1;

if(q<9&&q>0){

Floyd(g,p-1,q-1);

printf("需要继续查询请选择功能选项,否则按4退出\n");

}

else{

printf("您输入有误,请重新输入要查询的第二个景点(1-8)\n");

goto loop4;

}

break;

case 4: printf("欢迎再来\n"); break;

default : printf("输入错误,请输入1-3的数字!\n");

}

}

return 0;

}

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Dijkstra 算法解释 本文引用三篇文章:分别是谢光新-Dijkstra 算法, zx770424 -Dijkstra 算法, 中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。 谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。 zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。 中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。 希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法描述 (这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值) 1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析 Dijkstra 算法的时间复杂度为O(n^2) 空间复杂度取决于存储方式,邻接矩阵为O(n^2)

迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解

摘要 本次课程设计主要核心为利用迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解。要求理解算法的具体实现流程、学会正确使用该算法求解实际问题。本次课程设计具体内容是:通过对两个算法的理解与应用来比较两个算法的优缺点。本程序要求结合最短路算法以及相应的数据结构的定义和使用,实现一个最短路径算法的简单应用。本课程设计是对书本知识的简单应用,以此培养大家用书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件。 关键字:迪杰斯特拉算法,Floyd算法,最短路径,算法设计,数据结构

目录 摘要 --------------------------------------------------------------- 1 一、Dijkstra算法--------------------------------------------------- 3 1.1定义概览 ---------------------------------------------------- 3 1.2算法描述 ---------------------------------------------------- 3 1.2.1算法思想:--------------------------------------------- 3 1.1.2算法步骤----------------------------------------------- 3 1.3算法代码实现 ------------------------------------------------ 4 1.4算法实例 ---------------------------------------------------- 5 二、Floyd算法------------------------------------------------------ 7 2.1定义概览 ---------------------------------------------------- 7 2.2算法描述 ---------------------------------------------------- 7 2.2.1算法思想原理------------------------------------------- 7 2.3算法代码实现 ----------------------------------------------- 10 三、结论 ---------------------------------------------------------- 11 四、参考文献 ------------------------------------------------------ 12

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

用动态规划法实现有向图的最短路径问题。

动态规划法实现有向图的最短路径实验 实验题目: 设计一个求解有向图,单源最短路径的算法 实验目的: 1)了解,并掌握分支限界算法思想 2)会编写常见算法。 实验要求: 1.编写实验代码 2.分析算法时间和空间复杂度 实验主要步骤: 1 算法代码 package suanfa; publicclass ShortPath{ privatestatic Integer M = Integer.MAX_VALUE; publicstaticvoid main(String[]args){ int[][]c={{M,4,2,3,M,M,M,M,M,M}, {M,M,M,M,9,8,M,M,M,M}, {M,M,M,M,6,7,8,M,M,M}, {M,M,M,M,M,4,7,M,M,M}, {M,M,M,M,M,M,M,5,6,M}, {M,M,M,M,M,M,M,8,6,M}, {M,M,M,M,M,M,M,6,5,M}, {M,M,M,M,M,M,M,M,M,7}, {M,M,M,M,M,M,M,M,M,3}, {M,M,M,M,M,M,M,M,M,M}}; shortPath(10,c); } publicstaticvoid shortPath(int n,int[][]c){ int[] cost=newint[n];//cost[i]存储i到n-1的子问题的最短路径值 int[] path=newint[n];//path[i]存储状态,使cij+cost[i]最小的j值 //对数组cost[n]和path[n]进行初始化 for(int i=0;i=0;i--){

前N条最短路径问题的算法及应用

第36卷第5期2002年9月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.5Sep.2002 收稿日期:2001-10-24. 作者简介:柴登峰(1974-),男,浙江江山人,博士生,从事遥感图像处理、地理信息系统方面研究.E-mail:chaidf@z https://www.doczj.com/doc/7510676957.html, 前N 条最短路径问题的算法及应用 柴登峰,张登荣 (浙江大学空间信息技术研究所,杭州浙江310027) 摘 要:现有最短路径问题指的是狭义最短路径问题,针对该问题而设计的算法只能求得最短的一条路径.前N 条最短路径拓宽了最短路径问题的内涵(即不仅要求得最短路径,还要求得次短、再次短…第N 短路径),是广义最短路径问题.在图论理论基础上分析问题之后,设计了一个递归调用Dijkstr a 算法的新算法,该算法可以求取前N 条最短路径,而且时间、空间复杂度都为多项式阶.该算法已经成功应用于一个交通咨询系统中,自然满足实时应用需要. 关键词:最短路径;N 条最短路径;网络分析;地理信息系统;交通咨询系统 中图分类号:P 208;O 22 文献标识码:A 文章编号:1008-973X (2002)05-0531-04 Algorithm and its application to N shortest paths problem CHAI Deng-f eng,ZHAN G Deng-rong (I nstitute of Sp ace and I n f ormation T echnical ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :As the shor test path denotes one path ,algorithms designed for shor test path problem can g et only one path .N shortest paths are N paths including the shortest one ,the one inferior to the shortest one,eto.After reviewing the application of shortest poth pro blem ,an N shortest paths problem w as put fo rw ard and described.Gr aph theo ry w as used to analy ze the problem and results in fo ur theoretical con-clusions .T hen ,algo rithm recursively calling the Dijkstra algor ithm was desig ned and analy zed .Bath time co nplexity and space conplex ity are poly nom ial order.The algo rithm w as tested by ex periment and applied to a traffic consultatio n system of Guang zhou City ,it can meet the need of r eal-time application.Key words :sho rtest path;N shor test paths;netw ork analysis;tr affic consultation system ;GIS 20世纪中后期,随着计算机的出现和发展,图论的理论和应用研究得到广泛重视,图论作为一个数学分支的地位真正得到了确立.现在,图论的应用已经深入到众多领域,GIS 网络分析就是图论在地理信息领域的重要应用[3] ,此外,还有城市规划、电子导航、交通咨询等等. 最短路径问题是图论中的一个典范问题[1],主要研究成果有Dijkstra 、Floy d 等优秀算法[1,2],Dijk-stra 还被认为是图论中的好算法[1] .目前的研究工作主要集中于算法实现的优化改进与应用方面[3,4].最短路径问题通常有两类[2]:一类是求取从某一源点到其余各点的最短路径;另一类是求取每一对顶 点之间的最短路径.它们从不同的角度描述问题,但有一个共同的缺陷:这里的最短路径指两点之间最 短的那一条路径,不包括次短、再次短等等路径.在此不妨称以上两类问题为狭义最短路径问题,为此设计的算法只能求得最短的一条路径,而不能得到次短、再次短等等路径. 实际上,用户在使用咨询系统或决策支持系统时,希望得到最优的决策参考外,还希望得到次优、再次优等决策参考,这同样反映在最短路径问题上.因此,有必要将最短路径问题予以扩充,成为N 条最短路径问题,即不但要求得到最短路径,还要得到次短、再次短等路径.这称之为广义最短路径问题.

第20讲-关键路径与最短路径

数据结构第20次课

(续表)

思考.题 作业题试对下图所示的AOE网络,解答下列问题。 (1) 这个工程最早可能在什么时间结束。 (2) 求每个事件的最早开始时间Ve[i]和最迟开始时间Vl[I]。 (3) 求每个活动的最早开始时间e( )和最迟开始时间l( )。 (4) 确定哪些活动是关键活动。画出由所有关键活动构成的图,指出哪些活动加速可使整个工程提前完成。 *参考资料《数据结构辅导与提高》,徐孝凯编著,清华大学出版社 《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社

授课内容 关键路径 对整个工程和系统,人们关心的是两个方面的问题: 一)工程能否顺利进行(对AOV网进行拓扑排序) 二)估算整个工程的完成所必须的最短时间(对AOE网求关键路径) 1. AOE-网 } 与AOV-网相对应的是AOE-网(Activity On Edge),即边表示活动的网。 AOE-网是一个带权的有向无环图,其中,顶点表示事件(Event),弧表示活 动,权表示活动持续的时间。通常,AOE-网可用来估算工程的完成时间。 例:下图是一个假想的有11项活动的AOE-网。其中有9个事件v 1 , v 2 ,…,v 9 ,每个事件表示在它之前的活动已经完成,在它之后的活动可以 开始。如v 1 表示整个工程开始,v 9 表示整个工程结束,v 5 表示a 4 和a 5 已经 完成,a 7 和a 8 可以开始。与每个活动相联系的数是执行该活动所需的时间。 比如,活动a 1 需要6天,a 2 需要4天等。 和AOV-网不同,对AOE-网有待研究的问题是: (1)完成整项工程至少需要多少时间 (2)哪些活动是影响工程进度的关键 2. 关键路径 由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间 是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上 各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关 备注: 回顾

地图中最短路径的搜索算法研究综述 (1)

地图中最短路径的搜索算法研究 学生:李小坤导师:董峦 摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。 关键词:最短路径算法;广度优先算法;深度优先算法;A*算法; The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic. Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm; 前言: 最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。 在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1] (1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。 (2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。 (3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。 地图中最短路径的搜索算法: 1、广度优先算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

数据结构与算法第6章图答案

第 6 章图 课后习题讲解 1. 填空题 ⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度 ⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路

1043 【图论基础】求一个无向图的最短路径(dijkstra) 1044 有向图中任意两点最短路径(floyd)

【图论基础】求一个无向图的最短路径(dijkstra) Time Limit:10000MS Memory Limit:65536K Total Submit:112 Accepted:46 Description 一个含n个结点的无向图,以矩阵存储方式给出,请求出指定的两个点之间的最短距离。 Input 第一行,一个整数n(0 < n < 1000 ),表示无向图中结点的个数。 接下来是一个n*n的矩阵,表示无向图中各结点之间的联结情况,矩阵中的数值为小于等于1000的下整数,其中0 表示两点之间无直接连接。 最后一行,两个整数i,j。表示求解i点到j点的最短距离。 Output 一个数值,表示指定的两点之间最短距离。 Sample Input 2 0 2 2 0 1 2 Sample Output 2 Source

?var ? i,j,k,n,min:longint; ? x,y:longint; ? a:array[1..1000,1..1000] of longint; ? b:array[1..1000] of longint; ? c:array[1..1000] of boolean; ?begin ? readln(n); ? for i:=1 to n do ? for j:=1 to n do read(a[i,j]); ? readln(x,y); ? fillchar(c,sizeof(c),0); ? fillchar(b,sizeof(b),$7); ? k:=x; b[x]:=0; ? for i:=1 to n-1 do begin ? c[k]:=true; ? for j:=1 to n do ? if (a[k,j]<>0) and not c[j] and (a[k,j]+b[k]

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

Dijstra 最短路径算法

Dijstra 最短路径算法 1课程设计目的 为进一步巩固学习《数据通信与通信网技术》课程。加强对Dijstra最短路径算法的认识,所以需要通过实践巩固基础知识,为使我们取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要的教学环节。通过Dijstra 最短路径算法的设计和实现,达到进一步完善对通信网基础及应用课程学习的效果。增加对仿真软件的认识,学会对各种软件的操作和使用方法;加深理解路径算法的概念;初步掌握系统的设计方法,培养独立工作能力。 2设计方案论证 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 2.1 设计内容 沈阳大学

图的最短路径问题

带权图的最短路径问题 1、带权图的最短路径问题 带权图的最短路径问题即求两个顶点间长度最短的路径。 其中:路径长度不是指路径上边数的总和,而是指路径上各边的权值总和。 路径长度的的具体含义取决于边上权值所代表的意义。 【例】交通网络中常常提出的如下问题就是带权图中求最短路径的问题。 (1)两地之间是否有路相通? (2)在有多条通路的情况下,哪一条最短? 其中:交通网络可以用带权图表示:图中顶点表示城镇,边表示两个城镇之间的道路,边上的权值可表示两城镇间的距离,交通费用或途中所需的时间等等。 2、交通网络的表示 由于交通网络存在有向性,所以一般以有向网络表示交通网络。 【例】设A城到B城有一条公路,A城的海拔高于B城。若考虑到上坡和下坡的车速不同,则边和边上表示行驶时间的权值也不同。即应该是两条不同的边。 3、源点和终点 习惯上称路径的开始顶点为源点(Source),路径的最后一个顶点为终点(Destination)。 为了讨论方便,设顶点集V={0,1,…,n-1},并假定所有边上的权值均是表示长度的非负实数。 单源最短路径问题 (Single-Source Shortest-PathsProblem) 单源最短路径问题:已知有向带权图(简称有向网)G=(V,E),找出从某个源点s∈V到V 中其余各顶点的最短路径。 1、边上权值相等的有向网的单源最短路径 用求指定源点的BFS生成树的算法可解决 2、迪杰斯特拉(Dijkstra)算法求单源最短路径 由Dijkstra提出的一种按路径长度递增序产生各顶点最短路径的算法。 (1)按路径长度递增序产生各顶点最短路径 若按长度递增的次序生成从源点s到其它顶点的最短路径,则当前正在生成的最短路径上除终点以外,其余顶点的最短路径均已生成(将源点的最短路径看作是已生成的源点到其自身的长度为0的路径)。 【例】在有向网G8中,假定以顶点0为源点,则它则其余各顶点的最短路径按路径递增序排列如右表所示 (2)算法基本思想 设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。 ①初始化

实现求关键路径的算法

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:实现求关键路径的算法 院(系):计算机学院 专业:计算机科学与技术 班级:04010102 学号:2008040101058 姓名:刘小靖 指导教师:许清 完成日期:2014年1月9日

沈阳航空航天大学课程设计报告 目录 第一章需求分析 (1) 1.1题目内容与要求 (1) 1.2题目理解与功能分析 (1) 第二章概要设计 (3) 2.1设计思路 (3) 2.2系统模块图 (3) 第三章详细设计 (4) 3.1图存储结构的建立 (4) 3.2求关键路径的算法 (5) 第四章调试分析 (7) 参考文献 (10) 附录(程序清单) (11)

第一章需求分析 1.1 题目内容与要求 内容: 自拟定合适的方式从键盘上输入一个AOE网,使用图的邻接表存储结构存储该AOE网,然后求出该AOE网的关键路径。输入AOE网的方式要尽量的简单方便,程序要能够形象方便地观察AOE网和它的关键路径 基本要求: 1.熟悉图的存储结构及操作方式; 2.熟悉求关键路径的算法; 3.熟练运用开发环境; 4.完成软件的设计与编码; 5. 熟练掌握基本的调试方法; 6. 提交符合课程设计规范的报告; 1.2 题目理解与功能分析 该题实质要求用数据结构中的图形知识编写一个求无循环有向帯权图中从起点到终点所有路径,经分析、比较求出长度最大路径,从而求出关键路径。 通常我们用有向图表示一个工程。在这种有向图中,用顶点表示活动,用有向边表示活动Vi必须先于活动Vj进行。如果在这种图中用有向边表示一个工程中的各项活动(ACTIVITY),用有向边上的权值表示活动的持续时间(DURATION),用顶点表示事件(EVENT),则这种的有向图叫做用边表示活动的网络,简称AOE网络。在AOE网络中,从源点到各个顶点,可能不止一条。这些路径的长度也可能不同。不同路径所需的时间虽然不同,但只有各条路径上所有活动都完成了,这个工程才算完成。因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和。这条路径长度就叫做关键路径(critical path)。程序所要达到的功能:输入并建立AOE

数据结构 第六章 图 练习题及答案详细解析(精华版)

图 1. 填空题 ⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵ 任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶ 图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度

⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk 【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。 2. 选择题 ⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的()倍。 A 1/2 B 1 C 2 D 4 【解答】C 【分析】设无向图中含有n个顶点e条边,则。

最短路径算法及其在路径规划中的应用

最短路径算法及其路径规划中的应用 摘要: 这篇文章把徒步运动的路径规划问题转化为求解图中任意两点间的最短路径问题,进而针对此问题介绍了Floyd算法,对该算法的时间花费进行分析,并介绍了在实际问题中如何灵活运用该算法解决路径决策中遇到的问题。 关键词:路径规划、最短路径、决策、Floyd算法 将实际地图的转化为有向图 在策划一次徒步旅行时,设计正确的旅行的线路特别重要,首先我们必须先要得到那个地区的地图,以便进行后续的线路规划。当我们拿到某一地区的地图时,我们可以把地图上的每一条线路用线段表示,用顶点表示地图上的岔路口,即多条线段的交点,这样就形成了一个由点和线段组成的图。我们可以在每条线段上标上数字,表示两点之间的实际距离,或者表示通过这条路径所需的时间。当然,如果两点之间没有线段相连,我们可以认为距离为无穷大,用∞表示。有时候某些线路是单向的,即只能从一个方向到另一个方向,不能逆行。这种情况在具体的路径设计中非常常见,比如,在繁华的都市内会有一些单行道,在山区景点中,常会出现一些上山索道,这些都是单向线路的常见例子。有时候,沿某条线路的两个方向所需的时间不同,这种例子更为常见,比如上山与下山,顺风与逆风等等。对于这两种情况,我们可以在表示路径的线段上加上箭头表示该路径的方向,形成有向图。 到达v2的距离为8,而从v2到v1的距离为3。 从点v1到v0的距离为5,而从v0到v1的距离 为∞。这种带有箭头的有向图,比不带箭头的无 向图能够表示更一般的情形,可以说无向图只是 有向图的一种特殊情况。 如果我们知道任意两点间的最短路径,这对 我们进行路径规划将会有很大的帮助,但当地图 较为复杂时,凭直觉估计最短路径的方法往往不 可靠,这时就必须借助计算机的强大计算能力,寻找最短路径。下面,我们就以 这种有向图为工具,来探究寻找最短路径的方法。

最短路径算法在物流运输中的应用

本科生毕业设计(论文)题目:线性表的设计和实现 学生姓名:张三 学号: 1153 院系:基础科学学院信息技术系 专业年级:2012级信息与计算科学专业 指导教师:李四 年月日

摘要 随着现代物流业的发展,如何优化和配置物流的运输路径成为了一个热点的问题。其中,最具代表性的问题就是如何在一个道路网络中选择两点之间的合适路径,使其距离最短。为了解决这个问题,本文介绍了两种最常用的最短路径求解方法——DIJKSTRA算法与FLOYD算法,分析了它们的适用范围以及时间复杂度。最后,对一个具体的航空公司物流配送问题进行了求解,得到了理论最优路径。 关键词:最短路径问题;DIJKSTRA算法;物流运输

ABSTRACT With the development of modern logistics industry, how to optimize and configure the transport path of logistics has become a hot issue. Among them, the most representative problem is how to select the appropriate path between two points in a road network to minimize the distance. In order to solve this problem, this paper introduces two most common shortest path solutions ——Dijkstra algorithm and Floyd algorithm, and analyzes their application range and time complexity. Finally, a specific airline logistics distribution problem is solved, and the theoretical optimal path is obtained. Keywords:Minimum path problem;Dijkstra algorithm;Logistics transportation

物流运输系统中最短路径算法及应用复习进程

物流运输系统中最短路径算法及应用

物流运输系统中最短路径算法及应用 摘要:根据GIS中网络计算的实际情况,根据A*算法和Dijkstra算法中快速搜索技术的实现入手,采用最短路径算法结合GIS的方法,提出了一种解决物流运输中车辆路径问题的高效率实现的方法。 引言: 在竞争日益激烈的现代商业社会,企业只有以市场为核心去适应不断变化的 环境并及时对市场做出发应,才能在竞争中立于不败之地。物流管理正是以实 现上述要求为目标的。而物流配送是现代化物流管理中的一个重要环节。它是指按用户的定货要求,在配送中心进行分货、配货,并将配好的货物及时送交收货人的活动。在物流配送业务中,存在许多优化决策的问题。本文只讨论物流配送路径优化问题。合理选择配送路径,对加快配送速度、提高服务质量、降低配送成本以及增加经济效益都有很大影响。所谓的车辆路径问题(Vehicle Routing Problem)VRP。它也是目前在物流系统中较受关注的一个方面。它是指在客户需求位置已知的情况下,确定车辆在各个客户间的行程路线,使得运输路线最短或运输成本最低。 一、系统介绍 求解物流配送路径优化问题的方法有很多是路径引导的功能。本设计主要功能是从给定的车辆位置和多个目标点位置,计算车辆遍历所有目标点的代价最优值,并给出代价值和路径描述,并在地图上进行路径显示。路径引导模块的主要过程:初始化路网->得到车辆信息和目标点信息->求车辆遍历所有目标点的代价最优值和遍历次序(仅求遍历次序,而不需求走什么道路)->求每个目标点遍历的最优路径(求具体的道路)->输出遍历次序和路径描述 二、车辆遍历所有目标点的代价最优值算法

城市道路最短路径算法的研究

城市道路最短路径算法的研究 收稿日期:2006-02-23 基金项目:吉林省交通厅资助项目(040123) 作者简介:杨天石(1973-),男(汉),湖南岳阳,工程师 主要研究测绘工程与G IS 的工程。 杨天石1,刘晓东2,于小平3 (1.中国有色金属工业长沙勘察设计研究院,长沙410011; 21长春工程学院勘查与测绘工程学院,长春130021;31吉林大学地探学院,长春130026) 摘 要:建立城市公交最短路径有利于城市交通建 设有序和稳定的发展,目前采用GIS 技术可以有效地管理公交车辆。从系统的最短路径入手,对行走路线作了分析,并给出了用于空间分析的最短路径追踪方法。此外介绍了该系统在具体城市交通应用中所要遵循的原则。 关键词:最短路径;Dijkstra 算法;GIS ;MapObject 中图分类号:P208文献标识码:A 文章编号:100928984(2006)022******* 0 引言 城市道路是城市的重要基础设施,它的运行的 直接影响着城市的规划、建设和管理。面对未来的城市,道路有效地运行,无疑是城市发展的一个重要方面。 城市交通担负着客流传输、能源输送等工作,也是城市赖以生存和发展的物质基础。但由于多方面的原因,造成在运行时利用不高,我国现有公路网络的运行不是令人满意的。另一方面,我国现有的公路资料都以图纸、图表等形式记录保存,采用人工方式管理,效率低下,资料系统性差。对于变化的区域,数据维护困难,各部门也存在为了建设方便重复收集资料,标准不统一,管理混乱等情况。而城市道路做为地面工程规划设计、施工和运行管理的基础数据,必须为合理地开发利用道路,加强城市道路的统一规划管理提供科学依据。 鉴于以上情况,必须建立城市道路数据库与信息系统,利用竣工测量,实现动态更新,为城市规划 与建设管理提供高精度、高可靠性、现势性的城市道路数据信息;同时充分利用系统提供道路的一系列空间分析和道路辅助设计功能。这将大大提高道路信息的社会和经济效益。 1 道路系统的模型框架 城市道路信息系统是利用地理信息系统技术、现代关系数据库、网络技术、多媒体技术和其它专业技术,采集、管理、更新与处理城市道路信息的,具有空间决策支持和专家系统综合分析能力的综合性信息系统。同一般的地理信息系统相比,具有道路数据的网络性和连通性特点,这是系统的重要环节,所以在道路数据的更新与分析中建立道路的拓扑关系显得尤为重要。1.1 系统数据加工 MapObject 所采用的是shape 格式的数据,而shape 不能支持拓扑,直接实现算法比较困难。这里 就需要自己建立拓扑关系,达到网络分析的目的。步骤如下: (1)在ArcMap 中编辑所需要的数据层(如:线 层,这里为“中心线”),在Editor 菜单下的Options 中的T opology 的属性页中选择好适当的ClusterT oler 2ance 值,然后对整幅图进行Integrate ,确保所有的线 没有拓扑错误。在ArcCatalog 里将刚才所编辑的shape 文件转换成C overage 格式,打开该文件的C ov 2erage Properties ,用Build 建立好Node 。 (2)用ArcMap 打开建立好拓朴后的C overage 数 据的Arc 和Node 层,并分别将其导成一个线状的和一个点状的Shape 文件,分别取名为line.shp 和node.shp 。1.2 数据模型建立11211 构建矩阵 定义3个数组,分别存放相应Arc 的起点、终点 ISS N 100928984 C N 2221323/N 长春工程学院学报(自然科学版)2006年第7卷第2期J.Changchun Inst.T ech.(Nat.Sci.Edi.),2006,V ol.7,N o.219/28 57259

相关主题
文本预览
相关文档 最新文档