当前位置:文档之家› Abstract Online 3D Collaboration System for Engineering Education

Abstract Online 3D Collaboration System for Engineering Education

Abstract Online 3D Collaboration System for Engineering Education
Abstract Online 3D Collaboration System for Engineering Education

Online 3D Collaboration System for Engineering Education

Hengzhong Wen and Kurt Gramoll

University of Oklahoma

Abstract

The Internet has provided new communication methods for most people is all walks of like, particularly for education and industry. It is common that people email friends, pay bills online and play games together when they are in two countries. Industry has employed video conference to discuss engineering problems and to share files. Education has utilized websites to present education and training materials and discussions. Generally, these applications employ two dimensional collaboration tools. As new Internet technologies develop and the computer processing speeds increase, constructing a real-time online engineering education and training collaboration tool for a team of remotely distributed learners has become an important research topic. However, it is a challenging task to develop and implement a true synchronized interactive three-dimensional system for online connected users. Major obstacles in developing and implementing such a system include large three-dimensional object data size, real-time three-dimensional world rendering, and bandwidth limitation.

This paper introduces the background of doing research on online synchronous three-dimensional engineering learning environment over the Internet for a group of people from various physically separated sites. It also reviews research that has been done in online distance engineering education and training. Finally, this paper presents a real online example, called "3D Bracket", which is designed to help engineering students understand concepts of torque, bending and superposition theory of Mechanics. In this learning environment the users are capable of designing and manipulating three-dimensional models, such as changing the view point and applying forces at various locations of the bracket. All participates are connected online, and are able to view the bracket deflection through a web-browser in real-time from any local. In addition, the students are allowed to exchange ideas via audio and text chat.

This research employs Adobe Director to generate online real-time three-dimensional model in this team-based engineering education environment. Adobe Flash Communication Server (recently renamed Flash Media Server) is used as the synchronous technology to invoke the synchronize changes among the multiple remote learners. The main purpose of this research is the design and implementation of a framework to integrate the instant audio communication and interactive three-dimensional models over the Internet. This framework makes the online real-time team engineering work possible.

Introduction

The Internet is changing Americans’ communication methods in many new ways. According to the survey of Pew Internet & American Life project, more than half (55%) of all online American youths ages 12-17 use online social networking sites [1]. Nearly two in five adult Internet users in the US (39%) have gone online to look for information about a place to live, up from 34% in 2004 to 27% in 2000 [2]. Fully 87% of online users have at one time used the Internet to carry out research on a scientific topic or concept [3]. The growth of the Internet is

due to many reasons, but several obvious ones are its low cost, convenience, and time saving. Also fueling this growth is, the rapid improvement of Internet technologies, and increasing computer and network processing speeds. With new Internet technologies and faster computer speeds, performing independent online training, viewing video and playing games over the Internet are no longer a bandwidth issue. However, collaboratively training a group of physically separated students with three-dimensional (3D) visualized objects in real-time is still a challenging task due to the large amount of data, Internet bandwidth limitation and real-time rendering [4]. This paper describes the design and implementation of a real-time bracket learning environment which employs low lag audio and interactive 3D models.

Partly because of the convenience of online education and training, a number of researchers have investigated synchronized online systems. Pullen, at George Mason University, has developed and integrated open source software, Network EducationWare (NEW), for a professor to teach a course synchronously to both local students and distance learners over the Internet [5-7]. The NEW system can synchronously deliver the instructor’s voice, graphics, dynamic annotations, and optional videos to the students over the Internet. Although the whiteboard of this software can be visually shared by multiple students and basic graphics such as colorful lines, rectangles, and ellipses can be added to it, the instructors or students cannot change anything on the whiteboard because what the students really share is a series of prepared graphics. Unlike HTML files or data files, graphic files have larger file sizes and always require more download time. Although the instructor can draw two dimensional (2D) graphics on the whiteboard, 3D objects are neither generated nor shared among the students to illustrate the concepts.

The researchers, AlRamahi and Gramoll, at the University of Oklahoma developed a drawing board, LectureBoard, to provide an online, collaborative, and spontaneous lecture creation using Adobe Flash Communication Server [8, 9]. In this system, the users can communicate with each other with text chat, speech, and vector-based drawings. The lecture, including the drawing and the audio, can be saved on the server as an Abode Flash file so that it can be reused by students at a later time. All the users are capable of drawing various shapes including lines, arrows, circles, and rectangles, or drawing free hand. The eraser, object selector, grid, shape color, line color, and thickness are also implemented to facilitate clearer and easier drawings. Although a vector-based drawing creates small file size and the scene is resizable without a dramatic decrease in the graphic quality, only 2D graphics can be generated in this system. However, many concepts in engineering classes need 3D models to help student better understand. When the user draws quickly on the screen with the free hand drawing tool, the lines, which display in the LectureBoard, consists of many straight line segments that only simulate curves. In addition, this system cannot continuously share the scene. For example, the person who controls the drawing tool is capable of seeing the pen’s moving path immediately on the screen, but all the other users only see the path after the drawing object is completed.

Sun and Gramoll at the University of Oklahoma have developed a 3D Virtual City that allows interactivity and collaboration. The ultimate goal of that project was to provide guidance to students to better understand and integrate the theoretical concepts with the process of design and analysis through an interactive and distributed collaborative process [10-15]. This system allows the students to build real 3D models, such as highway systems, bridges, dams, buildings, and structures, into a 3D virtual world upon the completion of civil engineering courses. This 3D

world, which is implemented using Virtual Reality Modeling Language (VRML), is viewable and navigable via the Internet. The system is also used to develop an engineering design and analysis module using Adobe Director Shockwave and Java 3D technologies that allow the generation of 3D objects and finite element analysis.

The Virtual City system implements 3D visualization that is created with diverse computer systems in various locations through the Internet. Virtual City allows real-time multiple users, collaborative learning and doing projects over the Internet. When one student in the team makes changes to a design, other students can see the changes immediately. It is similar to the traditional face-to-face teamwork, yet the designers can be at physically different locations. This system provides a web-based, multi-user engineering analysis tool which allows the designers to import models, specify the material properties, the boundary conditions, the force type, and the number of elements, and then perform finite element analysis. It also supports other designers to modify all the above items. However, the 3D geometric model in this system cannot be dynamically modified once it is generated. In other words, it is a static model, although it can be rotated and downloaded. This system can generate only one 3D object. However, engineering education needs multiple objects and boundary conditions to be displayed as 3D objects. Another virtual collaboration room (VCR), University21, is a comprehensive group learning and design center which supports real-time dynamic 3D objects sharing functions [16]. This room enables teachers and students to flexibly and naturally conduct their collaborative teaching, learning, and working over the Internet without constraints on collaboration type, working style, group scale, and system platform [17, 18]. VCR consists of a workspace, group chat, and room management. The workspace is further composed with six subspaces such as control audio, video and note board. In order to draw user’s attention, a normal user can only view the visible subspace, which has been selected by the chair/presenter. The management function consists of the User Panel, Object Cabinet, Object Panel and Workspace Panel. The User Panel is for user management. The Object Cabinet is for storing and creating available objects. The Object Panel is for controlling the objects in a workspace. The Workspace Panel is for controlling a visible working subspace. A learner or a designer is allowed to modify the dimension of the 3D object, and change the light, color, and view point. However, when a new 3D object generates, all 3D objects in the scene have to be redrawn. This takes both computer and Internet resources. Regular 3D objects, such as balls, boxes and cylinders, can be drawn in the system but the shape of the 3D objects cannot be changed.

The VCR system uses multiple working and manipulation spaces to generate new objects, set up light sources, view points, and manipulating objects. The user needs to input parameters, such as color R, color G, color B, translation X, translation Y, and translation Z. For a computer graphics programmer, these parameters are easily understood. However, for general users, these abstract parameters can be confusing. Although individual 3D objects can be rotated, the whole 3D world cannot be rotated. Thus, if a user builds a house, it can only be viewed from the front. This is not natural because in the real world the designer can go to any side of a product, and in any CAD program, an assembly product can be freely rotated.

System Design and Implementation

As outlined in the previous section, online, dynamic, 3D, collaborative education and training environment still have various limitations. In this section, an online dynamic 3D collaborative education and training environment design system, and its implementation, is presented. The tools employed to build the prototype are discussed.

There are numerous Internet technologies available in the market that can be used to develop online applications. The two key technologies employed in this work are Adobe Flash Communication Server (Flashcom) and Adobe Director. The reasons why these technologies have been chosen and how they are used are discussed in the following paragraphs.

I. 3D Rendering Tool

There are various technologies to render 3D models on the web, but the most commonly used are Virtual Reality Modeling Language (VRML), Java 3D, and Adobe Director (or Shockwave). Director has the ability to create multimedia presentations both on and off the Internet. Director supports the creation of both complex 2D animations and 3D models for interactive course modules and games. It is used in this work to dynamically create and render 3D objects on the web because Director has small file sizes due in part of being vector-based.

Another advantage of Director for any dynamic 3D collaborative system is its ability to provide multi-resolution mesh rendering. Director renders a less resolution 3D world for a slower computer and a higher resolution 3D world for a faster computer based on the developers’ design to facilitate short download time. This technology is implemented in this research work by specifying the resolution of the 3D model.

One more advantage of Director is its support of subdivision surfaces. Subdivision surface is a technology that increases the resolution of low-resolution models. It allows the users to first download a small file with a low resolution 3D model, and then use the processing ability of the local computer to generate a higher resolution 3D world. This technology minimizes the Shockwave file size and generates smoother curved surface that was originally created with flat surfaces.

II. Synchronized Tool

In order to design a synchronous collaboration environment, it is essential that the connected users communicate with each other in real-time. This can be done with synchronized tools, such as Adobe Flash Communication Server (Flashcom), Java Remote Method Invocation (RMI) and Adobe Director Multi-user Server (MUS).

Unlike many other streaming media servers which use User Datagram Protocol (UDP) to broadcast the data to multiple IP addresses at the same time, Adobe Flashcom uses Transport Control Protocol (TCP). UDP has a number of advantages including high speed information transferring, excellent broadcast position information, good performance under noisy network conditions, and an efficient method to send animation sub-frames. However, using UDP to send out information cannot guarantee that the message will arrive at the destination computers. In other words, the information may be missing if it is sent using UDP.

Although TCP is slower than UDP, it is highly reliable and can resend the information when deliver fails. Also, TCP is the industry standard, database accessible, and firewalls passable. This protocol has been demonstrated to be reliable and bidirectional.

Flashcom software sends information and manages the server through TCP. Flashcom has its own administrator tools that can manage the user account and configure the ports which allow the Internet user access. This technology guarantees the information, which is sent out or received by Flashcom, to pass through the firewall without missing data.

Another advantage of Flashcom is its ability to pass only the changed data to the clients. For example, when an end user changes a variable, from 2 to 3, Flashcom will send 3 to all the clients whose variable is not 3. This technology helps to reduce data transmission over the Internet. In addition, both Director and Flashcom are the products of the same company, Adobe Inc. and they work well together.

The core usage of Flashcom is handling interactions and coordinating the actions of multiple, connected users, or clients, and transmitting server-side data. It provides two communication technologies that simplify the process of handling user interactions: streams and shared objects. Both of the two communication technologies are used in the design and implementation of this learning system.

The communication technology, “stream”, is employed to facilitate the natural audio communication in this research. Stream is a way to organize and manage the data flow over a network connection [19]. Audio data can be carried within a stream in only one direction and multiple streams can be created within a single network connection. In order to transfer audio over a network connection, it is attached to a stream. In this research, a stream is used to broadcast the speakers’ sound data for each user. Multiple streams are used to receive other user’s sound data for each user. In order to increase the quality of the audio and reduce the data transmission over the Internet, the echo, rate, gain and silence levels are controlled.

The shared object is another communication technology that is employed to handle the data for manipulating 3D objects and sending text chat in this research. Flash shared objects, which store information for later use, can be shared by multiple instances of the application. There are two kinds of shared objects including local shared objects (LSOs) and remote shared objects (RSOs). LSOs can be stored and retrieved locally by multiple Director simulations. RSOs can be shared by multiple Director simulations which are connected to the Flashcom Server in real-time. In this research, remote shared objects are both employed. When one user changes any property of his copy of RSO, updates are automatically sent to all other users’ simulation which shares the same object.

III. System design

To allow a group of learners to work on the same problem, each member needs to see the same object from the same angle in their own browser in real-time. Any edition and manipulation of a 3D object in any of the learners’ own browser will pass to the server and then to all the connected learners. In other words, “What You See Is What I See” (WYSIWIS) environment as shown in Figure 1.

Figure 1. "what you see is what i see" environment

Generating large amounts of geometric data on the server and passing the data back to the users’ local computer can quickly reach the upper limitation of the network capacity regardless of the bandwidth. To help reduce this limitation, the system parametrically defines the geometry of the 3D objects. It generates 3D objects based on a few parameters in the client computer and only these parameters are passed from the server to the local computer through the Internet. In order to reduce data transmission, Flashcom is used because only the changed data are passed to all connected client computers through the server. Therefore, the time to display the 3D environment relies only on the client computer’s calculation speed. With the constantly increasing computer processing speeds, rendering time drops proportionally.

VI. Implement collaborative Real-time 3D Bracket Learning System

In order to demonstrate that 3D Bracket learning system is a feasible solution for both distance education and engineering analysis, a prototype, 3D bracket, has been developed. The basic goal of this prototype is to help teach engineering principles and concepts through the use of 3D virtual worlds and narrations, which are essential features in engineering education. Students gain knowledge by actually applying loads to virtual 3D objects.

The application is a virtual prototype in which users are able to create, edit and manipulate 3D objects from remote sites. In this virtual prototype, engineering students use simulation to mimic the situation of applying a force on a bracket with a boundary condition. The analysis result, the maximum twist angle, is displayed to all the students’ browsers in real-time after a force is applied or moved. To encourage group learning, this virtual world allows the students to learn on the same 3D object synchronously. Furthermore, anyone in the same group can hear others’ comments.

To facilitate instructors’ teaching classes and the students’ learning, there are a number of functions, which are organized groups including a people list, manipulation tools, input values, results and communication tools. These features are shown in Figure 2. The people list displays the names of all the logged students. This helps all users know who is currently participating.

Figure 2. Snapshot of 3D bracket

The tools section provides four functions that can be manipulated including rotating the forces, rotating the 3D world, moving forces, and resetting the 3D world. In order to change the viewpoint of a 3D object, a rotation button is provided. After clicking the rotation button, the cursor changes to the symbol of rotation. A user can click anywhere on the 3D object and rotate the 3D objects by holding the left button and moving the mouse. The change viewpoint function allows the users to observe the 3D virtual world from any desired angle which is similar to actual viewing.

With the purpose of helping the students understand how the direction of a load affects the shear force and the deflection, a function, rotating force, is provided. After clicking this button, a user can rotate any force by clicking and dragging the force with left mouse. In order to apply force to a desired position, the moving force button is provided. After a user clicks the moving force button, he/she can click anywhere on the top surface of the 3D object to apply the force in that particular location. The maximum twist angle of the 3D object is visualized. This function spurs the students’ interest by allowing them to change the shape of the bracket based on the load distribution function and the boundary condition.

Since this system is shared by all users that are currently logged onto the system, two users may try to do different thing to the same object. For example, one user may be trying to move the load while another user is trying to rotate the bracket. In such case, the other users may get confused or cause conflicting manipulations. To avoid this situation, a control priority system was developed. When the user is first logged in, nobody has control. However, when a user owns the control ability, all the other users cannot manipulate the 3D objects or analyze the force on the 3D object. The controller needs to release the tool after he/she finishes manipulating. The buttons for the users who do not have control are dimmed as shown in Figure 3.

Figure 3. The tools with and without control priority

To help students understand how the force, Young’s Modulus, and distance affect the shear force and deflection, a user can specify the value of force in y direction, the Young’s Modulus, and the distance. The value of maximum twist angle is displayed in the text box. The deflection force of the bracket are shown in 3D graphics through bracket deform.

The designed communication tools include the text chat and the audio conversation. The previous chat message is displayed in the conversation history window, which is on the bottom of the current input message window. The history window is a text records all chatting after a student logs in.

The audio conversation is an important tool for both instructors and students to broadcast their thoughts to multiple clients at the same time in geographically separated locations. A user can join the audio communication by clicking on the Allow or Deny button in the Macromedia (now Adobe) Flash Player Settings window as shown in Figure 4. This settings panel opens automatically when the Flash application attempts to obtain data from a students’ Microphone object.

Figure 4. Macromedia Flash Player Settings Window

When the audio is passed from one learner to all other learners, it hits the bandwidth limitation quickly. In such cases, some audio message may be dropped. To avoid missing audio information, this system employs a microphone pool and allows only four learners to talk at the same time. All others who are logged into the system will be able to hear their talking. A learner needs to click and hold the microphone button to talk. However, an instructor only needs to click the microphone to talk and then click again to release the microphone. The instructor does not need to hold it while talking, but the students do. This design allows the professor to manipulate the 3D objects while he/she is talking.

Conclusion

The primary objective of this research is to investigate and demonstrate the possibility of designing and implementing a collaborative online three-dimensional environment for engineering education. Another objective is to provide a feasible data structure that facilitates less data transition and low lag display over the Internet. The real-time shared view of the 3D world is based on strict What You See Is What I See environment. A synchronized and collaborative learning example, Bracket, is established through the web application under the current bandwidth limitation and computer speed.

In the future, more examples will be built to explore the possibility of making complex color and shape changes on the 3D objects in real-time using the Director 3D and the Flash communication server technologies.

Acknowledgment

The authors gratefully acknowledge the support of this work from the National Science Foundation through Grant DUE CCLI EMD 0442446, “Enhancing Engineering Mechanics Instruction with Interactive 3D Virtual Models”. The authors are indebted to Profs. PhilPot and Hall (University of Missouri-Rolla) for reviewing and providing constructive suggestions for 3D bracket module.

References

1.Lenhart, Amanda and Madden, Mary, “Social Networking Websites and Teens”, 2007, January 1

https://www.doczj.com/doc/775998413.html,/pdfs/PIP_SNS_Data_Memo_Jan_2007.pdf

2.Fallows, Deborah “Social Networking Websites and Teens”, 2006, December 13

https://www.doczj.com/doc/775998413.html,/pdfs/PIP_Place_to_Live_2006.pdf

3.Horrigan, John “The Internet as a resource fro News and information about science”, 2006, November

11, https://www.doczj.com/doc/775998413.html,/pdfs/PIP_Exploratorium_Science.pdf

4.Suzuki, H, and Huang, R “Virtual real-time 3D object sharing for supporting distance education and

training”, Proceedings 18th International Conference on Advanced Information Networking and

Applications, AINA 2004 Volume 1 (Regional Papers), p 445-450

5.Pullen, J. Mark and Benson, Michael, “ClassWise: Synchronous Internet desktop education”, IEEE

Transactions on Education, v 42, n 4, Nov, 1999, p 370

6.Pullen, J. M. and McAndrews, P. M. “A web portal for open-source synchronous distance education”,

Proceedings of the Seventh IASTED International Conference on Computers and Advanced

Technology in Education, 2004, p 315-320

7.Pullen, J. M. and McAndrews, P. M “Priscilla M. Low-cost internet synchronous distance education

using open-source software”, ASEE 2004 Annual Conference and Exposition, "Engineering Education

Researchs New Heights", 2004, p 9239-9248

8.AlRamahi, M, “Online collaborative tools for engineering education using shockwave technologies”,

Master thesis, The University of Oklahoma, 2003

9.AlRamahi, M and Gramoll, K, “Online collaborative drawing board for real-time student-instructor

interaction and lecture creation”, ASEE 2004 Annual Conference Proceedings, p 10651-10659

10.Sun, Q., Gramoll, K., and Mooney, M., “Self-Paced Instruction to Introduce Traffic Engineering in

Virtual City (Sooner City)”, 1999 ASEE Annual Conference & Exposition, p 4403-4412

11.Sun, Q., Stubblefield, K., and Gramoll, K., “Internet-based simulation and virtual world for

engineering education”, 2000 ASEE Annual Conference and Exposition, p 6443-6456

12.Sun, Q., “Internet-based Distributed Collaborative Environment for Engineering Education and

Design”, PhD Dissertation, The University of Oklahoma, 2001

13.Sun, Q., and Gramoll, K., “Internet-based distributed collaborative environment for engineering

education and design”, 2001 ASEE Annual Conference and Exposition, p 6443-6456

14.Sun, Q., and Gramoll, K., “Internet-based distributed collaborative engineering analysis”, Concurrent

Engineering Research and Applications, v 10, n 4, p 341-348

15.Sun, Q., and Gramoll, K., “Internet-based simulation and virtual city for engineering education”,

Engineering Design Graphics Journal, v 68, n 1, 2004, p 13-21

16.Suzuki, H, and Huang, R, “Virtual real-time 3D object sharing for supporting distance education and

training”, Proceedings 18th International Conference on Advanced Information Networking and Applications, AINA 2004 Volume 1, p 445-450

17.Ma, J., Huang, R., and Shih, T. K. “Using VCR to support different styles and types of group

collaborations in virtual universities”, Tamkang Journal of Science and Engineering, 1999, v 2, n 2, p 69-77

18.Huang, R., and Ma, J., “General purpose virtual collaboration room”, Proceedings of the IEEE

International Conference on Engineering of Complex Computer Systems, ICECCS, 1999, p 21-29 19.Lesser, B., Guilizzoni, G., Lott, J., Reinbardt, R., and Watkins, J. Programming Flash Communication

Server, O'Reilly, February, 2005

聚四氟乙烯类PVEF涂料用树脂产品使用说明书

涂料用聚四氟乙烯类PVEF-A树脂产品说明书 产品性能: 涂料用聚四氟乙烯类PVEF-A树脂。它是四氟乙烯与其它带官能团的碳氢烯烃在溶剂中的共聚产物,其大分子链的羟基官能团可以与二异氰酸酯反应,形成交联网状结构,这种网状结构大分子即是涂料的成膜物质。 涂料用聚四氟乙烯类PVEF-A树脂有优异的不粘性、耐腐蚀性、耐气候老化性、低摩擦等性能。同时由于不同官能团的碳氢烯烃构成链段的存在而表现出一定的溶解性、可交联性、润湿附着性和流平性。 涂料用聚四氟乙烯类PVEF-A树脂对外界条件的阻抗性能,表现出远超非含氟聚合物涂料的优势和具有常温固化的性质。 产品用途: 涂料用聚四氟乙烯类PVEF-A树脂,主要是制备各种建筑物的外墙涂料,它具有耐候性和自洁性,奉命长不变色的特点;同时适用于大型建筑金属构件的防锈蚀,特别适合苛刻环境条件下的耐酸、耐碱和氧化剂的耐腐蚀涂层以及各种交通工具(火车、汽车、轮船、飞机等)壳体涂料。 因此它广泛应用于石油、化工、机械、制冷、军事、航空、航天、有色金属、电子等国民经济建设领域。 产品技术条件 本产品符合晨光J/CGY标准

使用及注意事项: 使用:聚四氟乙烯类涂料用树脂PVEF-A鉴定配方。 1、白漆配方: *A+B+稀释剂混合均匀后,涂料应在8小时内用完; **稀释剂加入量视刷涂、喷涂实际情况而定; ***本鉴定配方由于用户实际使用条件非我方控制,故此信息不含担保。 2、操作:按鉴定配方PVEF-A树脂中分别加入A组份中的各组份(颜料、助剂),通过分散研磨的制漆工艺得到的白色涂料。然后采用线棒涂膜方式在打磨干净的马口铁板上进行涂膜,涂膜厚度由线棒涂膜器确定为60μm左右。完成涂膜后2小时表干,24小时实干,5天涂膜完全固化,进行测试数据。 3、测定结果: 4、注意事项:操作人员应配备个人防护用品,例如:活性碳吸附式面罩、口罩、耐溶剂手套、防护服、护目镜等。作业区应具有良好通风环境,远离明火、热源。本产品可与有机颜料或无机颜料配色或调色。 包装、贮存、运输: 1、本品包装在经检查合格的容器内,20Kg/桶,或与用户协商进行包装。 2、本品是溶剂型液体,应严格按国家劳动总局颁布的《危险化学品安全监察规程》进行保管、运输和使用,严禁与易燃物、可燃物、氧化剂混装混运。 3、本品应在阴凉、通风处贮存、运输和使用,严禁野蛮装卸。

苏泊尔电饭煲说明书

苏泊尔电饭煲说明书 篇一:苏泊尔电压力锅说明书下载 苏泊尔电压力锅故障_苏泊尔电压力锅使用方法 土拨鼠装修百科苏泊尔电压力锅:详细介绍了苏泊尔电压力锅信息。包括对苏泊尔电压力锅口碑、价格、配件、售后的介绍,以及苏泊尔电压力锅的使用说明和故障排除的介绍。土拨鼠装修百科让你花最少的钱装最美的家。苏泊尔电压力锅怎么样 苏泊尔电压力锅是苏泊尔股份有限公司生产的小家电产品。苏泊尔压力锅是苏泊尔的创业产品,而苏泊尔的电压力锅是结合了传统高压力锅跟电饭锅两种产品的特点,然后加以创新形成了市场内第一款电压力锅。苏泊尔电压力锅具备了电饭煲、汤锅、蒸锅等多功能传统炊具的功能,并且相对压力锅的不安全大大提高了安全系数。苏泊尔电压力锅的出现被称为中国厨房革命。 作为以压力锅起家的苏泊尔,其生产的电压力锅集结了苏泊尔科技与创新。独有的专利智能压力感应系统,时刻控制锅内的压力,让食材入味。引进精准的温控技术,智能感温,根据不同事物所需要的温度与压力设定调节,在不破坏食物的口感的同时,也保证了营养效果。苏泊尔电压力锅在上市之初就已经将其的安全作为主打宣传。苏泊尔通过对传统压力锅的研究分析,独创三大安全系数,拟用了电饭煲的

弹性压力控制,采用动态密封对开合处进行密封。保证了密封烹饪。独创压力智能调节,监控锅内压力,然后不断的调节。锅内压力超出安全范围,就转换为泄气模式,不让锅内的压力超过临界点从而达到解决压力锅易爆炸的安全问题。这就是苏泊尔自主研发的可调节式烹饪模式 苏泊尔电压力锅按照功能分为精控火候全智能系列、美食家系列、质感系列、美味系列等几个系列。采用的内胆都是陶晶内胆,特点就是不占耐磨,能够均匀的加热,减少传统不锈钢内胆粘黏的清洗繁琐。互联安全锁功能保证了安全,精煮无忧。智能排气键,能急速下降开启前的锅内压力。采取利双内盖,保温安全双重,省电省心。每种系列压力锅都有多种模式选择和多种美式烹饪,能充当日常的电饭煲跟压力锅外,还可以煮粥、炖煲、熬汤等。苏泊尔电压力锅故障 常见的苏泊尔电压力锅故障及维修方法1、无法合盖 合盖方法错误:按照说明书正确方法 止开阀卡主止开板:使用尖细物体将止开阀痛下去,或者转动限压阀至排气,在取下密封胶为摆正:摆正密封胶锅体变形:更换或者维修锅体2、无法开盖 锅内气体未排完,导致被锁住:排气止开板螺纹损坏:更换3、食物煮不熟食物的搭配比例不对:按照说明书上的参考数值搭配食材

聚四氟乙烯系列说明书

目录 聚四氟乙烯系列 一、F4覆铜箔板类 ●聚四氟乙烯玻璃布覆铜箔板(F4B—1/2)………………………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BK—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BM—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BMX—1/2)[新品推荐]………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BME—1/2)[新品推荐]………… ●介电常数2.94覆平面电阻铜箔高频层压板[新品推荐]……………………●金属基聚四氟乙烯玻璃布覆铜箔板(F4B—1/AL.CU)[新品推荐]…………… ●绝缘聚四氟乙烯覆铜箔板(F4T—1/2)…………………………………………复合介质基片系列 一、TP类 ●微波复合介质覆铜箔基片(TP—1/2)…………………………………………二、TF类

●聚四氟乙烯陶瓷复合介质覆铜箔基片(TF—1/2)…………………………… 二、F4漆布类………………………………………………………………………… ●防粘布(F4B—N) ●绝缘布(F4B—J) ●透气布(F4B—T) 聚四氟乙烯玻璃布覆铜箔板F4B—1/2 本产品是根据微波电路的电性能要求,选用优质材料层压制成,它具有良好的电气性能和较高机械强度,是一种优良微波印制电路基板。 技术条件 外观符合微波印制电路基板材料国、军标规定指标 型号F 4B255 F 4 B265 介电常数 2.55 2.65 常规板面尺寸(mm)300×250 380×350 440×550 500×500 460×610 600×500 840×840 1200×1000 1500×1000 特殊尺寸可根据客户要求压制 铜箔厚度0.035mm 0.018mm 厚度尺寸及公差(mm)板厚0.17、0.25 0.5、0.8、1.0 1.5、2.0 3.0、4.0、5.0 公差±0.01 ±0.03 ±0.05 ±0.06 板厚包括两面铜箔厚度,特殊尺寸可根据客户要求压制 机 械性能翘 曲 度 板厚(mm) 翘曲度最大值mm/mm 光面板单面板双面板 0.25~0.5 0.03 0.05 0.025 0.8~1.0 0.025 0.03 0.020

苏泊尔电压力锅故障维修培训

苏泊尔电压力锅故障维修培训 电压力锅故障维修培训 浙江绍兴苏泊尔生活电器有限公司品管部 QA 鲍寒统 分页标题备注 提纲 一、新品CYSB**YC<5介绍 二、新品CYSB**YC<5维修 三、各型号的线路板差异 四、工作原理 五、产品故障及维修 分页标题备注 一、新品介绍 CYSB40/<50/60YC<5 一、YC<5爆炸图——1 一、YC<5原理图——2 分页标题备注 一、YC<5拆上盖的方法-3 三、打开以上两颗螺钉,然后面盖用饭勺刮开,同FC3拆面盖方法 一、取出旋钮上盖组件 二、拧出两颗螺钉 一、取出旋钮上盖组件 二、拧出两颗螺钉 拆开面盖时注意防止线拉断分页标题备注

二、新品YC<5维修-4 显示屏进气 此边缘四周重新打胶 此处胶是否打好 引线出来要理好,一根一个格此密封圈是否装到位,装到面盖后是否有间隙其皱现象 分页标题备注 二、新品YC<5维修-<5 显示9><>E0 1、此螺钉下面叠一个垫片 2、磁钢是否装配到位 分页标题备注 二、新品YC<5维修-6 上盖和中板间隙大 如果有拧动扭簧压板上螺钉,拧回去的时候注意此螺钉一定要拧紧, 如果未拧紧会造成上盖变形。如果维修后还是不行需要换内衬,对扭簧压板头部整型 分页标题备注 二、新品YC<5维修-7 溢锅、钢球漏气 分页标题备注 此为NG的推杆密封圈未装到位的此为NG的推杆密封圈未装到位的 此为OK的推杆密封圈装到位的 1、推杆密封圈未装配到位(本身不良) 2、采温柱里的热敏电阻未插到位,导热硅脂不够,热敏电阻不良。 3、钢球或者球座有破损、磕碰

4、维修的时候把增压块的3个卡脚削平 < 5、电磁阀推力不足(本身和电磁铁压板卡死) 削此卡脚,一定要和客户说明 分页标题备注 二、维修注意 先扣这边 注意十字顶柱的位置 分页标题备注 三、YD1和YD2灯板差异——1 YD1灯板 222002091 灯板/CYSB<50YD1-DL01 22200207<5 灯板/CYSB40YD1-DL01 22200<561<5 灯板/CYSB40YD1-DL01/升级 升级的是V3程序,4、<5、6通用;老的为V1程序<5、6通用,4单独 YD2灯板 222002100 灯板/CYSB<50YD2-DL01 222002098 灯板/CYSB<50YD2-DL01 灯板/CYSB40YD2-DL01 V1程序<5、6通用,4单独分页标题备注 三、YD3灯板电源板差异——2 电源板 222002076 电源板/CYSB40YD1-DL02 所有美味系列改进前后都通用

电压力锅使用说明书样本

1.开盖。先用手握紧锅盖手柄, 顺时针方向旋转锅盖至限位 边, 然后向上取下锅盖。 2.取出内锅, 将食物和水放入内锅中, 食物和水不得超过内锅高度的4/5; 水中易膨胀食物不得超过内锅高度的3/5; 食物和水不得少于内锅高度的1/5。( 4l、 5l、 6l最大煮米量分别是8杯、 10杯、12杯; 1杯米配1杯水, 用户可根据不同米质及个人口味适当调整水量。) 3.将内锅放入外锅内。放入前, 先把内锅及发热盘抹干净, 外锅内及发热盘表面不得放入杂物; 放入后, 左右轻轻旋转内锅, 保持内锅与发热盘接触良好。 4.合盖。 o检查密封圈是否已放入锅盖内侧铝盖板上( 注意有正反面) 。 o 手握钢盖手柄, 盖上锅盖, 然后逆时针旋转内锅盖至扣合位置, 并听到”咔嚓”扣合声。 o放置好限压放气阀, 将限压放气阀拨到”密封”位置, 并检查浮子是否落下( 未加热工作前浮子阀是落下的) 。 5.烹调完成后的开盖方法: o按一下”保温/取消”键, 退出保温状态。 o将限压放气阀拨到”排气”位置放气, 直至浮子阀落下。

﹡如果煮流质食物( 粥类、汤类、粘性液体) 不能拨动限压阀放气, 必须自然冷却至浮子阀落下后才能开盖, 否则粘性液体会在排气管喷出。 o拨下电源插头。 o用手握紧锅盖手柄, 顺时针方向旋转锅盖至限位边, 然后向上 提起锅盖, 即可取用。 6、设定参数及启动加热。(以下适合数码显示型) o接通电源, 显示器显示”0000” o按”功能选择”键, 选择所需功能, 相应功能灯点亮, 3秒后自动开始工作, 时间数码上下跳动, 当压力达到5kpa时, 压力显示数码窗口显示实时锅内压力, 进入保压时, 时间数码窗口显示保压时间, 并倒计时至完成。 o如需设定预约定时时间( 倒计时) , 先按一下”预约定时”键, 显示器递增0.5小时, 预约灯亮; 循环设置, 可设定预约定时最长12小时。选定所需的功能之后, 相应功能灯点亮, 预约灯点亮, 时间显示窗口显示预约时间。预约时间倒计时完成后, 预约灯灭, 电压力锅自动开始工作至完成。 o本产品各功能已设定最佳烹调时间, 如果您想改变保压时间, 可在选定功能后5秒内按”保压调节”键, 即可在电脑预置时间内的±50%内调节( 时间窗口会显示出来) , 电脑将按您设定的保压时间完成工作。

C-PTFE交联聚四氟乙烯说明

C-P T F E交联聚四氟乙 烯说明 -CAL-FENGHAI.-(YICAI)-Company One1

交联聚四氟乙烯(C-PTFE)系列产品 一、材料特性 交联聚四氟乙烯(C-PTFE)是以聚四氟乙烯(PTFE)为基材,在高温特殊条件下利用辐射交联技术通过特殊工艺加工的产品。C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE相比,C-PTFE 样品外观更透明且其耐磨性和耐辐照性能明显提高。 众所周知,PTFE最大缺点是不耐磨,摩擦系数在所有高分子材料中最小,一般依靠添加青铜粉、玻璃纤维、碳纤维等材料来提高PTFE耐磨性。与PTFE 相比,C-PTFE的耐磨性能提高1000倍以上,将其添加到常规PTFE中制成棒材、板材、薄膜、或者自润滑材料,可以显着改善材料的耐磨性能,且不影响原有加工工艺。 C-PTFE耐高温、耐溶剂、耐化学溶剂、机械性能优异,其具有许多独特的性能。与PTFE相比,C-PTFE的耐辐照性提高100倍以上,其高耐辐射性能可以在射线场、外太空等领域具有重要的应用。 二、物性指标 PTFE C-PTFE1C-PTFE2 外观不透明半透明透明 摩擦系数0.20 12002000 耐磨性1(初始设定 值) 110150 耐辐照性1(初始设定 值) 三、包装规格 提供粉末样品(100g),片材(,, mm,, 等不同厚度规格) 四、应用领域 C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE相比,C-PTFE的透明度增加,耐磨擦损耗性、耐压缩性、耐辐照性明显提高,综合性能优异。C-PTFE在高精度办公机械,通讯机械 (各种轴承,密封垫,滑动轴承),家用电器 (各种压缩机密封垫),卫星通信设备,半导体设备,汽车 (滑动轴承,高温轴承),飞机,火箭等 (衬垫、密封部件),精密

苏泊尔电压力锅菜谱

苏泊尔电压力锅菜谱 1、无水蘑菇红烧肉的做法 用料:猪五花肉(1000g),蘑菇(150g),大葱(2根),老姜(1块),桂皮(1片),冰糖(25g),盐1汤匙(15g),料酒2汤匙(30ml),老抽2汤匙(30ml)。 做法:将猪五花肉切成大块,葱切长段,姜切大片,蘑菇洗干净。将所有用料放入电压力锅内,定时15—20分钟,香喷喷的蘑菇红烧肉出锅。 2、红焖肉炖土豆 主料:五花肉(1000g)、土豆(两个) 配料:大料、花椒、葱、姜、盐、老抽、料酒、白糖 方法:将切好的五花肉放入锅内。再将土豆连同配料一起放入锅内,无需放水。翻一下搅均即可。注:17分钟-20分钟左右。 3、番茄牛腩 主料:牛腩(两斤)、土豆(两个)、胡萝卜(两根) 配料:番茄沙司、老抽、盐、鸡精、白糖、大料、葱、姜 制作过程:首先把切好的牛腩放入锅内,不用放水。放入土豆、胡萝卜及同配料,翻匀即可。35分钟左右。 4、水煮活鱼 主料:活鱼、豆腐、洋葱、粉条 配料:水煮活鱼料、盐、料酒 方法:首先将水煮活鱼料用炒勺翻炒,在锅底放上生菜叶,再把活鱼放上,连同豆腐、洋葱、粉条一起放入锅中。加盐(少许)料酒(少许)放水不要超过4/5。注:25分钟-30分钟左右。 5、蒸地瓜 主料:地瓜1斤 配料:水100ML

方法:将地瓜洗净放入锅内加入水,盖上盖调到米饭档工作,经过17分钟后,自动保温、自动泄压。 6、排骨煲仔饭 主料:排骨(精排500g),大米(300g) 配料:精盐、色拉油、葱丝、白糖、姜、鸡精、老抽 方法:将排骨洗净,放入压力锅中,加入适量的调料,选择排骨键,大约15分钟。开盖放入洗好的大米,加入适量的水,选择米饭类,大约15分钟左右,制作完毕后,即可排气食用。 7、红烧鸡脖子 用料:鸡脖子八根 配料:姜、糖、老抽、料酒、白醋、树椒、盐、味素、油 方法:鸡脖子切块,姜切片。用蹄筋键将锅烧热,放入少许油烧开。姜片、花椒面、鸡脖子放入锅中炖至变色,放入糖、老抽、白醋等配料不加水。盖锅盖调到“肉类/鸡”键。 8、西红柿鸡蛋汤 主料:鸡蛋2个、柿子1个 配料:盐少许、味精少许、香油少许 方法:将内胆中倒入水,按下汤键,待水开后,泄压,打开盖,放入柿子。待水再次开后,将鸡蛋搅均,轻轻倒入锅中。当第三次开锅后,放入配料,即可食用。 9、大骨棒汤 主料:大骨棒壹个 配料:盐、味素、大料、料酒、酱油 方法:将骨棒用温热水洗净,连同配料一起放入锅内加热。选择汤类键。时间为30-60分钟左右。原汤原味,不腻、营养高。

远东M系列阀组使用说明书

阀组系列产品 1.VX-32型三阀组 2.M364W-420P-35/54型三阀组 3.M564W-320P-54五阀组 4.EFZ-320C(P)型二阀组 5.引压接头

VX-32型三阀组 使用说明书 北京远东仪表有限公司 1 用途 VX-32型三阀组可与本公司与美国EMERSON TM公司合资生产的1151、3051系列等差压变送器配合使用,其作用是从引压点将信号引入差压变送器正负测量室使引压点与测量室接通或断开。 2 基本参数 a. 公称压力:32MPa b. 环境温度:-30℃~+93℃ c. 介质温度:≤150℃ d. 重量:约2.5kg e. 外形尺寸:230×120×180mm f. 材质:1C r18 Ni 9Ti 3. 基本结构与工作原理 3.1 基本结构(如图1) 图 1 3.2 工作原理 M364W型三阀组由两端的引压阀和中间的平衡阀组成,三个阀结构相同,均采用聚四氟乙烯填料和9Cr18阀瓣,通过手柄旋转阀杆可实现阀门的开启与关闭。关闭二引压阀、打开平衡阀时,正负测量室相通。打开二引压阀、关闭平衡阀时,两引压管分别与正负测量室相通、两输出端压力不同。引压阀一开一闭、打开平衡阀时,两输出端压力相同。 4 安装方法 将三阀组装有聚四氟乙烯密封圈的二出压孔对准差压变送器法兰侧面1/4ANPT引压孔,均匀旋紧四条

螺栓,以保证密封。 5 注意事项 本产品出厂前已经打压试验合格,请不要任意松动零件,调整、维护请在专业人员指导下进行。 6 成套性 使用说明书 1份 检验合格证 1份 密封垫圈外径24.5mm内径19mm厚2mm 2件 螺栓 7/16-20UNF-2A 1″ 4件 焊接管接头 2件 7. 订货须知 根据选用的压力变送器量程代号。选择三阀组型号(见表) 8. 售后服务 本产品自发售之日起18个月内,在用户完全按使用说明书规定使用的情况下,如出现不符合技术要求的质量问题,我公司负责修理或更换。

聚四氟乙烯(PTFE)基本常识汇总

在氟塑料中,聚四氟乙烯消耗最大,用途最广,它是氟塑料中的一个重要品种。聚四氟乙烯的化学结构是把聚乙烯中全部氢原子被氟原子取代而成。 产品名称:聚四氟乙烯 英文名:Polytetrafluoroethylene 别名:PTFE;铁氟龙;特氟龙;teflon;特氟隆;F4;塑料之王;テフロン(日语)【英文缩写为PTFE,商标名Teflon?,中文译名各地不同:大陆译为特富龙?,香港译为特氟龙?,台湾译为铁氟龙?】 分子式:[CF2CF2]n 生产方法:聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,3~26千克力/厘米2压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。 用途:可制成棒、板、管材、薄膜及各种异型制品,用于航天、化工、电子、机械、医药等领域。 备注: 聚四氟乙烯[PTFE,F4]是当今世界上耐腐蚀性能最佳材料之一,因此得"塑料王"之美称。它能在任何种类化学介质长期使用,它的产生解决了我国化工、石油、制药等领域的许多问题。聚四氟乙烯密封件、垫圈、垫片. 聚四氟乙烯密封件、垫片、密封垫圈是选用悬浮聚合聚四氟乙烯树脂模塑加工制成。聚四氟乙烯与其他塑料相比具有耐化学腐蚀与耐温优异的特点,它已被广泛地应用作为密封材料和填充材料。 具有高度的化学稳定性和卓越的耐化学腐蚀能力,如耐强酸、强碱、强氧化剂等,有突出的耐热、耐寒及耐摩性,长期使用温度范围为-200-+250℃,还有优异的电绝缘性,且不受温度与频率的影响。此外,具有不沾着、不吸水、不燃烧等特点。悬浮树脂一般采用模压,烧结的办法成型加工,所制得的棒、板或其他型材还可进一步用车刨、钻、铣等机加工方法加工。棒材再经车削牵伸可制成定向薄膜。 ------------------------------------------------------ 聚四氟乙烯(PTFE)特性:

聚四氟乙烯性能全参数

1.聚四氟乙烯 聚四氟乙烯是用于密封的氟塑料之一。聚四氟乙烯以碳原子为骨架,氟原子对称而均匀地分布在它的周围,构成严密的屏障,使它具有非常宝贵的综合物理机械性能(表14—9)。聚四氟乙烯对强酸、强碱、强氧化剂有很高的抗蚀性,即使温度较高,也不会发生作用,其耐腐蚀性能甚至超过玻璃、瓷、不锈钢以至金、铂,所以,素有“塑料王”之称。除某些芳烃化合物能使聚四氟乙烯有轻微的溶胀外,对酮类、醇类等有机溶剂均有耐蚀性。只有熔融态的碱金属及元素氟等在高温下才能对它起作用。 聚四氟乙烯的介电性能优异,绝缘强度及抗电弧性能也很突出,介质损耗角正切值很低,但抗电晕性能不好。聚四氟乙烯不吸水、不受氧气、紫外线作用、耐候性好,在户外暴露3年,抗拉强度几乎保持不变,仅伸长率有所下降。聚四氟乙烯薄膜与涂层由于有细孔,故能透过水和气体。

聚四氟乙烯在200℃以上,开始极微量的裂解,即使升温到结晶体熔点327℃,仍裂解很少,每小时失重为万分之二。但加热至400℃以上热裂解速度逐渐加快,产生有毒气体,因此,聚四氟乙烯烧结温度一般控制在375~380℃。 聚四氟乙烯分子间的德华引力小,容易产生键间滑动,故聚四氟乙烯具有很低的摩擦系数及不粘性,摩擦系数在已知固体材料中是最低的。 聚四氟乙烯的导热系数小,该性能对其成型工艺及应用影响较大。其不但导热性差,且线膨胀系数较大,加入填充剂可适当降低线膨胀系数。在负荷下会发生蠕变现象,亦称作“冷流”,加入填充剂可减轻蠕变程度。 聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能耐380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。常 用的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS 2、A1 2 3 、CaF 2 、焦炭粉及 各种金属粉。如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充MoS 2 可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性,填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保证尺寸稳定等。在相同的温度条件下,填充后的聚四氟乙烯其抗压强度(表 14-10)、压缩弹性模量(表14-11)、抗弯强度(表14-12)、硬度(表14-13)、摩擦系数和耐磨耗性(表14-14)、热导率(表14-15)均比纯四氟乙烯高。但抗拉强度和伸长率则有所下降,线膨胀系数(表14-15)也减小。 表14-10不同温度下加填充剂前后聚四氟乙烯的抗压强度① (Pa)

PTFE使用说明书

上海市凌桥环保设备厂有限公司 PTFE针刺毡聚四氟乙烯覆膜滤袋的使用说明书 一、产品特点 本滤袋产品所使用的100%PTFE(聚四氟乙烯)长、短纤维;基布、缝纫线及微孔薄膜均由本公司自行研制、开发并批量生产,系国内首创,达到国际先进水平。 本产品采用PTFE(聚四氟乙烯)长纤维做成高强低伸型基布,铺以PTFE短纤维进行高密度针刺加工,经过高温热定性以后表面覆合PTFE薄膜。最终产品具有低收缩率,优秀的过滤性能,良好的耐腐蚀性和尺寸稳定性,可以在高温(不高于260℃)、酸、碱气氛的环境中长期使用。 二、产品适用范围及使用局限 本滤袋产品适用于气、固两相流的分离,具有除尘效率高、排放浓度低,对粉尘比电阻的适用范围宽等优点,其优良的性能可以满足国内外的环境保护要求,具有广泛的适用性。 本滤袋产品不适用于气、固、液三相流的分离,换言之,在待处理气体中除固体颗粒物以外,不能含有游离状液滴;处理气体的温度要在其露点温度10~20℃以上;保证滤料表面没有结露的液体。如果做不到以上几点,在生产工艺相应改变或在除尘工艺中必须作相应处理,满足以上几点,否则没有好的处理效果,直接的结果是产生“糊袋”,滤袋的运行阻力急剧升高,除尘器处理风量减少,,滤袋寿命降低,等等。 本滤袋产品处理气体温度上限不得超过滤料的允许温度,超温可能造成滤料材质融化或损坏,影响滤料的使用寿命或过滤效果。 特别注意:聚四氟乙烯薄膜对油雾的处理效果较差,使用中应避免在混有油雾的烟气环境中使用,如不可避免时,应在除尘系统中具备相应措施。 三、产品的储存注意事项 在产品安装使用前,滤袋必须存放在包装箱内。包装箱应放在通风、干燥、清洁的室内,包装箱离地面应在100mm以上,地面不得有积水并有防雨、防潮措施。如果是纸质包装箱则叠放层数不得超过规定,并在拿取滤袋不得使用钓钩、手钩搬取包装箱,包装箱不得踩踏。 四、产品的安装注意事项 滤袋在安装前,必须在现场打开包装箱,检查滤袋有无损坏、表面覆膜有无脱落,滤袋在搬、拿过程中始终要请拿轻放,尽量减少滤袋的折叠次数和作用在折叠处的压力。

苏泊尔电压力锅维修

苏泊尔电压力锅维修 苏泊尔电压力锅维修 (1) 收藏人:fqf0460 2010-12-13 | 阅:8134 转:24 | 来源 | 分享 今天接修一台苏泊尔电压力锅,用户说是只保温、烧不开水不冒气。拆开逐一检查定时器、温度保险、电炉丝、加热控制的继电器都是好的。插上插头扭动定时器后测电炉丝有220V,好的嘛,加水加热却一直烧不开,用表一直监测电炉丝电压时有时无,测继电器线圈电压才2。7V,后测桥堆、12V稳压管、滤波电容都没问题,去掉继电器线圈一脚后电压恢复为12V,最后取下220V降压用的1UF电容一测才100多NF,用彩电上的S校正电容两个并联换上后就OK~吃皮了~第一次修电压力锅还算顺利,特写出来与大家交流~~~ 电压力锅的常见故障维修 (2) 收藏人:fqf0460 2010-12-13 | 阅:3352 转:57 | 来源 | 分享 一。机械调节型电压力锅 1。无电源。(指接通电源后,灯不亮,不发热)此故障主要在电源线入端的故障。A。可测熔断器是否已开路,如是,换上一相应的熔断器,故障可排除。如熔断器未开路,则可测量锅底中心的145度温控器,该温控器失灵开路也会出现该故障。该故障应注意的还有以下部件: a。电源线是否不通。(开路)b。是源线的接口处(讲座)是否熔掉而不通。 2。电源指示灯亮,但不发热。此故障主要在发热盘部份的故障,常见是因发热盘已烧毁(开路)。

3。开机加热到一会,水还未开就跳保温。此故障的原因有几个:A.旋扭开关(即定时器)部位的接触不好,虽然已扭到煮食的部分但并未接通,使得电路只由保温开关控制在60度。B。压力开关失灵,不通,这样即使定时器接触良好,但在压力未到的情况下,压力开关已误动作(跳开),而使电路处于保温状态,水煮不开。 4。开机一加热一会,整机就自动断开电源,灯也不亮了。此故障主要是锅底145度的温控器故障,失灵。只加热未到温度就断开电源,温度降下之后以可通电,换上该温控则行。 5。定时器不转了,饭常烧焦。目前市场上的机械型压力锅的定时器大致分为两种:发条式的定时器和电机型的定时器。以下直称A。B。A型定时器式压力锅出现该故障一方面是定时器内部停止了转动,已损坏。另一方面是由于某些小动物窜入留下的粪便卡住了定时器内的转动牙轮,后种的故障可清理该杂物以排除故障。B型定时器压力锅在该故障里的原因主要是因定时器内的小电机已烧掉。无法转动而未能在指定的保压时间内断开。注:B型定时器的转动是由压力开关控制的,所以要注意一点是会否压力开关失灵,(只通不断)或是锅子本身漏气而使锅内压力不足以使压力开关跳开. 6.锅子漏气漏气可分几种: A.锅顶漏气:1。锅顶的塑料外壳已裂开,锅顶的压针压不信出气柱。(指旧式锅顶其压针接连着塑料外壳);2。出气柱的顶端有太多的杂物使得压针未能压死出气温柱。;3。锅内压力太大或失灵,在压力开关未跳开之前,已超过了正常压力,锅顶自动被顶起排气。; 4。内胶圈已裂开而漏气,(注:新锅顶都有排气、密封两档,应注意该项)B.浮子漏气:1.浮子胶圈已老化残损而漏气。2.平柄中的保险杆位置不正,在浮子升起时顶住了,使得浮子未能完全升起透气。3.浮子固定的胶圈裂开而漏气。 C.胶圈漏气(锅盖周围):1.胶圈正老化,残旧失去密封性;2.是否是同换胶圈的胶圈与锅子不配时导致漏气。3.锅内胆是否摔过而变形。电脑型点压力锅常见的故障代码解 E1,E2传感失灵 E3,E4传感失灵 1.现E1/E2故障代码出现该故障首先要测量传感器(即发热盘中心的传感器),查看是否断路或开路,如正常则可拆开控

旺灵板材说明书(中(参考Word)

企业简介 我厂是生产微波印制电路基板的专业厂家,是在电子信息材料领域集科研、生产和经营于一体的经济实体,其主导产品有聚四氟乙烯玻璃漆布覆铜箔板系列、微波复合介质基片系列,微波电子器件及绝缘、防粘漆布类。并广泛应用于航天、航空、卫星通讯、导航、雷达、电子对抗、3G通信、北斗卫星系统、纺织、服装和食品等领域。经过多年的发展2009年元月本厂在工业园区征地50余亩,新建标准厂房11000平方米,新添五条生产线,已形成年产覆铜箔板800吨、微波复合介质基片1500平方米的生产能力,并多次与国家重点工程配套成功,受到航天、航空及中国载人航天工程办公室等部门的表彰。荣获“国家级重点新产品”称号。企业2001年通过ISO9001国际质量体系认证。2007年通过UL认证。本厂是江苏省高新技术企业、江苏省AAA 级资信等级企业、“重合同、守信用”企业。在科研上依托国内大专院校及科研单位力量,成立了省级工程技术研究中心,企业现有工程技术人员46人,其中具有高级职称人员9人,随着我国通信事业的发展,企业本着以提高产品质量为中心,以顾客为关注焦点,不断满足顾客需求来实现企业与顾客更广泛、更完美、更持久的合作。 为使新老客户对我厂产品有更多的了解,并广泛选用,特编此说明书,以便订货使用。

目录 聚四氟乙烯系列 一、F4覆铜箔板类 ●聚四氟乙烯玻璃布覆铜箔板(F4B—1/2)………………………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BK—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BM—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BMX—1/2)[新品推荐]………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BME—1/2)[新品推荐]………… ●介电常数2.94覆平面电阻铜箔高频层压板[新品推荐]……………………●金属基聚四氟乙烯玻璃布覆铜箔板(F4B—1/AL.CU)[新品推荐]…………… ●绝缘聚四氟乙烯覆铜箔板(F4T—1/2)…………………………………………复合介质基片系列 一、TP类 ●微波复合介质覆铜箔基片(TP—1/2)…………………………………………二、TF类 ●聚四氟乙烯陶瓷复合介质覆铜箔基片(TF—1/2)……………………………二、F4漆布类………………………………………………………………………… ●防粘布(F4B—N) ●绝缘布(F4B—J)

苏泊尔电压力锅的压力传感机制

苏泊尔电压力锅的压力传感机制. 手头也是一个苏泊尔电压力锅,犯了"通病",按照骑行者老兄发表的帖子维修,详见【家电维修论坛】https://www.doczj.com/doc/775998413.html,/thread-84736-1-1.html 苏泊尔电压力锅的一个通病! 苏泊尔, 压力锅, 指示灯 故障现象为通电后指示灯闪烁并嘀嘀报警,按键失灵无法加热。偶尔又能正常工作! 一般情况下均为给控制电路供电的降压电容(为1微法)容量减小所致!! *************底部&控制合.jpg 实际上就是把照片中底部控制合里的那个黄色1uF电容换掉即可,一般都是由于此类纸介电容高温老化导致容量减小所致. 本着格物致知穷尽事理的精神,干脆一拆到底,彻底弄清楚其工作机制,后来发现所谓广告吹嘘的xxx苏泊尔电压力锅,有点名不副实,实际上就是个加压的电饭锅再加个单片机控制.(整个单片机控制合位于前面板,单片机使用的是Holtek的HT46R47 8bit带8位A/D的MCU.遥控电扇,暖风机上常见)

*************电脑板及按键.jpg *************单片机型号.jpg 可能出于安全考虑,其铭牌最大工作压力是80KPa这个值是略小于一般普通压力锅1.2KG/cm^2(117.6KPa).所以我个人感觉其加压沸点要小于传统压力锅.唯一比较有新奇的收

获便是弄清楚了其压力电传感机制是如何做到不加盖不烧和过压断电的. 这个秘密机制一半在锅盖上,一半在锅把手上.右侧把手里面有一个干簧管.既然有干簧管,那控制磁铁一定藏在对应的锅盖一边,一开始我仅仅认为这个干簧管只是检测锅盖手机否卡到位, *************把手内藏干簧管.jpg

SMC系列产品使用说明书

(使用产品前应详细阅读本说明书) SMC系列普通型阀门电动装置 使用说明书 天津二通驱动设备制造有限公司

目录 1.概述 (1) 2.基本技术参数 (1) 3.产品铭牌所示的主要内容 (1) 4.主要结构 (1) 5.安装与拆卸(相对于阀门) (7) 6.润滑 (7) 7.电气控制原理图和电气接线 (8) 8.行程控制机构(G.L.SW)的调整 (8) 9.位置指示机构(MDPI)的调整 (10) 10.转矩开关(T.SW)的调整 (10) 11.使用和维护注意事项 (11) 12.故障及其排除方法(表1) (12) 13.电动机有关技术参数(表2) (13) 附:电气控制原理图 产品合同号:____________________ 电控原理图号:____________________ 附加说明编号:____________________

1.概述 SMC系列多回转型阀门电动装置(以下称电动装置)用于驱动控制阀瓣直线运动的闸阀、截止阀、隔膜阀等多回转阀门。SMC系列中的部分机座产品也可以同BA伞齿轮减速器或直齿轮减速器组合,形成SMC/BA等组合式多回转电动装置。当SMC系列产品与HBC蜗轮减速器或JA行星减速器组合后则成为组合式部分回转电动装置,它用于驱动控制阀瓣旋转运动的球阀、蝶阀、旋塞阀等部分回转阀门。 SMC系列电动装置可以远距离电动操作(控制室内操作),也可根据订货要求加装现场按钮灯盒而具备现场电动操作功能。SMC系列产品的手动机构可完成现场手动操作阀门。 本《使用说明书》适用于普通型SMC系列产品。当电动装置具有特殊结构、特殊功能时(如防爆、高温高速、船用、低温、双速、双线、自动调节等型式)均向用户提供相应的附加说明或附页,介绍产品特殊部分的使用方法和注意事项。 由于SMC/BA、SMC/HBC、SMC/JA等组合型式电动装置的控制、调整部件均在SMC系列产品上,所以本《使用说明书》同样适用上述产品。 (图1)~(图9)所示为SMC、SMC/BA、SMC/HBC、SMC/JA普通型产品的外形主视图。上述产品的外形和法兰连接尺寸可参见我公司有关产品样本。所用电动装置的输出转矩、转速、转圈数、电动机功率等详见该电动装置的铭牌。 2.基本技术参数 产品符合JB/T8528-1997《普通型阀门电动装置技术条件》 2.1 动力电源:380V、50Hz三相正弦交流电(根据用户要求,某些规格可提供使用单相220V 电源的电动机)。 2.2 外壳防护等级:SMC-04、03 IP67 SMC-00~5 IP65 2.3 使用环境温度:-20℃~40℃;-20℃~60℃(根据用户订货要求) 2.4 环境相对湿度:﹤90%(25℃时) 2.5 海拔高度:﹤1000m 2.6 短时工作:时间定额为10、15、30min(根据电动机负载情况而定) 2.7 无强烈振动工况。 2.8工作环境中不含强腐蚀性介质和爆炸性混合物气体。 3.产品铭牌所示的主要内容 电动装置的铭牌注明该台产品的主要技术指标,用户应给予注意。 a、型号:该产品型号。 b、最大控制转矩:该产品出厂前调定的最大转矩值(N.m)。 c、输出转速:该产品在单位时间内输出轴的转圈数(r/min)。 d、最大转圈数:该产品位置指示机构指针从0~100%走满刻度情况下输出轴总的转圈数。 e、编号:该产品总序号或本年度产品的序号。 f、合同号:该产品年度订货合同号。根据它可查出产品出厂前的全部情况,便于售后服务。 4.主要结构 电动装置由以下主要部件构成:

苏泊尔高压锅说明书

苏泊尔cys50yc3c-100电压力锅说明书篇二:苏泊尔电压力锅使用说明书篇三:苏泊尔电压力锅故障_苏泊尔电压力锅使用方法 苏泊尔电压力锅故障_苏泊尔电压力锅使用方法 土拨鼠装修百科苏泊尔电压力锅:详细介绍了苏泊尔电压力锅信息。包括对苏泊尔电压力锅口碑、价格、配件、售后的介绍,以及苏泊尔电压力锅的使用说明和故障排除的介绍。土拨鼠装修百科让你花最少的钱装最美的家。苏泊尔电压力锅怎么样 苏泊尔电压力锅是苏泊尔股份有限公司生产的小家电产品。苏泊尔压力锅是苏泊尔的创业产品,而苏泊尔的电压力锅是结合了传统高压力锅跟电饭锅两种产品的特点,然后加以创新形成了市场内第一款电压力锅。苏泊尔电压力锅具备了电饭煲、汤锅、蒸锅等多功能传统炊具的功能,并且相对压力锅的不安全大大提高了安全系数。苏泊尔电压力锅的出现被称为中国厨房革命。 作为以压力锅起家的苏泊尔,其生产的电压力锅集结了苏泊尔科技与创新。独有的专利智能压力感应系统,时刻控制锅内的压力,让食材入味。引进精准的温控技术,智能感温,根据不同事物所需要的温度与压力设定调节,在不破坏食物的口感的同时,也保证了营养效果。苏泊尔电压力锅在上市之初就已经将其的安全作为主打宣传。苏泊尔通过对传统压力锅的研究分析,独创三大安全系数,拟用了电饭煲的弹性压力控制,采用动态密封对开合处进行密封。保证了密封烹饪。独创压力智能调节,监控锅内压力,然后不断的调节。锅内压力超出安全范围,就转换为泄气模式,不让锅内的压力超过临界点从而达到解决压力锅易爆炸的安全问题。这就是苏泊尔自主研发的可调节式烹饪模式 苏泊尔电压力锅按照功能分为精控火候全智能系列、美食家系列、质感系列、美味系列等几个系列。采用的内胆都是陶晶内胆,特点就是不占耐磨,能够均匀的加热,减少传统不锈钢内胆粘黏的清洗繁琐。互联安全锁功能保证了安全,精煮无忧。智能排气键,能急速下降开启前的锅内压力。采取利双内盖,保温安全双重,省电省心。每种系列压力锅都有多种模式选择和多种美式烹饪,能充当日常的电饭煲跟压力锅外,还可以煮粥、炖煲、熬汤等。苏泊尔电压力锅故障 常见的苏泊尔电压力锅故障及维修方法 1、无法合盖 合盖方法错误:按照说明书正确方法 止开阀卡主止开板:使用尖细物体将止开阀痛下去,或者转动限压阀至排气,在取下密封胶为摆正:摆正密封胶锅体变形:更换或者维修锅体 2、无法开盖 锅内气体未排完,导致被锁住:排气止开板螺纹损坏:更换 3、食物煮不熟 食物的搭配比例不对:按照说明书上的参考数值搭配食材 底部电加热的片温度过低,无法加热:从新调较电加热片,如果还是不行更换。 4、限压阀强烈排气 限压阀在排气位置:旋转至密封位置电热板故障:更换密封组件损坏:更换 干簧管损坏:在不放锅盖的情况下,如果选择功能能用那么就要更换干簧管。 5、漏气 密封圈为安装好:安装好密封圈密封圈老化:更换密封圈 胶圈收缩或者损坏:修补胶圈或者更换胶圈 6、电源接通,功能键不能用盖子为盖好:从新盖盖子 干簧管开来:从新更换干簧管 7、加热建灯不亮在操作中开盖 控制板损坏:更换或维修故障代码解析 e0:合盖不到位或者上盖电阻来路 e1:无内锅或感温杯故障 e2:干烧或者高温 e3:上压故障

聚四氟乙烯生料带MSDS

聚四氟乙烯生料带安全技术说明书(MSDS) 第一部分:产品名称 产品中文名称:聚四氟乙烯生料带 化学品英文名称:PTFE THREAD SEAL TAPE 中文别名:聚四氟乙烯密封带、聚四氟乙烯未烧结带 英文别名:PTFE TAPE THREAD SEAL、UNSINTERED PTFE TAPE 第二部分:企业标识 企业名称: 地址:邮编:电话: 第三部分:成分/组成信息 成分:聚四氟乙烯 纯品/混合物:纯品含量100% 化学文摘号:9002-84-0 结构式: 第四部分:危险性概述 危险性类别:无 侵入途径:吞咽 健康危害:本品无毒,但不得吞咽。燃烧或加热至大于260℃产生热解物组分。吸入热分解产物可引起中毒。中毒轻者表现为发热和“感冒样”症状;重者出现呼 吸道刺激症状,出现化学性支气管炎、肺炎,甚至发生肺水肿及心肌损害等。 长期低浓度接触其热解产物者,常出现头痛、头昏、失眠、恶梦、记忆力减 退、乏力、腰酸背痛等。作业场所禁止吸烟,本品粘附在烟上燃烧时,有可能 吸入有毒的热解物组分。 环境危害:无 燃爆危险:无 第五部分:急救措施 皮肤接触:无害 眼睛接触:无害 吸入:不适用。但燃烧或加热至大于260℃产生热解物组分,若吸入须迅速脱离现场至空气新鲜处,保持呼吸道通畅,如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:立即取出。就医。 第六部分:消防措施

危险特性:无 有害燃烧产物:受热260℃以上或燃烧会分解放出有毒的氟化物气体。 灭火方法:尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 灭火注意事项及措施:消防员应在上风向,穿着全身保护用具,戴空气呼吸器作业,防 止吸入有毒气体。 第七部分:泄漏应急处理 应急处理:取走时避免滑到并远离火源。 第八部分:操作处置与储存 操作注意事项:作业场所禁止吸烟。作业后必须将手和脸洗净,防止沾染上香烟。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂分开存放,切忌混储。配备相应品种和数量的消防器材。 第九部分:接触控制/个体防护 最高容许浓度:不适用 监测方法:无资料 工程控制:作业场所禁止吸烟。 呼吸系统防护:遇260℃以上或燃烧场所须戴空气呼吸器 眼睛防护:遇260℃以上或燃烧场所须戴化学安全眼镜 身体防护:穿一般作业防护服。 手防护:戴一般作业防护手套。 其他防护:工作现场严禁吸烟。保持良好的卫生习惯。 第十部分:理化特性 外观与性状:薄带 熔点(℃):327 沸点(℃):不适用 相对密度(g/cm3):0.2-1.5 相对蒸气密度(空气=1):不适用 饱和蒸气压(kPa):不适用 燃烧热(kJ/mol):无资料 临界温度(℃):不适用 临界压力(MPa):不适用 辛醇/水分配系数的对数值:无资料 闪点(℃):无闪燃性 引燃温度(℃):无资料 爆炸上限%(V/V):无资料 爆炸下限%(V/V):无资料 溶解性:不溶于水 主要用途:广泛用于建筑、电子、电气、化学、机械、航空等领域和尖端科学技术及军事工业等。 第十一部分:稳定性和反应活性

C-PTFE交联聚四氟乙烯说明

交联聚四氟乙烯(C-PTFE)系列产品 一、材料特性 交联聚四氟乙烯(C-PTFE)是以聚四氟乙烯(PTFE)为基材,在高温特殊条件下利用辐射交联技术通过特殊工艺加工的产品。C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE相比,C-PTFE样品外观更透明且其耐磨性和耐辐照性能明显提高。 众所周知,PTFE最大缺点是不耐磨,摩擦系数在所有高分子材料中最小,一般依靠添加青铜粉、玻璃纤维、碳纤维等材料来提高PTFE耐磨性。与PTFE相比,C-PTFE的耐磨性能提高1000倍以上,将其添加到常规PTFE中制成棒材、板材、薄膜、或者自润滑材料,可以显著改善材料的耐磨性能,且不影响原有加工工艺。 C-PTFE耐高温、耐溶剂、耐化学溶剂、机械性能优异,其具有许多独特的性能。与PTFE 相比,C-PTFE的耐辐照性提高100倍以上,其高耐辐射性能可以在射线场、外太空等领域具有重要的应用。 二、物性指标 三、包装规格 提供粉末样品(100g),片材(0.2mm,0.5mm,1.0 mm,1.5mm, 2.0mm等不同厚度规格)四、应用领域 C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE 相比,C-PTFE的透明度增加,耐磨擦损耗性、耐压缩性、耐辐照性明显提高,综合性能优异。C-PTFE在高精度办公机械,通讯机械(各种轴承,密封垫,滑动轴承),家用电器(各种压缩机密封垫),卫星通信设备,半导体设备,汽车(滑动轴承,高温轴承),飞机,火箭等(衬垫、密封部件),精密机械,化学化工,食品机械,光刻膜,燃料电池及宇宙飞船和外太空等强辐射场中具有重要的应用。(骏和化工(上海)有限公司特别研制)

相关主题
文本预览
相关文档 最新文档