当前位置:文档之家› 华东师范大学数学分析历年真题(1997年-2006年)

华东师范大学数学分析历年真题(1997年-2006年)

华东师范大学数学分析历年真题(1997年-2006年)
华东师范大学数学分析历年真题(1997年-2006年)

华东师范大学1997年攻读硕士学位研究生入学试题

一(12分)设f(x)是区间I 上的连续函数。证明:若f(x)为一一映射,则f(x)在区间I 上严格单调。

二(12分)设

1,()0x D x x ?=??

为有理数

,为无理数

证明:若f(x), D(x)f(x) 在点x=0处都可导,且f(0)=0,则

'(0)0f =

三(16分)考察函数f(x)=xlnx 的凸性,并由此证明不等式: 2

()

(0,0)a b a b

a b ab a b +≥>>

四(16

分)设级数

1

n a

=∑收敛,试就1

n n d ∞

=∑为正项级数和一般项级数两种

情况分别证明1

n a

=∑

五(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数

y=f(x)。又设(,)F

x y 具有连续的二阶偏导数。 (1)

''()f x

(2)

若0000(,)0,()F x y y f x ==为f(x)的一个极值,试证明:

当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,

0()f x 为极小值。

(3)

对方程2

227x

xy y ++=,在隐函数形式下(不解出y )求y=f(x)

的极值,并用(2)的结论判别极大或极小。

六(12分)改变累次积分

4204

842

(4)x x x

I dx y dy --=-??

的积分次序,并求其值。

七(12分)计算曲面积分222

(cos cos cos )s

I x y z ds αβγ=

++??

其中s 为锥面z =

上介于0z h ≤≤的一块,

{}c o s

,c o s ,c o s αβγ为s 的下侧法向的方向余弦。

华东师范大学1998年攻读硕士学位研究生入学试题

一. 简答题(20分) (1) 用定义验证:22323lim 212

n n n n →∞+=++; (2) '

2

cos ,0(),()ln(1),0

x x f x f x x x

计算3.

二(12

分)设f(x)有连续的二阶导函数,且

''0

()2,[()()]sin 5,f f x f x xdx π

π=+=?求f(0).

三(20分)

(1)已知1n n a ∞

=∑为发散的一般项级数,试证明1

1

(1)n n a n

=+

∑也是发散级数。

(2)证明11

2sin

3n

n n x

=∑在()0,+∞上处处收敛,而不一致收敛。

四(12分)设

2222:,D x y z t ++≤222()(),D

F t f x y z dxdydz =++???其

中f 为连续函数,f(1)=1.证明'(1)4.F π=

五(12分)设D 为由两抛物线

21y x =-与2

1y x =-+所围成的闭域。

试在D 内求一椭圆,22

221,x y a b

+=使其面积为最大。

六(12分)设(,)u x y 有连续二阶偏导数,(,)F u t 有连续一阶偏导数,且

满足'

'

(,)

0,x y F u u ='2'2()()0,s t F F +≠证明:

''''''2()0.xx yy xy

u u u -=

七(12分)设()f x 为(,)-∞+∞的周期函数,其周期可小于任意小的正数。证明若()f x 在(,)-∞+∞上连续,则()f x ≡常数。

华东师范大学1999年攻读硕士学位研究生入学试题

一.设0,a >10x a << ,1(2),n

n n x x x a

+=-n N

∈,

证明:{}n x 收敛,并求其极限。

二.证明:若函数

f 在区间I 上处处连续,且为一一映射,则f 在I 上为严格

单调.

三.用条件极值的方法证明不等式:

2

2221212......n n x x x x x x n n ++++++??≥ ?

??

(0,1,2,...,)k x k n >=

四.设()f x 在

(,)a ∞上可导,且'lim ()x f x →+∞

=+∞,证明()f x 在

(,)a ∞上不一致连续。

五.设()f x 在

[],a b 上二阶可导,且

()0f x ≥,''()0f x <,证明:

2()(),b a

f x f t dt b a

-?

[],x a b ∈.

六.设(,)f x y 在[][],,D a b c d =?上有二阶连续偏导数。 (1) 通过计算验证:

''''(,)(,)xy yx D

D

f x y dxdy f x y dxdy =??

??

(2) 利用(1)证明:

''''(,)(,),xy yx f x y f x y =(,)x y D ∈.

七.设对每个,()n n f x 在

[]

,a b 上有界,且当

n →∞

时,

()(),n f x f x x ?

∈[],a b 证明:

(1) ()f x 在[],a b 上有界;

(2) lim sup ()sup ()n n a x b

a x b

f x f x →∞

≤≤≤≤=,(sup lim ())n n a x b f x →∞

≤≤=

八.设2000,(,)S

R P x y ?为S 的内点,111(,)P x y 为S 的外点,证明:

直线段01P P 至少与S 的边界S ?有一个交点。

华东师范大学2000年攻读硕士学位研究生入学试题

一.(24分)计算题: (1)0

11

lim(

);ln(1)x x x

→-+

(2)32

cos sin ;1x x

dx cos x

?+?

(3)设(,)z z x y =是由方程

222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.

二.(14分)证明:(1)111n

n +????

??+?? ???????

为递推数列;

(2)111

ln(1)1n n n

<+<+,n=1,2,….

三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f

()

,a b 内可导,'|

()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同

理在点b 左连续).

四.(14分)设1

2

(1).n

n I x dx =-?

证明:

(1)1221

n n n

I I n -=+,n=2,3…;

(2

),n I ≥n=1,2,3….

五(12分)设S 为一旋转曲面,由平面光滑曲线

{

(),[,]

(()0)z y f x x a b f x ==∈≥饶

x 轴旋转而成。试用二重积分计算曲面面积的方法,导出S 的面积公式为

2(b

a

A f x π

=?

(提示:据空间解几知道S 的方程为222()y z f x +=)

六(24分)级数问题:

(1) 设sin ,0()1,0

x

x f x x x ?≠?

=??=?,求()

(0)k f

(2)

设1

n

n n a =∑收敛,lim 0n n na →∞

=证明:

11

1

()n

n

n n n n n n a a a +==-=∑∑

(3)

设{()}n f x 为[]

,a b 上的连续函数序列,且

()(),[,]n f x f x x a b ?∈

证明:若()f x 在[],a b 上无零点。则当n 充分大时()n f x 在[],a b 上也无零点,并有

[]11

,,()()

n x a b f x f x ?∈

华东师范大学2001年攻读硕士学位研究生入学试题

一.(30分)简单计算题. 1)验证:当x →+∞时,2

02x

t x e dt ?与2

x e

为等价无穷大量.

2)求不定积分2

ln(1)

x dx x

+?。

3)求曲线积分:2()sin ,OA

I y cosy dx x ydy =

-+?

其中有向曲线OA 如图所示. 4)设

f

为可微函数,222()u

f x y z =++

和方程2

3

326(*)x y z xyz ++=

试对以下两种情形,分别求u

x

??在点0(1,1,1)P 处的值: (1)由方程(*)确定了隐函数:(,);z z x y =

(2)由方程(*)确定了隐函数:(,).y y x z =

二.(12

分)求由椭球面222

2221x y z a b c

++=与锥面222

2220.(0)x y z z a b c

+-=≥所围立体的体积。

三.(12分)证明:若函数()f x 在有限区间(),a b 内可导,但无界,则其导函数'()f x 在(),a b 内亦必有界.

四.(12分)证明:若1

n

n a

=∑绝对收敛,则

121

(...)n

n

n n a

a a a =+++∑亦必绝

对收敛.

五(17分)设()f x 在[]0,1上连续,(1)0.f = 证明:

1){}n

x 在[]0,1上不一致收敛;

2){()}n f x x 在[]0,1上一致收敛。

六(17分)设函数

()f x 在闭区间[],a b 上无界,证明:

1)[]{},,n x a b ??使;lim ()n n f x →∞

=∞;

2)

[],,c a b ?∈使得:0,()f x δ?>在[](,),c c a b δδ-+?上无界。(若能用两种不同方法证得2),奖励5分)

华东师范大学2002年攻读硕士学位研究生入学试题

一.(12分)计算:

1.222sin()

lim .2100

n n n n n →∞++-;

2.2

sin 1lim(

).1

x x x x

e →-

-

3.设F 为3R 上的可微函数,由方程23(,,)0F xy yz zx =确定了z 为x

与y 的函数,求,x y z z 在点(1,1)的值.

二.(15分)设函数

,f g 均在(),a b 内有连续导数,且对于任何(),x a b ∈,

有'

'

()()()()()0F x f x g x g x f x =->,求证: 1.,f g 不可能有相同的零点; 2.f

的相邻点之间必有

g

的零点;

3.在()f x 的每个极值点()0,x a b ∈,存在0x 的某邻域,使得()g x 在该邻

域中是严格单调的.

三.(15分)设初始值1a R ∈给定,用递推公式314

2(1,2...)1n n n

a a n a +==+得到数列{}n a 。 1.求证数列{}n a 收敛;

2.求{}n a 所有可能的极限值;

3.试将实数轴R 分成若干个小区间,使得当且仅当在同一区间取初始值,{}n a 都收敛于相同的极限值.

四.(12分)设0a c >>

,求椭球体222

2

21x y z a c

++=的表面积.

五.(18分)设数列{}n a 有界但不收敛,求证: 1.对于任何1

0,nx

n n x a e ∞

-=>∑收敛;

2.对于任何10,nx n n a e δ∞

-=>∑在[,)δ+∞上一致收敛;

3.1nx n n a e ∞

-=∑在(0,)+∞上不一致收敛.

六.(12分)设函数()f x 在[]0,1上连续,求证:

1

2200

()lim (0)2

x xf t dt f t x π

+→=+?

七.(16分)设函数f 在

[]0,a 上严格递增,且有连续导数,(0)0.f =设

g 是

f

的反函数,求证:

1.对于任何[]0,x a ∈,都有()

(())()f x x

x g u du f t dt -=?

?

2.当0,0()x a y f a ≤≤≤≤时,下列不等式成立

00

()()y x

xy g u du f t dt ≤+??,其中当且仅当()y f x =时,等式成立.

华东师范大学2003年攻读硕士学位研究生入学试题

一(30分)简答题(只需写出正确答案)。

1.221sin (1)

lim (1)(2)

x x x x →-=-+ 2.211y arc x ??= ?+??

,则

'

y = 3.

2ln xdx =?

4.sin x

x z y y ??

= ???

,则dz

=

5.22{(,)|1}D x y x y =+≤,则2

2

x

y D

e dxdy +=??

6.

22{(,)|1}L x y x y =+=方向为顺时针方向,则

L

x d y

y d x

-=?

二.(20分)判别题(正确的说明理由,错误的举出反例)

1.若lim 0n n x →∞

=

则0n →∞

=.

2.若

()f x 在(0,)∞上可导,且导函数'

()f x 有界,则()f x 在

(0,)∞上一致连续。

3.若

()f x 在[],a b 上可积,

()()x

a

F x f t dt =?在()0,x a b ∈上可导,则'00()().F x f x =

4.若21

21

()n n n a

a ∞

-=+∑收敛,且lim 0n n a →∞

=则1

n n a ∞

=∑收敛。

三.(17分)求极限sin sin sin lim sin x

t x

t x t x -→?? ?

??

,记此极限为()f x ,求函数

()f x 的间断点,并判别间断点类型.

四.(17分)设'

()f x 在

[]0,a 上连续,且

(0)0f =证明

2

|()|2

a

Ma f x dx ≤?

,其中'

0max |()|x a M f x ≤≤=。

五.(17分)若函数(,)f x y 在

2R 上对x 连续,且存在0L >,对

''',,x y y R ?∈,''''''

|(,)(,)|||f x y f x y L y y -≤-.

求证:(,)f x y 在2R 上连续.

六.(17分)求下列积分:

(,,),(0)S

I f x y z dS a =

>??

其中2

2

2

2

{(,,)|},S x y z x y z a =++=

20,(,,){

x z f x y z +=.

七(17分)设01,r x R <<∈

(1)求证:22

1

112cos 12n

n r r nx rcsx r ∞

=-=+-+∑;

(2)求证:20

ln(12cos )0r x r dx π

-+=?

八(15分)120,0.,.a b a a a b >>==222

111

2,1,2,...n n n

a n a a ++=++= 求证:{}n a 收敛。

华东师范大学2004年攻读硕士学位研究生入学试题

一.(30分)计算题

(1)求2

12

0lim cos 2x x x x →??

- ???;

(2)若2ln sin(arctan ),x

y e x x -=+求'

y .

(3)求2(1)

x

xe dx x --?.

(4)求幂级数1n

n nx ∞

=∑的和函数()f x .

(5)L 为过(0,0O 和(0,)A a 的曲线s i n (0y a

x a =>,

求:3()(2).L

x y dx y dy +++?

(6)求曲面积分

(2),S

x z dydz zdxdy ++??

其中

22,(01),z x y z =+≤≤取上侧.

二(30分)判别题(正确的证明,错误的举反例)

1 .若{,1,2,...,}n x n =是互不相等的非无穷大数列,则{}n x 至少存在一个聚点0(,).x ∈-∞+∞

2. 若()f x 在(,)a b 上连续有界,则()f x 在(,)a b 上一致连续.

3. 若(),()f x g x 在[0,1]上可积,则:

1

1

11lim ()()()()n n i i i f g f x g x dx n n n →∞=-=∑?

4 .若1

n

n a

=∑收敛,则21

n n a ∞

=∑收敛.

5.若在

2R 上定义的函数(,)f x y 存在偏导数(,),(,)x y f x y f x y ,且

(,),(,)x y f x y f x y 在(0,0)上连续,则(,)f x y 在(0,0)上可微.

6 .

(,)f x y 在2R 上连续,

2220000(,){(,)|()()}r D x y x y x x y y r =-+-≤若

00(,),0,(,)0,r

D x y r f x y dxdy ??>=??

则2

(,)0,(,)f x y x y R =∈.

三.(15分)函数()f x 在(,)-∞+∞上连续且lim ()x f x A →∞

=,求证:

()f x 在(,)-∞+∞上有最大值或最小值.

四(15分)求证不等式:221,[0,1].x

x x ≥+∈

五(15分)设

(),1,2...n f x n =在[],a b 上连续且()n f x 在[],a b 上一

致收敛于()f x ,若[,],()0x a b f x ?∈>,求证:,0,N δ?>

使[,],,().n x a b n N f x δ?∈>>

六(15分)设{}n a 满足: (1)0100,1, 2...;k n a a n k k ≤≤=++

(2)级数1

n n a ∞

=∑收敛。求证:lim 0n n na →∞

=.

七(15分)若函数()f x 在[1,)+∞上一致连续,求证:()

f x x

在[1,)+∞上有界.

八(15分)设(,,),(,,),(,,)P x y z Q x y z R x y z 在3

R 有连续偏导数,而且对以任意点为000(,

,)x y z 中心,以任意正数r 为半径的上半球面

2222000:()()(),

r S x x y y z z r -+-+-=0,z z ≥

恒有:

(,,)(,,)r

S P x y z dydz Q x y z dzdx R ++??

(,,)0x y z dxdy =

求证:(,,),(,,)0,x y z R x y z ?=(,,)(,,)0x y P x y z Q x y z +=

华东师范大学2005年攻读硕士学位研究生入学试题

一(24分)判断下列命题的真伪(正确就证明,错误举反例) 1.lim n n a A →∞

=的一个充要条件是:存在正整数N ,对于任意正数

ε

,当

n N >时均有||n a A ε-<.

2.设()f x 在[,)a +∞上连续,()f x 在[,)a +∞上一致连续,那么

2(())f x 在上一致连续.

3.设0,lim 01

n n n a

a n

→∞>=那么正项级数

1

n

n a

=∑收敛.

4.(,)f x y 在点

00(,)x y 沿任意方向的方向导数都存在,则函数

(,)f x y 在点00(,)x y 连续.

二(64分)计算下列各题。 1.求极限22011lim sin x x

x →??- ???

2.

求极限n →∞

华东师范大学2004数学分析试题

华东师范大学2004数学分析试题

华东师范大学2004数学分析 一、(30分)计算题。 1、求 2 1 20)2 (cos lim x x x x -→ 2、若)), sin(arctan 2ln x x e y x +=-求' y . 3、求 ?--dx x xe x 2)1(. 4、求幂级数∑∞ =1 n n nx 的和函数)(x f . 5、 L 为过 ) 0,0(O 和 )0,2 (π A 的曲线 ) 0(sin >=a x a y ,求 ?+++L dy y dx y x . )2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中) 10(,22 ≤≤+=z y x z , 取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则} {n x 至少存在一个聚点). ,(0 +∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连 续. 3、若 ) (x f , ) (x g 在] 1,0[上可积,则 ∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim .

4、若∑∞=1n n a 收敛,则∑∞ =1 2n n a 收敛. 5、若在 2 R 上定义的函数 ) ,(y x f 存在偏导数 ),(y x f x ,) ,(y x f y 且),(y x f x , ) ,(y x f y 在(0,0)上连续,则),(y x f 在 (0,0)上可微. 6、),(y x f 在2 R 上连续,} ) ()(|),{(),(22 2 r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(0 0 则.),(,0),(2 R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上有最大值或最小值。 四、(15分)求证不等式:]. 1,0[,122∈+≥x x x 五、设) (x f n , ,2,1=n 在],[b a 上连续,且) (x f n 在],[b a 上一致 收敛于 ) (x f .若 ] ,[b a x ∈?, )(>x f .求证: , 0,>?δN 使 ],[b a x ∈?, N n >,. )(δ>x f n 六、(15分)设}{n a 满足(1); ,2,1,1000 ++=≤≤k k n a a n k (2)级数∑∞ =1 n n a 收敛. 求证:0 lim =∞ →n n na . 七、(15分)若函数)(x f 在),1[+∞上一致连续,求证: x x f )(在),1[+∞上有界. 八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3 R 有连续偏导数,而且对以任意点) ,(00, 0z y x 为中心,以任意正数r 为半径的上半球面, ,)()()(:02202020z z r z z y y x x S r ≥=-+-+-

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x ) = f ( x0 ) , ( 1) 则称f 在点x0 连续. 例如, 函数f ( x ) = 2 x + 1 在点x = 2 连续,因为 又如,函数li m x → 2 f ( x) = lim x →2 ( 2 x + 1 ) = 5 = f (2 ) . f ( x) = x sin 1 x , x ≠ 0, 0 , x = 0 在点x = 0 连续,因为 lim x →0f ( x) = lim x →0 x sin 1 x= 0 = f ( 0) . 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为 Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 . 注自变量的增量Δx或函数的增量Δy 可以是正数,也可以是0 或负数. 引进了增量的概念之后,易见“函数y = f ( x ) 在点x0 连续”等价于 lim Δy = 0 . Δx→0

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析课本(华师大三版)-习题及答案04

第四章 函数的连续性 习题 §1 连续性概念 1. 按定义证明下列函数在其定义域内连续: (1)()x x f 1 = ; (2) ()x x f = 2. 指出下列函数的间断点并说明其类型: (1)()x x x f 1+ =; (2)()x x x f sin =; (3)()[] x x f cos =; (4)()x x f sgn =; (5)()()x x f cos sgn =; (6)()?? ?-=为无理数; 为有理数, x x x x x f ,, (7)()()?? ? ? ??? +∞<<--≤≤--<<-∞+=x x x x x x x x f 1,11sin 11 7,7,71 3. 延拓下列函数,使其在R 上连续: (1)()2 8 3--=x x x f ; (2)()2cos 1x x x f -=; (3)()x x x f 1cos =. 4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续。又问:若f 与2f 在I 上连续, 那么f 在I 上是否必连续? 5. 设当0≠x 时()()x g x f ≡,而()()00g f ≠。证明:f 与g 两者中至多有一个在0 =x 连续 6. 设f 为区间I 上的单调函数。证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间 断点 7. 设f 只有可去间断点,定义()()y f x g x y →=lim ,证明:g 为连续函数 8. 设f 为R 上的单调函数,定义()()0+=x f x g ,证明:g 在R 上每一点都右连续 9. 举出定义在[]1,0上分别符合下述要求的函数: (1)只在 41,31,21三点不连续的函数; (2)只在4 1 ,31,21三点连续的函数;

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

数学分析华东师大反常积分

数学分析华东师大反常 积分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十一章反常积分 §1 反常积分概念 一问题提出 在讨论定积分时有两个最基本的限制: 积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制, 考虑无穷区间上的“积分”, 或是无界函数的“积分”, 这便是本章的主题. 例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图 11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v0 至少要多大设地球半径为R, 火箭质量为m, 地面上的重力加速度为 g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为 mg R2 F = . x2 于是火箭从地面上升到距离地心为r ( > R) 处需作的功为

r mg R ∫ ∫ 2 ∫ d x = m g R 2 1 - 1 .R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = m g R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章 曲面积分 一、证明题 1.证明:由曲面S 所包围的立体V 的体积等于 V= ()??+β+αS ds r cos z cos y cos x 31其中αcos ,βcos , cpsr 为曲面S 的外法线方向余弦. 2.若S 为封闭曲面,L 为任何固定方向,则 ()??S ds L ,n cos =0 其中n 为曲面S 的外法线方向. 3. 证明 公式 ???V r dx dydz =()??S ds n ,r cos 21 其中S 是包围V 的曲面,n 为S 的外法线方向. r=222z y x ++,r=(x,y,z). 4.证明: 场A=()(z y x 2yz ++,()z y 2x zs ++, ())z 2y x x y ++是有势场并求其势函数. 二、计算题 1.计算下列第一型曲面积分: (1) ()??++S ds z y x ,其中S 为上半球面 222z y x ++=2a 0z ≥; (2) () ??+S 22ds y x ,其中S 为主体1z y x 22≤≤+的边界曲面; (3) ?? +S 22ds y x 1,其中S 为柱面222R y x =+被平面Z=0,Z=H 所截取的P 分; (4) ??S xyzds ,其中S 为平面在第一卦限中的部分.

2.计算??S 2ds z ,其中S 为圆锥表面的一部分. S:?? ???θ=θ?=θ?=cos r z sin sin r y sin cos r x D:???π≤?≤≤≤20a r 0 这里θ为常数(0<θ<2 π). 3.计算下列第二型曲面积分 (1) ()?? -S dydz z x y +dzdx x 2+()dx dy x z y 2+,其中S 为x=y=z=0,x=y=z=a 平成所围成的正方体并取处侧为正向; (2)()()()??+++++S dxdy x z dzdx z y dydz y x ,其中S 是以原点中心,边长为2的正方体 表面并取外侧正向; (3)??++S zxdxdy yzdzdx xydydz ,其中S 是由平面x=y=z=0和x+y+z=1所围的四面体 表面并取外侧为正向; (4) ??S yzdzdx ,其中S 是球面,222z y x ++=1的上半部分并取外侧为正向; (5)?? ++S 222dxdy z dzdx y dydz x ,其中S 是球面()2a x - +()2b y -+()2c x -=R 2并取外侧为正向. 4.设某流体的流速为V=(x,y,0),求单位时间内从球面x 2+y 2 +z 2=4的内部流过球面的流量 5.计算第二型曲面积分 I=()??S dydz x f +()dzdx y g +()dx dy z h 其中S 是平行分面体(a x 0≤≤,b y 0≤≤,c z 0≤≤)表面并取外侧,f(x),g(y),h(z)为S 上的连续函数, 6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x 2+y 2 +z 2=a 2,z=0的磁通量, 7.应用高斯公式计算下列曲面积分: (1) ??++S sydxdy zxdzds yzdydz ,其中S 为单位球面x 2+y 2+z 2=1的外侧; (2) ??++S 222dxdy z dzds y dydz x ,其中S 是立方体≤0x,y,z a ≤的表面取外侧; (3) ??++S 222dxdy z dzds y dydz x ,其中S 为锥面x 2+y 2 =z 2与平面z=h 所围的空间区域(h z 0≤≤)的表面方向取外侧; (4) ??++S 332dxdy z dzds y dydz x ,其中S 是单位球面x 2+y 2+z 2=1的外侧; (5) ??++S dxdy 2ydzds xdydz ,其中S 为上半球面Z=222y x a --的外侧.

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

华东师大数学分析试题

华东师大2019年数学分析试题 一、(24分)计算题: (1) 求011lim()ln(1)x x x →-+; (2) 求32cos sin 1cos x x dx x +?g (3) 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数, 试求grad z 。 二、(14分)证明: (1)11(1)n n +??+???? 为递减数列: (2) 111ln(1),1,21n n n n <+<=+???? 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之 一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导, '()f x K ≤ (K 为正常数) ,(,)x a b ∈ 证明:f 在点a 右连续,在点b 左连续。 四、(14分)设1 20(1)n n I x dx =-?,证明: 五、(12分)设S 为一旋转曲面,它由光滑曲线段

绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为: 2(b a A f x π=? 六、(24分)级数问题: (1) 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧, “死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。设 sin ,01,0()x x x x f x ≠=?=??{}[]() x a,b ()()11()()n n n f x f x f x f x f x ∈? ?,求 ()(0),1,2,k f k =L (2) 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教 谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故 ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P .3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明|||| 2 22 2c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是2 2 b a +,OC 的长度是2 2 c a +, AC 的长度为||c b -。因为三角形两边的差 大于第三边,所以有

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理及其应用 一、 填空题 1.若0,0>>b a 均为常数,则=??? ? ? ?+→x x x x b a 3 2 lim ________。 2.若2 1 sin cos 1lim 0 =-+→x x b x a x ,则=a ______,=b ______。 3.曲线x e y =在0=x 点处的曲率半径=R _________。 4.设2442 -+=x x y ,则曲线在拐点处的切线方程为 ___________。 5.= -+→x e x x x 10 )1(lim ___________。 6.设) 4)(1()(2 --=x x x x f ,则0)(='x f 有_________个根, 它们分别位于________ 区间; 7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的 __________=ξ; 8.函数3 )(x x f =与2 1)(x x g +=在区间[]2,0上满足柯西定 理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数 2 )(x e x f x =的单调减区间是__________; 11.函数x x y 33 -=的极大值点是______,极大值是

_______。 12.设x xe x f =)(,则函数) () (x f n 在=x _______处取得 极小值_________。 13.已知bx ax x x f ++=23 )(,在1=x 处取得极小值2-, 则=a _______,=b _____。 14.曲线2 2)3(-=x k y 在拐点处的法线通过原点,则 =k ________。 15.设)2,1()1()(Λ=-?=n x n x f n ,n M 是)(x f 在[]1,0上的最 大值,则=∞ →n n M lim ___________。 16.设)(x f 在0 x 可导,则0)(0 ='x f 是)(x f 在点0 x 处取得 极值的______条件; 17.函数x bx x a x f ++=2 ln )(在1=x 及2=x 取得极值,则 ___ ___,==b a ; 18. 函数 3 2 2 3 )(x x x f -=的极小值是_________; 19.函数x x x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在?? ??? ?2,0π上的最大值为______, 最小值为_____; 21. 设点 ) 2,1(是曲线 b a x y +-=3)(的拐点,则 ______ _____,==b a ; 22. 曲线x e y =的下凹区间为_______,曲线的拐点为

数学分析教案(华东师大版)上册全集1-10章

第一章实数集与函数 导言数学分析课程简介( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是

可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听 为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析,高等教育出版社,2001; [2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992; [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设. 3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.

数学分析-上册--第三版-华东师范大学数学系-编

数学分析-上册--第三版-华东师范大学数学系-编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,

1 再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明| ||| 2222c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是 2 2b a +,OC 的长度是2 2c a +, a c b ) ,(b a A ) ,(c a C x y O

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分 §1 二重积分的概念 1.把重积分 ??D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0?,并用直线网x=n i ,y=n j (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点. 2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界. 3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积. 4.设D 为矩形区域,试证明二重积分性质2、4和7. 性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且 ()?+D g f =??+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ??≤D D g f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得 ()D ,f f D ?ηξ=?. 5.设D 0、D 1和D 2均为矩形区域,且 210D D D Y =,?=11D int D int I , 试证二重积分性质3. 性质3(区域可加性) 若210D D D Y =且11D int D int I ?=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且 ?0D f =??+2 1D D f f , 6.设f 在可求面积的区域D 上连续,证明: (1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D >?; (2)若在D 内任一子区域D D ?'上都有 ?' =D 0f ,则在D 上()0y ,x f ≡。 .

7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得 ()()??D dxdy y ,x g y ,x f =()ηξ,f ()??D dxdy y ,x g . 8.应用中值定理估计积分 ?? ≤-++10y x 22y cos x cos 100dxdy 的值 §2 二重积分的计算 1.计算下列二重积分: (1)()??-D dxdy x 2y ,其中D=[][]2,15,3?; (2) ??D 2dxdy xy ,其中(ⅰ)D=[][]3,02,0?,(ⅱ)D=[]3,0 []2,0?; (3)()??+D dxdy y x cos ,其中D=[]π???????π,02,0; (4) ??+D dx dy x y 1x ,其中D=[][]1,01,0?. 2. 设f(x,y)=()()y f x f 21?为定义在D=[]?11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且 ?D f =???1122 b a b a 21f f .

数学分析课本(华师大三版)-习题及答案10

习 题 十 1. 求下列曲线所围图形的面积. (1) y x x x y = ===1 14,,,0=; (2) 轴; y x y y ==3 8,, (3) ; y e y e x x x ==?,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2 380,,=1; (6) y x y y x y =+===14,,,;3 (7) ; y x x y 2 24=?=, (8) . x y y x =?=2 10(), 2. 求抛物线以及在点y x x =?+?2 4(,)03?和处的切线所围图形的面积. (,)30 3. 设曲线与直线y x x =?2y ax =,求参数,使该曲线与直线围图形面积为 a 92 . 4. 曲线与相交于原点和点f x x ()=2 g x cx c ()=>3 0()(,)11 2 c c ,求的值,使位于区间c [,01 c 上,两曲线所围图形的面积等于 23. 5. 求星形线所围图形的面积(a ). x a t y a t t ==?????≤≤cos sin 3 3 02 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积. (1) 三叶玫瑰线r =83sin θ; (2) 心形线r =?31(sin )θ; (3) r =+1sin θ与r =1; (4) r =2与r =4cos θ. 7. 证明:球的半径为R 、高为的球冠的体积公式为: h V h R = ?13 32 π()h

8. 计算圆柱面与所围立体(部分)的体积. x y a 22+=2 2 x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积. x y a 2 2 +=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为. h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积. (1) ; y x x =≤sin () 0π≤;(2) y x x y ===2 20,,(3) y x y x == 2,; (4) ; y x x e =≤ln () 1≤3 (5) . y x y x ==2 2 , 12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体 积. 13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =?3 2y x =2 y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长. (1) ; y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38; (3) x y y y = ?≤≤141 2 12ln (),e ; (4) r a a =>≤≤θθ ,()003; (5) r a =≤sin ()3 3 03≤θ θπ,; (6) . x a t t t y a t t t t =+=?≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2 2 20+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密 度x a y a ==cos sin 3 θ,3 θρ为常数) . 17. 计算下列曲线所围图形的质量中心. (1) ax ; y ay x a ==>2 2 0, () (2) x a y b x a y b 222 2100+=≤≤≤≤,,(); (3) 轴,()y a x x =sin ,01≤≤x ; 18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3 (c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功. 20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,

数学分析教案华东师大第三版

§6 重积分的应用 (一) 教学目的:学会用重积分计算曲面的面积,物体的重心,转动惯量与引力. (二) 教学内容: 曲面面积的计算公式;物体重心的计算公式;转动惯量的计算公式;引力的计算公式. 基本要求:掌握曲面面积的计算公式,了解物体重心的计算公式,转动惯量的计算公式 和引力的计算公式. (三) 教学建议: 要求学生必须掌握曲面面积的计算公式,物体重心的计算公式,转动惯量的计算公式和引力的计算公式,并且布置这方面的的习题. ________________________________________ 一 曲面的大面积 设D 为可求面积的平面有界区域函数在D 上具有连续一阶偏导数,讨论由方程 D y x y x f z ∈=),(,),( 所确定的曲面S 的面积i σ? ==i i i i 1 1当 0||||→T 时,可用和式∑=?n i i A 1的极限作为S 的面积 首先计算i A ?的面积,由于切平面的法线向量就是曲面S 在),,(i i i i M ζηξ处的法线向量,记它与z 轴的夹角为i γ,则

),(),(11 cos 22 i i y i i x i f f ηξηξγ++= i i i y i i x i i i f f A σηξηξγσ?++=?= ?),(),(1cos 22 ∑∑==?++=?n i i i i y i i x n i i f f A 1 221),(),(1σηξηξ 是连续函数),(),(122i i y i i x f f ηξηξ++在有界闭域上的积分和,所以当0||||→T 时,就得 到 ∑=→?++=?n i i i i y i i x T f f S 1220||||),(),(1lim σηξηξ dxdy y x f y x f D i i y i i x ??++=),(),(122 或 ∑??=→=?=?n i D i i T z n dxdy S 10|||||),cos(||)cos |lim γσ 例 1 求圆锥 22y x z += 在圆柱体 x y x ≤+22内那一部分的面积 解 dxdy y x z y x z S D i i y i i x ??++= ?),(),(122 x y x D ≤+22: 所求曲面方程为 ?+= 22y x z 2222,y x y z y x x z y x +=+=

数学分析课本(华师大三版)-习题及答案第十四章

第十四章 幂级数 一、证明题 1. 证明:设f(x)=∑∞=0n n n x a 在x=R 是否收敛).应用这个结果证明: ∑?∞=--==+1 n 1n n 11)(ln2dx x 1101. 2. 证明 (1) y=∑∞ =0n 4n (4n)!x 满足方程y (4)=y (2) y=∑∞ =0n 2n )(n!x 满足方程x y ''+y '-y=0. 3. 证明:设f(x)为幂级数∑∞=0n n n x a 在(-R,R)上的和函数,若f(x)为奇函数,则该级数仅出现奇次 幂的项,若f(x)为偶函数,则该级数仅出现偶次幂的项. 4. 设函数f(x)在区间(a,b)内的各阶导数一致有界,即存在正数M,对一切x ∈(a,b),有|f (n)(x)|≤M(n=1,2,3,…),证明:对(a,b)内任一点x 与x 0有 f(x)=∑∞ =0n n 00(n))x -(x n!)(x f 二、计算题 1.求下列幂级数的收敛半径与收敛区域. (1) ∑n nx ; (2) ∑n n 2x 2n 1; (3) ∑n 2 x (2n)!)(n!; (4) ∑n n x r 2 ,(0

相关主题
文本预览
相关文档 最新文档