当前位置:文档之家› 换热器生产线项目可行性研究报告(专业经典案例)

换热器生产线项目可行性研究报告(专业经典案例)

换热器生产线项目可行性研究报告(专业经典案例)
换热器生产线项目可行性研究报告(专业经典案例)

换热器生产线项目可行性研究报告

(用途:发改委甲级资质、立项、审批、备案、申请资金、节能评估等)

版权归属:中国项目工程咨询网

https://www.doczj.com/doc/715485923.html,

《项目可行性研究报告》简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。

项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。

《换热器生产线项目可行性研究报告》主要是通过对换热器生产线项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对换热器生产线项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该换热器生产线项目是否值得投资和如何进行建设的咨询意见,为换热器生产线项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。

《换热器生产线项目可行性研究报告》是确定建设换热器生产线项目前具有决定性意义的工作,是在投资决策之前,对拟建换热器生产线项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建换热器生产线项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。

北京国宇祥国际经济信息咨询有限公司是一家专业编写可行性研究报告的投资咨询公司,我们拥有国家发展和改革委员会工程咨询资格、我单位编写的可行性报告以质量高、速度快、分析详细、财务预测准确、服务好而享有盛誉,已经累计完成6000多个项目可行性研究报告、项目申请报告、资金申请报告编写,可以出具如下行业工程咨询资格,为企业快速推动投资项目提供专业服务。

换热器生产线项目

可行性研究报告

编制单位:北京国宇祥国际经济信息咨询有限公司工咨甲:甲级资质单位

编制工程师:范兆文注册咨询工程师

参加人员:王胜利教授级高工

朱立仁高级工程师

高勇注册咨询工程师

李林宁注册咨询工程师

项目审核人:王海涛注册咨询工程师

教授级高工编制负责人:范兆文

目录

第一章总论 (1)

1.1项目概要 (1)

1.1.1项目名称 (1)

1.1.2项目建设单位 (1)

1.1.3项目建设性质 (1)

1.1.4项目建设地点 (1)

1.1.5项目负责人 (1)

1.1.6项目投资规模 (1)

1.1.7项目建设内容 (2)

1.1.8项目资金来源 (2)

1.1.9项目建设期限 (3)

1.2项目提出背景 (3)

1.2.1“十二五”时期可再生能源建筑应用规模将不断扩大 (3)

1.2.2换热器生产线产业市场前景可观 (3)

1.2.3本次建设项目的提出 (4)

1.3项目单位介绍 (4)

1.4编制依据 (5)

1.5编制原则 (5)

1.6研究范围 (6)

1.7主要经济技术指标 (6)

1.8综合评价 (7)

第二章项目必要性及可行性分析 (9)

2.1项目建设必要性分析 (9)

2.1.1有效缓解我国能源紧张问题的重要举措 (9)

2.1.2促进我国节能环保产业快速发展的需要 (9)

2.1.3资源合理利用实现变废为宝的需要 (10)

2.1.4增加当地就业带动相关产业链发展的需要 (10)

2.1.5带动当地经济快速发展的需要 (10)

2.2项目建设可行性分析 (11)

2.2.1项目建设符合国家产业政策及发展规划 (11)

2.2.2项目建设具备一定的资源优势 (12)

2.2.3项目建设具备技术可行性 (12)

2.2.4管理可行性 (14)

2.3分析结论 (14)

第三章行业市场分析 (15)

3.1国内外利用情况分析 (15)

3.2换热器生产线应用情况与发展前景分析 (20)

3.3国内换热器生产线企业建设情况分析 (26)

3.4市场小结 (27)

第四章项目建设条件 (28)

4.1厂址选择 (28)

4.2区域建设条件 (28)

4.2.1地理位置 (28)

4.2.2自然条件 (28)

4.2.3矿产资源条件 (29)

4.2.4水资源环境 (33)

4.2.5经济发展环境 (33)

4.2.6交通运输条件 (35)

第五章总体建设方案 (37)

5.1项目布局原则 (37)

5.2项目总平面布置 (37)

5.3总平面设计 (38)

5.4道路设计 (39)

5.5工程管线布置方案 (39)

5.5.1给排水 (39)

5.5.2供电 (40)

5.5.3燃料供应 (41)

5.5.4采暖通风 (41)

5.6土建方案 (42)

5.6.1方案指导原则 (42)

5.6.2土建方案的选择 (42)

5.7土地利用情况 (42)

5.7.1项目用地规划选址 (42)

5.7.2用地规模及用地类型 (43)

5.7.3项目建设用地指标 (43)

第六章产品方案及工艺技术 (44)

6.1主要产品 (44)

6.2产品简介 (44)

6.3主要规格型号 (44)

6.4产品生产规模确定 (45)

6.5技术来源及优势 (45)

6.6工艺流程 (47)

6.6工艺方案 (48)

第七章原料供应及设备选型 (50)

7.1主要原材料供应 (50)

7.2燃料供应 (50)

7.3主要设备选型 (50)

第八章节约能源方案 (53)

8.1本项目遵循的合理用能标准及节能设计规范 (53)

8.2建设项目能源消耗种类和数量分析 (54)

8.2.1能源消耗种类 (54)

8.2.2能源消耗数量分析 (54)

8.3项目所在地能源供应状况分析 (54)

8.4主要能耗指标及分析 (55)

8.4.1项目能耗分析 (55)

8.4.2国家能耗指标 (56)

8.5节能措施和节能效果分析 (56)

8.5.1工业节能 (56)

8.5.2建筑节能 (57)

8.5.3企业节能管理 (58)

8.6项目产品节能效果分析 (58)

8.7结论 (58)

第九章环境保护与消防措施 (59)

9.1设计依据及原则 (59)

9.1.1环境保护设计依据 (59)

9.1.2设计原则 (59)

9.2建设地环境条件 (60)

9.3项目建设和生产对环境的影响 (60)

9.3.1项目建设对环境的影响 (60)

9.3.2项目生产过程产生的污染物 (61)

9.4环境保护措施方案 (61)

9.4.1项目建设期环保措施 (61)

9.4.2项目运营期环保措施 (63)

9.5环保评价 (64)

9.6绿化方案 (64)

9.7消防措施 (64)

9.7.1设计依据 (64)

9.7.2防范措施 (64)

9.7.3消防管理 (66)

9.7.4消防措施的预期效果 (66)

第十章劳动安全卫生 (67)

10.1编制依据 (67)

10.2概况 (67)

10.3劳动安全 (67)

10.3.1工程消防 (67)

10.3.2防火防爆设计 (68)

10.3.3电力 (68)

10.3.4防静电防雷措施 (68)

10.4劳动卫生 (69)

10.4.1防暑降温及冬季采暖 (69)

10.4.2卫生 (69)

10.4.3照明 (69)

第十一章企业组织机构与劳动定员 (70)

11.1组织机构 (70)

11.2劳动定员 (70)

11.3员工培训 (70)

11.4福利待遇 (71)

第十二章项目实施规划 (72)

12.1建设工期的规划 (72)

12.2建设工期 (72)

12.3实施进度安排 (72)

第十三章投资估算与资金筹措 (73)

13.1投资估算依据 (73)

13.2固定资产投资估算 (73)

13.3流动资金估算 (74)

13.4资金筹措 (74)

13.5项目投资总额 (74)

13.6资金使用和管理 (77)

第十四章财务及经济评价 (78)

14.1总成本费用估算 (78)

14.1.1基本数据的确立 (78)

14.1.2产品成本 (79)

14.1.3平均产品利润与销售税金 (80)

14.2财务评价 (80)

14.2.1项目投资回收期 (80)

14.2.2项目投资利润率 (81)

14.2.3不确定性分析 (81)

14.3综合效益评价结论 (84)

第十五章招标方案 (86)

15.1招标管理 (86)

15.2招标依据 (86)

15.3招标范围 (86)

15.4招标方式 (87)

15.5招标程序 (87)

15.6评标程序 (88)

15.7发放中标通知书 (88)

15.8招投标书面情况报告备案 (88)

15.9合同备案 (88)

第十六章风险分析及规避 (89)

16.1项目风险因素 (89)

16.1.1不可抗力因素风险 (89)

16.1.2技术风险 (89)

16.1.3市场风险 (89)

16.1.4资金管理风险 (90)

16.2风险规避对策 (90)

16.2.1不可抗力因素风险规避对策 (90)

16.2.2技术风险规避对策 (90)

16.2.3市场风险规避对策 (90)

16.2.4资金管理风险规避对策 (91)

第十七章结论与建议 (92)

17.1结论 (92)

17.2建议 (92)

附表 (93)

附表1销售收入预测表 (93)

附表2总成本费用表 (94)

附表3外购原材料表 (95)

附表4外购燃料及动力费表 (96)

附表5工资及福利表 (97)

附表6利润与利润分配表 (98)

附表7固定资产折旧费用表 (99)

附表8无形资产及递延资产摊销表 (100)

附表9流动资金估算表 (101)

附表10资产负债表 (102)

附表11资本金现金流量表 (103)

附表12财务计划现金流量表 (104)

附表13项目投资现金量表 (106)

附表14资金来源与运用表 (108)

第一章总论

1.1项目概要

1.1.1项目名称

换热器生产线项目

1.1.2项目建设单位

新能源科技有限公司

1.1.

2.1项目编制单位

北京国宇祥国际经济信息咨询有限公司

1.1.3项目建设性质

新建项目

1.1.4项目建设地点

本项目厂址选定在经济开发区,周围环境及建设条件能够满足本项目建设及发展需要。

1.1.5项目负责人

刘x

1.1.6项目投资规模

项目总投资金额为70015.10万元人民币,主要用于项目建设的建筑工程投资、配套工程投资、设备购置及安装费用、无形资产费用、其他资产费用以及充实企业流动资金等。

项目正式运营达产后,可实现年均销售收入130909.09万元,年均利润总额为28908.93万元,年均净利润为24557.75万元,年可上缴增值税9508.41万元,年可上缴所得税4351.18万元,年可上缴城建费及附加950.84万元,投资利润率为41.29%,税后财务内部收益率25.12%,高于设定的基准收益率10%。

1.1.7项目建设内容

本项目总占地面积1000亩,总建筑面积383335.25M2。项目主要建设内容及规模如下:

主要建筑物、构筑物一览表

工程类别工段名称层数占地面积(M2)建筑面积(M2)

1、主要生产系统生产车间1266668266668辅助车间110000.0510000.05

2、辅助生产系统物流库房15333.365333.36产品仓库15333.365333.36供配电站12000.012000.01机修车间13333.353333.35

3、辅助设施

办公综合楼55333.3626666.8研发中心23333.356666.7检测中心22000.014000.02职工生活中心26666.713333.4道路16666.76666.7绿化133333.533333.5

合计350001.75383335.25 1.1.8项目资金来源

本项目总投资资金70015.10万元,其中企业自筹30015.10万元,申请银行贷款40000.00万元。

1.1.9项目建设期限

本项目建设分二期进行:建设工期共计2年。

1.2项目提出背景

1.2.1“十二五”时期可再生能源建筑应用规模将不断扩大

近年来,为贯彻落实党中央、国务院关于推进节能减排与发展新能源的战略部署,财政部、住房城乡建设部大力推动、浅层地能等可再生能源在建筑领域应用,可再生能源建筑应用规模迅速扩大,应用技术逐渐成熟、产业竞争力稳步提升。

1.2.2换热器生产线产业市场前景可观

能源问题和环境问题是全球关注和迫切需要解决的问题。随着常规能源煤、石油、天然气的开采,这些能源被大量消耗、逐步减少的同时也带来了环境问题.

1.2.3本次建设项目的提出

项目方即是在结合我国可再生能源产业,本项目是国家鼓励支持发展的低碳、节能、利用项目,该项目的实施将为项目方带来较为可观的经济效益与社会效益。

1.3项目单位介绍

新能源科技有限公司是一家主要从事矿山开采、加工、销售于一体的现代化制造企业。企业拥有一支研发、生产各种矿产品的专业队伍,拥有一个覆盖全国的销售网络。

1.4编制依据

(1)《中华人民共和国国民经济和社会发展“十二五”规划纲要》;

(2)《建设项目经济评价方法与参数及使用手册》(第三版);

(3)《工业可行性研究编制手册》;

(4)《现代财务会计》;

(5)《工业投资项目评价与决策》;

(6)国家及X X有关政策、法规、规划;

(7)项目公司提供的有关材料及相关数据;

(8)国家公布的相关设备及施工标准。

1.5编制原则

(1)充分利用企业现有基础设施条件,将该企业现有条件(设备、场地等)均纳入到设计方案,合理调整,以减少重复投资。

(2)坚持技术、设备的先进性、适用性、合理性、经济性的原则,采用国内最先进的产品生产技术,设备选用国内最先进的,确保产品的质量,以达到企业的高效益。

1.6研究范围

本研究报告对企业现状和项目建设的可行性、必要性及承办条件进行了调查、分析和论证;对工程投资、产品成本和经济效益等进行计算分析并作出总的评价;

1.7主要经济技术指标

项目主要经济技术指标如下:

项目主要经济技术指标表

序号项目名称单位数据和指标

一主要指标

1总占地面积亩1000.00 2总建筑面积㎡383335.25 3道路㎡6666.70 4绿化面积㎡33333.50 5总投资资金万元70015.10 5.1其中:建筑工程万元29813.48 5.2设备及安装费用万元24609.90 5.3土地费用万元0.00二主要数据

1年均销售收入万元130909.09 2年平均利润总额万元28908.93 3年均净利润万元24557.75 4年销售税金及附加万元950.84 5年均增值税万元9508.41 6年均所得税万元4351.18 7项目定员人800 8建设期年2三主要评价指标

1项目投资利润率%41.29% 2项目投资利税率%56.23% 3税后财务内部收益率%25.12% 4税前财务内部收益率%29.23% 5税后财务静现值(ic=10%)万元73,943.53 6税前财务静现值(ic=10%)万元79,114.69 7投资回收期(税后)年 5.93 8投资回收期(税前)年 5.48 9盈亏平衡点%37.56%

1.8综合评价

1、本项目建设设符合“十二五”时期国家及当地产业政策及发展规

第二章项目必要性及可行性分析

2.1项目建设必要性分析

2.1.1有效缓解我国能源紧张问题的重要举措

我国是最大的发展中国家,地处北半球亚热带、温带地区,常规能源贫乏而资源相对丰富,天然气、石油、煤炭等常规能源的人均占有量仅为世界人均占有量的30%左右,近30年的高速发展进一步造成我国常规能源的过度开采,对国外石油、天然气资源的过度依赖和环境的日益恶化,严重制约我国的可持续发展。

2.1.2促进我国节能环保产业快速发展的需要

低碳、节能、环保,是换热器生产线最大的特点。

2.1.3资源合理利用实现变废为宝的需要

随着社会经济及陶瓷工业的快速发展,陶瓷工业废料日益增多,它不仅对城市环境造成巨大压力,而且还限制了城市经济的发展及陶瓷工业的可持续发展,可见陶瓷工业废料的处理与利用非常重要。

2.1.4增加当地就业带动相关产业链发展的需要

本项目建成后,将为当地800多人提供就业机会,吸收下岗职工与闲置人口再就业,可促进当地经济和谐发展

2.1.5带动当地经济快速发展的需要

本项目正式运营后,可实现年均销售收入130909.09万元,年均利润总额为28908.93万元,年均净利润为24557.75万元,年可上缴增值税

9508.41万元,年可上缴所得税4351.18万元,年可上缴城建费及附加950.84万元。因此,项目的实施每年可为当地增加14810.43万元利税,可有效促进当地经济发展进程。

2.2项目建设可行性分析

2.2.1项目建设符合国家产业政策及发展规划

1、“十二五”新能源发展规划

国家能源局新能源与可再生能源司透露,在即将出台的《可再生能源“十二五”发展规划》中。

2、《国家战略性新兴产业发展“十二五”规划》

根据《国家战略性新兴产业发展“十二五”规划》,新一代信息技术、生物、节能环保、高端装备制造产业将成为支柱产业,新能源、新材料、新能源汽车产业将成为先导产业。

3、财政部、住房城乡建设部关于进一步推进可再生能源建筑应用的通知中指出:

2.2.2项目建设具备一定的资源优势

2.2.3项目建设具备技术可行性

\2.2.4管理可行性

2.3分析结论

综合以上因素,本项目建设可行,且十分必要。

第三章行业市场分析

3.1国内外利用情况分析

经过近200年的持续加速开采,煤、石油、天然气等常规化石燃料资源逐步减少,据有关资料,我国煤、石油、天然气的可开采年数分别是114年、20.1年、49.3年,人均占有量分别是世界人均占有量的70%、11%、4%,所以我国比多数国家更迫切需要研究和寻求新能源和可再生能源。

3.2换热器生产线应用情况与发展前景分析

换热器生产线具有瓷器通性,强度大、硬度高、热稳定性好、吸水率<0.5%、阳光吸收比0.93、阳光吸收比不随使用时间衰减、可具有与建筑物相同的使用寿命等优点。

3.3国内换热器生产线企业建设情况分析

3.4市场小结

通过以上分析,可以得知当前国内外利用产业背景较好,我国发展换热器生产线产业政策及市场需求前景可观,市场潜力较大。投资该产业面对较强的市场可行性、经济收益可行性,因此该项目的建设不仅可以促进我国新兴换热器生产线产业的快速发展,还可有效满足当前市场需求,促进我国低碳环保业及相关产业链快速发展,具有良好的社会效益和经济效益,同时对于促进经济社会可持续发展有着长远的意义。

第四章项目建设条件

4.1厂址选择

本项目厂址选定在广州怀德经济开发区,周围环境及建设条件能够满足本项目建设及发展需要。

4.2区域建设条件

4.2.1地理位置

。南与广东固原市及甘肃省靖远县相连,西与甘肃省景泰县交界,北与内蒙古自治区阿拉善左旗毗邻,地跨东经104度17分~106度10分、北纬36度06分—37度50分,东西长约130公里,南北宽约180公里。截至2010年,全市总面积17441.6平方公里

4.2.2自然条件

地形由西向东、由南向北倾斜。境内海拔高度在2955米~1100米之间。

4.2.3矿产资源条件

矿产资源种类多,开发历史悠久。截止2010年底已发现矿产30多种,矿产地189处,其中工业矿床62处1、能源矿产:主要为煤煤炭资源是中卫市的主要矿产之一,

4.2.4水资源环境

水资源条件优越,地下水蕴藏丰富。黄河自西向东穿境而过,全长约182公里,占黄河在广东流程397公里的45.8%,年均流量1039.8立方

米/秒,年均过境流量328.14亿立方米,最大自然落差144.13米宁、4.2.5经济发展环境

全市工业完成工业总产值173.97亿元,比2009年增长22.1%,工业对全市经济增长贡献率为33.4%。其中规模以上工业总产值158.71亿元,增长27.2%;完成增加值49.01亿元,比上年增长13.9%。全年规模以上工业

4.2.6交通运输条件

第五章总体建设方案

5.1项目布局原则

本次建设项目总占地面积为1000亩,总建筑面积为383335.25㎡。

布局原则:

建设区平面布置充分利用现有条件,在满足消防及交通运输的条5.2项目总平面布置

项目总平面布置分为:行政办公区、研发区、生活区、生产区等。生产区的主要内容有:生产车间、辅助车间、物流库房、产品库房、维修车间、配电房等。

5.3总平面设计

本工程各建、构筑物之间的防火间距均严格按照《建筑设计防火规范》的要求进行设计。

5.4道路设计

厂区内根据平面布置,设置环形道路,为混凝土路面,路面宽度主道6米。该干路主要为运输原料、成品出厂。

5.5工程管线布置方案

5.5.1给排水

◆给水

本项目生产用水及生活用水均采取打井汲取地下水的方式解决,预计井深100米,出水量可满足生产运行需求。

◆排水

毕业设计-换热器设计模版

毕业设计-换热器设计模版

一、 设计参数 过热蒸汽压力P 1:0.35Mpa ;入口温度T 1:250C ;出口温度T 2:138.89C (查水和水 蒸汽热力性质图表P11);传热量Q :375400kJ/h 。 冷却水压力P 2:0.7MPa ;入口温度t 1:70C ;出 口温度t 2(C );水流量m 2:45320kg/h 。 水蒸汽走管程,设计温度定为300C ,工作压力 为0.35Mpa (绝压);冷却水走壳程,设计温度定位100C ,工作压力为0.9Mpa (绝压)。 二、 工艺计算 1.根据给定的工艺条件进行热量衡算 )t t ()()T T (1 2 2 2 2 1 2 1 1 2 1 1 1 p p c m Q h h m c m Q 查水和水蒸汽热力性质图表得 0.3MPa ,140C ,2738.79kJ/kg 250C ,2967.88 kJ/kg 0.4MPa, 150C ,2752.00 kJ/kg 250C ,2964.50 kJ/kg 采用插值法得到:0.35MPa 水蒸汽从138.89C 到 250C 的焓变为:234.6 kJ/kg h kg h h Q m /16006.234/375400)/(1 211 由表得70C 时水的比热2 p c 为4.187C kg J /k (【1】《化

200C 粘度0.136mPa/s ,导热系数 1.076C m W ,比热容4.505C kg kJ /【3】 得:194.45 C 时密度 3 16193.1m kg ,粘度 s 0.14m Pa 1 ,导热系数C m W 0699.11 ;比热容 C kg kJ c p /479.41 588 .00699 .100014 .044791 1 11 p r c P 0.7MPa ,70.99C 时水的物性参数:(【4】《化 工原理》P525页) 70C 密度977.83 m kg ,粘度0.406mPa/s ,导 热系数0.668C m W ,比热容4.187C kg kJ /[4] 80C 密度971.83 m kg ,粘度0.355mPa/s ,导 热系数0.675C m W ,比热容4.195C kg kJ /[4] 得:70.99 C 时密度 3 271.926m kg ,粘度 s 0.383m Pa 2 ,导热系数C m W 671.02 ;比热容 C kg kJ c p /329.42 393 .2667 .0000383 .043292 2 22r p c P 3.初定换热器尺寸 ①已知传热量Q

中国换热器行业市场调研报告

2011-2015年中国换热器行业市场调研与 发展趋势研究报告 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 中国报告网发布的《2011-2015年中国换热器行业市场调研与发展趋势研究报告》共十四章。首先介绍了换热器相关概述、中国换热器市场运行环境等,接着分析了中国换热器市场发展的现状,然后介绍了中国换热器重点区域市场运行形势。随后,报告对中国换热器重点企业经营状况分析,最后分析了中国换热器行业发展趋势与投资预测。您若想对换热器产业有个系统的了解或者想投资换热器行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章换热器行业发展概述 第一节换热器行业概述 一、换热器定义 二、换热器分类 第二节换热器行业特征 一、行业特征 二、技术水平 三、行业现状 四、换热器行业的地位 五、换热器行业综合经济效益分析

第三节换热器行业市场结构分析 一、换热器行业产品结构 二、换热器行业品牌结构 三、换热器行业区域结构 四、换热器行业渠道结构 第四节换热器行业市场特点分析 一、换热器行业所处生命周期 二、技术变革与行业革新对换热器市场的影响 三、换热器行业差异化分析 第二章全球换热器行业发展分析 第一节世界换热器行业发展分析 一、全球换热器市场供给分析 二、全球换热器市场需求分析 三、全球主要换热器企业 四、全球换热器主要品种 第二节全球主要国家换热器市场分析 一、美国换热器市场分析 二、欧洲换热器市场分析 三、亚洲换热器市场分析 第三节世界主要换热器公司在华运营情况分析 一、美国麦尔柯集团换热器公司 二、美国PVI 三、德国FUNKE 第三章我国换热器行业发展分析 第一节2010年中国换热器行业发展状况 一、2010年换热器行业发展状况分析 二、2010年中国换热器行业发展动态 三、2010年换热器行业经营业绩分析 四、2010年我国换热器行业发展热点

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

换热器的选型和设计指南(全)

热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

列管式换热器设计

列管式换热器设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。

3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 第二节列管式换热器的工艺设计 一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。 为合理确定介质温度和换热终温,可参考以下数据: 1、热端温差(大温差)不小于20℃。 2、冷端温差(小温差)不小于5℃。 3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。 二、平均温差的计算 设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

管壳式换热器设计课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (1) 第二章管壳式换热器简介 (2) 第三章设计方法及设计步骤 (4) 第四章工艺计算 (5) 物性参数的确定 (5) 核算换热器传热面积 (6) 传热量及平均温差 (6) 估算传热面积 (8) 第五章管壳式换热器结构计算 (10) 换热管计算及排布方式 (10) 壳体内径的估算 (12) 进出口连接管直径的计算 (13) 折流板 (13) 第六章换热系数的计算 (19) 管程换热系数 (19) 壳程换热系数 (19) 第七章需用传热面积 (22) 第八章流动阻力计算 (24) 管程阻力计算 (24) 壳程阻力计算 (25) 总结 (27)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K*△T) 式中F —换热面积m2 Wq—换热量W K —传热系数W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

二、手工标准算法 计算方法与步骤 (一)工艺条件 热介质 进出口温度℃Th1 Th2 流量m3/h Qh 压力损失(允许值)MPa △Ph 冷介质 进出口温度℃Tc1 Tc2 流量m3/h Qc 压力损失(允许值)MPa △Pc (二)物性参数 物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2介质重度Kg/m3γh γc 介质比热KJ/kg·℃Cph Cpc 导热系数W/m·℃λh λc 运动粘度m2/s νh νc

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

列管式换热器结构设计毕业设计论文

列管式换热器结构设计毕业设计论文 第一章换热器概述 过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。在化工厂中,换热设备的投资约占总投资的10%~20%;在炼油厂,约占总投资的35%~40%。 1.1 换热器的应用 在工业生产中,换热器的主要作用是将能量由温度较高的流体传递给温度较低的流体,是流体温度达到工艺流程规定的指标,以满足工艺流程上的需要。此外,换热器也是回收余热、废热特别是低位热能的有效装置。例如,高炉炉气(约1500℃)的余热,通过余热锅炉可生产压力蒸汽,作为供汽、供热等的辅助能源,从而提高热能的总利用率,降低燃料消耗,提高工业生产经济效益。 随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热极力的研究十分活跃,一些新型高效换热器相继面世。 1.2 换热器的主要分类 在工业生产中,由于用途、工作条件和物料特性的不同,出现了不同形式和结构的换热器。 1.2.1 换热器的分类及特点 按照传热方式的不同,换热器可分为三类: 1.直接接触式换热器 又称混合式换热器,它是利用冷、热流体直接接触与混合的作用进行热量的交换。这类换热器的结构简单、价格便宜,常做成塔状,但仅适用于工艺上允许两

种流体混合的场合。 2.蓄热式换热器 在这类换热器中,热量传递是通过格子砖或填料等蓄热体来完成的。首先让热流体通过,把热量积蓄在蓄热体中,然后再让冷流体通过,把热量带走。由于两种流体交变转换输入,因此不可避免地存在着一小部分流体相互掺和的现象,造成流体的“污染”。 蓄热式换热器结构紧凑、价格便宜,单位体积传热面比较大,故较适合用于气--气热交换的场合。 3.间壁式换热器 这是工业中最为广泛使用的一类换热器。冷、热流体被一固体壁面隔开,通过壁面进行传热。按照传热面的形状与结构特点它又可分为: (1)管式换热器:如套管式、螺旋管式、管壳式、热管式等; (2)板面式换热器:如板式、螺旋板式、板壳式等; (3)扩展表面式换热器:如板翅式、管翅式、强化的传热管等。 1.2.2 管壳式换热器的分类及特点 由于设计题目是浮头式换热器的设计,而浮头式又属于管壳式换热器,故特此介绍管壳式换热器的主要类型以及结构特点。 管壳式换热器是目前用得最为广泛的一种换热器,主要是由壳体、传热管束、管板、折流板和管箱等部件组成,其具体结构如下图所示。壳体多为圆筒形,内部放置了由许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为了增加壳程流体的速度以改善传热,在壳体内安装了折流板。折流板可以提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 流体每通过管束一次称为一个管程;每通过壳体一次就称为一个壳程,而图1-2-1所示为最简单的单壳程单管程换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分为若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程;同样。为提高管外流速,也可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可以配合使用。

相关主题
文本预览
相关文档 最新文档