当前位置:文档之家› 单片机IO口模拟串口程序发送接收

单片机IO口模拟串口程序发送接收

单片机IO口模拟串口程序发送接收
单片机IO口模拟串口程序发送接收

/*************************************************************** *

在单片机上模拟了一个串口,使用P2.1作为发送端* 把单片机中存放的数据

通过P2.1作为串口TXD发送出去

***************************************************************/#incl ude #include #include typedef unsigned char uchar; int i; uchar code info[] = { 0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x5 5,0x55 }; sbit newTXD = P2^1;//模拟串口的发送端设为P2.1 void UartInit() { SCON = 0x50; // SCON: serail mode 1, 8-bit UART TMOD |= 0x21; // T0工作在方式1,十六位定时 PCON |= 0x80; // SMOD=1; TH0 = 0xFE; // 定时器0初始值,延时417us,目的是令模

拟串口的波特率为2400bps fosc=11.0592MHz TL0 = 0x7F; // 定时器0

初始值,延时417us,目的是令模拟串口的波特率为2400bps fosc=11.0592MHz // TH0 = 0xFD; // 定时器0初始值,延时417us,目的是令模拟串口的波特

率为2400bps fosc=18.432MHz // TL0 = 0x7F; // 定时器0初始值,延

时417us,目的是令模拟串口的波特率为2400bps fosc=18.432MHz } void WaitTF0(void) { while(!TF0); TF0=0; TH0=0xFE; // 定时器重

装初值fosc=11.0592MHz TL0=0x7F; // 定时器重装初值fosc=11.0592MHz // TH0 = 0xFD; // 定时器重装初值fosc=18.432MHz // TL0 = 0x7F; // 定时器重装初值fosc=18.432MHz } void WByte(uchar input) { //发送启始位 uchar

j=8; TR0=1; newTXD=(bit)0; WaitTF0(); //发送8位数据位

while(j--) { newTXD=(bit)(input&0x01); //先传低位WaitTF0(); input=input>>1; } //发送校验位(无) //发送结束位newTXD=(bit)1; WaitTF0(); TR0=0; } void Sendata() { for(i=0;i #include #include typedef unsigned char uchar ; //这里用来切换晶振频率,支持11.0592MHz和18.432MHz //#define F18_432 #define F11_0592 uchar tmpbuf2[64]={0}; //用来作为模拟串口接收数据的缓存struct { uchar recv :6 ;//tmpbuf2数组下标,用来将模拟串口接收到的数据存放到tmpbuf2中 uchar send :6 ;//tmpbuf2数组下标,用来将tmpbuf2中的数据发送到串口}tmpbuf2_point={0,0}; sbit newRXD=P3^2 ;//模拟串口的接收端设为P3.2 void UartInit() { SCON=0x50 ;// SCON: serail mode 1, 8-bit UART TMOD|=0x21 ;// TMOD: timer 1, mode 2, 8-bit reload,自动装载预置数(自动将TH1送到TL1);T0工作在方式1,十六位定时 PCON|=0x80 ;// SMOD=1; #ifdef F11_0592

TH1=0xE8 ;// Baud:2400 fosc=11.0592MHz 2400bps为从串口接收数据的速率TL1=0xE8 ;// 计数器初始值,fosc=11.0592MHz 因为TH1一直往TL1送,所以这个初值的意义不大 TH0=0xFF ;// 定时器0初始值,延时208us,目的是令模拟串口的波特率为9600bps fosc=11.0592MHz TL0=0xA0 ;// 定时器0初始值,延时208us,目的是令模拟串口的波特率为9600bps fosc=11.0592MHz #endif#ifdef F18_432 TH1=0xD8 ; // Baud:2400 fosc=18.432MHz 2400bps为从串口接收数据的速率 TL1=0xD8 ; // 计数器初始值,fosc=18.432MHz 因为TH1一直往TL1送,所以这个初值的意义不大TH0=0xFF ;// 定时器0初始值,延时104us,目的是令模拟串口的波特率为9600bps fosc=18.432MHz TL0=0x60 ;// 定时器0初始值,延时104us,目的是令模拟串口的波特率为9600bps fosc=18.432MHz #endif

IE|=0x81 ;// 中断允许总控制位EA=1;使能外部中断0 TF0=0 ; IT0=1 ;// 设置外部中断0为边沿触发方式 TR1=1 ;// 启动TIMER1,用于产生波特率} void WaitTF0(void) { while(!TF0); TF0=0 ; #ifdef F11_0592 TH0=0xFF ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz TL0=0xA0 ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz #endif#ifdef F18_432 TH0=0xFF ; // 定时器重装初值 fosc=18.432MHz TL0=0x60 ; // 定时器重装初值fosc=18.432MHz #endif} //接收一个字符uchar RByte() { uchar Output=0 ; uchar i=8 ; TR0=1 ; //启动Timer0 #ifdef F11_0592 TH0=0xFF ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz TL0=0xA0 ;// 定时器重装初值模拟串口的波特率为

9600bps fosc=11.0592MHz #endif#ifdef F18_432 TH0=0xFF ;// 定时器重装初值fosc=18.432MHz TL0=0x60 ;// 定时器重装初值fosc=18.432MHz #endif TF0=0 ; WaitTF0();//等过起始位//

接收8位数据位while(i--) { Output>>=1 ;

if(newRXD)Output|=0x80 ;//先收低位 WaitTF0();//位间延时

} TR0=0 ;//停止Timer0 return Output ; } //向COM1发送一个字

符void SendChar(uchar byteToSend) { SBUF=byteToSend ; while(!TI); TI=0 ; } void main() { UartInit(); while(1) {

if(tmpbuf2_point.recv!=tmpbuf2_point.send)//差值表示模拟串口接收数据缓

存中还有多少个字节的数据未被处理(发送至串口){ SendChar(tmpbuf2[tmpbuf2_point.send++]); } } } //外部中断0,说明模拟串口的起始位到来了void Simulated_Serial_Start()interrupt 0 { EX0=0 ; //屏蔽外部中断0 tmpbuf2[tmpbuf2_point.recv++]=RByte(); //从模拟串口读取数据,存放到tmpbuf2数组中 IE0=0 ; //防止外部中断

响应2次,防止外部中断函数执行2次EX0=1 ; //打开外部中断

0 }~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~以上是两个独立的测试程序,分别是模拟串口发送的测试程序和接收的

测试程序上面两个程序在编写过程中参考了这篇文章《51单片机模拟串口的三种

方法》(在后文中简称《51》),但在它的基础上做了一些补充,下面是若干总结的

内容:1、《51》在接收数据的程序中,采用的是循环等待的方法来检测起始位(见《51》的“附:51 IO口模拟串口通讯C源程序(定时器计数法)”部分),这

种方法在较大程序中,可能会错过起始位(比如起始位到来的时候程序正好在干

别的,而没有处于判断起始位到来的状态),或者一直在检测起始位,而没有办法完成其他工作。为了避免这个问题,在本接收程序中采用了外部中断的方法,将外部中断0引脚作为模拟串口的接收端,设IT0=1(将外部中断0设为边缘触发)。这样当起始位(低电平)到来时,就会引发外部中断,然后在外部中断处理函数中接收余下的数据。这种方法可以保证没数据的时候程序该干什么干什么,一旦模拟串口接收端有数据,就可以立即接收到。2、加入了模拟串口接收缓冲区。在较大程序中,单片机要完成的工作很多,在模拟串口接收到了数据之后立即处理的话,有可能处理不过来造成丢失数据,或者影响程序其他部分执行。本程序中加入了64个字节的缓冲区,从模拟串口接收到的数据先存放在缓冲区中。这样就算程序一时没工夫处理这些数据,腾出手来之后也能在缓冲区中找到它们。3、《51》文中的WByte函数和RByte函数中都先打开计数器后关闭计数器。如果使用本文的外部中断法来接收数据,并且外部中断处理函数里外都调用了WByte或RByte的话,需要将这两个函数中的TR0=1,TR0=0操作的语句除去,并在UartInit()中加入一句TR0=1;即让TR0始终开着就可以。由于之前没有意识到这个问题,因此在具体应用时出现了奇怪的问题:表现为中断处理函数执行完毕之后,似乎回不到主程序,程序停在了一个不知道的地方。后来经过排查后找到了问题所在,那个程序的中断处理函数中用了RByte,中断处理函数外用到了WByte,而这两个函数的最后都有TR0=0。这样当中断处理函数执行完毕后,TR0实际上是为0的,返回主程序后(中断前的主程序可能正好处于其他的WByte或RByte执行中),原先以来定时器0溢出改变TF0才能执行下去的WByte函数就无法进行下去,从而导致整个程序停下来不动。(在本文的接收测试程序中不存在这个问题,因为中断处理程序中虽调用了RByte,但中断处理程序外却没有调用RByte或WByte)

下面是修改后的RByte、WByte和WaitTF0函数,仅供参考:

/********************************************** * 定时器0溢

出后重装初值**********************************************/void WaitTF0(void) { TF0=0 ; #ifdef F11_0592 TH0=0xFF ;// 定时器

重装初值fosc=11.0592MHz TL0=0xA0 ;// 定时器重装初值fosc=11.0592MHz #endif#ifdef F18_432 TH0=0xFF ;// 定时器

重装初值 fosc=18.432MHz TL0=0x60 ;// 定时器重装初值 fosc=18.432MHz

#endif while(!TF0); TF0=0 ; } /********************************************** * 从串口B接收一个字符

**********************************************/uchar RByte() { uchar Output=0 ; uchar i=8 ; // TR0=1; //启动Timer0 /* #ifdef F11_0592 TH0 = 0xFF; // 定时器重

装初值模拟串口的波特率为9600bps fosc=11.0592MHz TL0 = 0xA0; // 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz #endif

#ifdef F18_432 TH0 = 0xFF; // 定时器重装初值 fosc=18.432MHz TL0 = 0x60; // 定时器重装初值fosc=18.432MHz #endif */ WaitTF0();//等过起始位//接收8位数据位while(i--) { Output>>=1 ; if(newRXD)Output|=0x80 ; //先收低位WaitTF0();//位间延时 } // while(!TF0) if(newRXD) break; //

此句和下一句不能加,如果加上了将导致耗时过长,影响下一个字节的接收

// WaitTF0(); //等过结束位// TR0=0;

//停止Timer0 return Output ; } /********************************************** * 发送一个字节到串口

B **********************************************/void WByte(uchar input) { //发送启始位uchar j=8 ; //TR0=1; newTXD=(bit)0 ; WaitTF0(); //发送8位数据位while(j--) { newTXD=(bit)(input&0x01);//先传低位WaitTF0(); input=input>>1 ; } //发送校验位(无) //发送结束位newTXD=(bit)1 ; WaitTF0(); //TR0=0; } 4、在上面的新修改后的RByte()函数中,有被注释掉的如下两句:// while(!TF0) if(newRXD) break; //此句和下一句不能加,如果加上了将导致耗时过长,影响下一个字节的接收// WaitTF0(); //等过结束位这两句在《51》文中的程序

是存在的,但是使用中断接收法后,加上这两句后出现了问题。表现为接收到的

下一个字节的数据不完整或直接接收不到,似乎这两句占用了过多的时间。看这

两句的目的似乎是要延时以跳过结束位,但是我感觉这个结束位可以不用管它,

反正结束位是个高电平,不会妨碍下一个字节是否到来的判断(下一个字节的起

始位是低电平)。那就由它去吧,没有必要为了它而占用CPU的时间。在本文的

程序中,去掉这两句后程序执行正确,如果其他朋友在使用时真的出现问题,可

以试着再把它们加上试一下。

KEIL中如何用虚拟串口调试串口程序

KEIL中如何用虚拟串口调试串口程序 发表于2008/5/7 15:30:22 以前没接触过串口,一直都以为串口很复杂。最近在做一个新项目,用单片机控制GSM模块。单片机和GSM模块接口就是串口。调试完后觉得串口其实很简单。“不过如此”。这可能是工程师做完一个项目后的共同心态吧。下面详细介绍下如何用虚拟串口调试串口发送接收程序。 需要用到三个软件:KEIL,VSPD XP5(virtual serial ports driver xp5.1虚拟串口软件),串口调试助手。 1、首先在KEIL里编译写好的程序。 2、打开VSPD,界面如下图所示: 左边栏最上面的是电脑自带的物理串口。点右边的add pair,可以添加成对的串口。一对串口已经虚拟互联了,如果添加的是COM3、COM4,用COM3发送数据,COM4就可以接收数据,反过来也可以。 3、接下来的一步很关键。把KEIL和虚拟出来的串口绑定。现在把COM3和KEIL 绑定。在KEIL中进入DEBUG模式。在最下面的COMMAND命令行,输入MODE COM3 4800,0,8,1(设置串口3的波特率、奇偶校验位、数据位、停止位,打开COM3串口,注意设置的波特率和程序里设置的波特率应该一样)ASSIGN COM3 SOUT(把单片机的串口和COM3绑定到一起。因为我用的单片机是AT892051,只有一个串口,所以用SIN,SOUT,如果单片机有几个串口,可以选择S0IN,S0OUT,S1IN,S1OUT。)

4、打开串口调试助手 可以看到虚拟出来的串口COM3、COM4,选择COM4,设置为波特率4800,无校验位、8位数据位,1位停止位(和COM3、程序里的设置一样)。打开COM4。 现在就可以开始调试串口发送接收程序了。可以通过KEIL发送数据,在串口调试助手中就可以显示出来。也可以通过串口调试助手发送数据,在KEIL中接收。这种方法的好处是不用硬件就可以调试。这是网上一篇文章介绍的方法,联系我实际的使用做了整理。有用的着的人就不用继续摸索了

51单片机IO口使用经验绝对经典

绝对经典 按常规,在51端口(P1、P2、P3)某位用作输入时,必须先向对应的锁存器写入1,使FET截止。一般情况是这样,也有例外。所谓IO口内部与电源相连的上拉电阻而非一常规线性电阻,实质上,该电阻是由两个场效应管并联在一起:一个FET为负载管,其阻值固定;另一个FET 可工作在导通或截止两种状态(姑且叫可变FET)。使其总电阻值变化近似为0或阻值较大(20千欧--40千欧)两种情况。当和端口锁存器相连的FET由导通至截止时,该阻值近似为0,可将引脚快速上拉至高电平;当和锁存器相连的FET由截止至导通时,该电阻呈现较大阻值,限制了和端口锁存器相连的FET的导通电流。 51I/O口作为输入端和外部信号相连有时必须考虑上述特性,本人在设计LTP1245热敏打印头驱动板时,资料上推介热敏头“抬头”和“纸尽”信号由头中内嵌检测电路提供,MCU IO口采集该信号时需加缓冲(如74HC04)。当时本人认为51IO口上拉电阻为一较大阻值的固定电阻,对输入信号无影响,故未加缓冲电路(为降低成本能省则省)。可到调试PCBA时发现,“抬头”、“纸尽”状态变化时,采集信号只在3.90V--5.10V之间变化,应为低电平时无低电平输出。究其原因,打印头的“抬头”、“缺纸”信号输出为一光敏三极管的集电极输出,集电极和电源间原有一个负载电阻,饱和导通设计工作电流仅为450--1100微安,当该集电极直接和MCU IO口某位相连时,IO口上拉电阻和光敏三极管负载电阻并联,当IO口上拉时,上拉电阻极小致使光敏三极管直流负载线斜率陡然增大,工作状态进入放大区而非希望的饱和区。当时在不改硬件的条件下,我几乎无计可施,甚至想到了准备烧断IO口上拉电阻(前两天我曾发帖求救怎么烧断IO 口上拉电阻的方法)后来听网友建议该方法风险较大,所以总想用软件方法解决。 后来我的解决方法是:采样信号前不是先向对应锁存器写1,而是先写入0,再写入1,延时约10毫秒以上,然后再采样(当然此法只适应于采样频率很低的情况)。这样作的目的是:先写入0迫使IO口上拉电阻先为一较大值,此时如果外部光敏三极管本来处于截止状态,当完成上述一系列锁存器的写入过程后光敏管仍为截止态,IO口正确采样到高电平;此时如果外部

单片机io口理解

【转】单片机IO口设置推挽和开漏的区别(转自网易博客冷水泡茶的日志)2010-09-28 13:43 单片机IO口设置推挽和开漏的区别 一般情况下我们在电路设计编程过程中设置单片机,大多是按照固有的模式去做的,做了几年这一行了,也没碰到过什么问题。昨天就遇到了这样一个问题,电路结构如图一,在这种情况下STC单片机与410单片机通讯是没问题的 但是与PC就无法通讯了,STC收不到PC的命令,以前410的位置是用的STC的片子一直没问题,我想也许是驱动能力不够,在410TX端加了上拉,不过没起作用。 用示波器监视串口得到面的波形 这说明sp3232下拉得不够,于是加了下拉,还是没起作用。又把410端口内部的上拉去掉,结果还是一样。 最后请教老师,在410程序里将TX的工作方式由推挽式改为开漏式,一切ok~!

从网上查了推挽和开漏的区别,放在这里免得以后再到处找了,给自己保存了 我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。 再看图三。图三中那个1K的电阻即是上拉电阻。如果开关闭合,则有电流从1K电阻及开关上流过,但由于开关闭其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于P0口来说,就是高阻态了。 对于漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。 另一种输出结构是推挽输出。推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。比起OC或者OD来说,这样的推挽结构高、低电平驱动能力都很强。如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。而上面说的OC或OD输出则不会有这样的情况,因为上拉电

单片机模拟串口

随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。这种情况下下,采集会需要一个串口,上报又需要另一个串口,这就要求单片机具有双串口的功能,但我们知道一般的51系列只提供一个串口,那么另一个串口只能靠程序模拟。 本文所说的模拟串口,就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于别的晶振频率大家自已去算吧。现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。 方法一:延时法 通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。 #define uchar unsigned char sbit P1_0 = 0x90; sbit P1_1 = 0x91; sbit P1_2 = 0x92; #define RXD P1_0 #define TXD P1_1 #define WRDYN 44 //写延时 #define RDDYN 43 //读延时 //往串口写一个字节 void WByte(uchar input) { uchar i=8; TXD=(bit)0; //发送启始 位 Delay2cp(39); //发送8位数据位 while(i--) { TXD=(bit)(input&0x01); //先传低位 Delay2cp(36); input=input>>1; } //发送校验位(无)

单片机IO口定义

单片机I/O口定义 I/O端口又称为I/O接口,也叫做I/O通道或I/O通道。I/O端口是MCS-51单片机对外部实现控制和信息交换的必经之路,是一个过渡的集成电路,用于信息传送过程中的速度匹配和增强它的负载能力。I/O端口右串行和并行之分,串行I/O端口一次只能传送一位二进制信息,并行I/O端口一次可以传送一组(8位)二进制信息。 并行I/O端口 8051有四个并行I/O端口,分别命名为P0、P1、P2和P3,在这四个并行I/O端口中,每个端口都有双向I/O功能。即CPU即可以从四个并行I/O端口中的任何一个输出数据,又可以从它们那里输入数据。每个I/O端口内部都有一个8位数据输出锁存器和一个8位数据输入缓冲器,四个数据输出锁存器和端口号P0、P1、P2和P3同名,皆为特殊功能寄存器SFR中的一个。因此,CPU数据从并行I/O端口输出时可以得到锁存,数据输入时可以得到缓冲。 四个并行I/O端口在结构上并不相同,因此它们在功能和用途上的差异较大。P0口和P2口内部均有一个受控制器控制的二选一选择电路,故它们除可以用作通用I/O口外,还具有特殊的功能。例如:P0可以输出片外存储器的低八位地址码和读写数据,P2口可以输出片外存储器的高八位地址码,等等。P1口常作为通用I/O口使用,为CPU传送用户数据;P3口除可以作为通用I/O口使用外,还具有第二功能。在四个并行I/O端口中,只有P0口是真正的双向I/O口,故它具有较大的负载能力,最多可以推动8个LSTTL门,其余3个

I/O口是准双向I/O口,只能推动4个LSTTL门。 四个并行I/O端口作为通用I/O使用时,共有写端口、读端口和读引脚三种操作方式,写端口实际上是输出数据,是把累加器A或其他寄存器中的数据传送到端口锁存器中,然后由端口自动从端口引脚线上输出。读端口不是真正的从外部输入数据,而是把端口锁存器中的输出数据读到CPU的累加器A中。读引脚才是真正的输入外部数据的操作,是从端口引脚线上读入外部的输入数据。端口的上述三种操作书架上是通过指令或程序来实现的。 串行I/O端口 8051有一个全双工的可编程串行I/O端口。这个串行I/O端口既可以在程序控制下把CPU中的8位并行数据编程串行数据逐行从发送数据线TXD发送出去,也可以把RXD线上串行接收到的数据变成8位并行数据送给CPU,而且这种串行发送和串行接收可以单独进行,也可以同时进行。 8051串行发送和串行接收利用了P3口的第二功能,即它利用P3.1引脚作为串行数据的发送线TDX和P3.0引脚作为串行数据的接收线RXD,串行口I/O口的电路结构还包括串行口控制寄存器SCON,电源及波特率选择寄存器PCON和串行数据缓冲器SBUF等,它们都属于SFR(特殊功能寄存器)。其中,PCON和SCON用于设置串行口工作方式和确定数据的发送和接收波特率,SBUF实际上有两个8位寄存器组成,一个工作方式和确定数据的发送和接收比特率,另一个用于存放接收到的数据,起着数据的缓冲作用。

用单片机普通I_O口模拟串口的一种方法

电子报/2005年/12月/18日/第011版 单片机应用 用单片机普通I/O口模拟串口的一种方法 南昌李春玲 MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD (P3.0)和TXD(P3.1)与外设进行全双工的串行异步通信。串行端口有四种基本工作方式:方式0主要用于外接移位寄存器,以扩展单片机的I/O接口;方式1多用于双机之间或与外设的通信;方式2、方式3除有方式1的功能外,还可用作主从式多机通信,构成分布式多机系统。 在应用系统中,若需要多个串口,且各串口工作方式要求不同,如:通信波特率不一样,通常的方法是扩展一片可编程串行接口芯片,如8251或8250,但这样增加了硬件开销,且需要占用较多的I/O资源。本文介绍一种用单片机普通I/O口模拟串口的方法。 以A、B两个单片机之间的串行通信为例,电路如图1所示。使用了P1口中的3条普通I/O口,其中P1.0为串行发送端(模拟TXD),P1.1为串行接收端(模拟RXD),P1.2作为对方单片机的中断申请信号INTO的输入线(模拟内部串行口中断源RI/TI)。 串行通信信息帧的发送与接收由软件编程实现。工作过程如下(以A机发送、B机接收为例): 1.A机从P1.2口输出中断申请信号。 2.A机通过P1.0口发送一帧模拟信息。串行通信采用异步传送格式:包括1位起始位(低电平)、7或8位数据编码、1位奇偶校验位(可不要)、1位停止位(高电平)。串行通信中,如果数据传送的波特率为1200bps,则每位信息维持时间为0.833ms。 程序段TTXD完成上述发送功能。信息帧为10位(1位起始位、8位数据编码、无奇偶校验位、1位停止位)。 3.B机接收到INTO的中断申请信号后,自动进入中断服务程序,同步进行模拟异步接收。当P1.1口从高变低时,说明一帧开始,然后依次接收8位数据编码,采样数据在每一位的中间进行,故接收与发送要错开半位,最后检测到高电平后,跳出中断。一次中断完成一帧信息的接收,获得一个字节的数据。 INTO的中断服务程序段RRXD完成上述接收功能。 程序清单如下: TTXD:MOV A,#DATA;发送字节送A CLR P1.2;送中断申请信号 SETB P1.0 LCALL DELAY417

单片机IO口结构与工作原理

一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。 下面,先分析组成P0口的各个部分: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),上面一个是读锁存器的缓冲器,下面一个是读引脚的缓冲器,读取P0.X引脚上的数据,要使这个三态缓冲器有效,引脚上的数据才会传输到部数据总线上。 D锁存器:在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 多路开关:在51单片机中,不需要外扩展存储器时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(部没有ROM)的单片机或者编写的程序超过了单片机部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。 输出驱动部份:P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。

P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),V1管截止,多路开关是与锁存器的Q非端相接的(即P0口作为I/O口线使用)。作为地址/数据线使用时,多路开关的控制信号为1,V1管由地址/数据线决定,多路开关与地址/数据线连接。 输出过程: 1、I/O输出工作过程:当写锁存器信号CP有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。这时多路开关的控制信号为低电平0,V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。 下图就是由部数据总线向P0口输出数据的流程图(红色箭头)。 2、地址输出过程 控制信号为1,地址信号为“0”时,与门输出低电平,V1管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。

串行口的模拟仿真

10.4.6 串行口的模拟仿真 利用模拟仿真,可以模拟单片机同机发送和接收程序。 例10-7串口采用查询方式,把从片内RAM的30H单元开始的8个数据串行发送到片内RAM的40H开始的单元。 程序清单: ORG 0000H MOV SCON,#90H ;串口工作方式2,允许接收 MOV PCON,#00H ;SMOD=0 M0V R0,#30H ;源字符串首地址 MOV R1,#40H ;接收字符串首地址 MOV R2,#08H ;字符串长度 LOOP:MOV A,@R0 ;取数据 MOV SBUF,A ;发送 JNB TI,$ ;等待发送完一帧字符 CLR TI ;清发送标志位 INC R0 ;修改地址 JNB RI,$ ;等待接收完一帧字符 CLR RI ;清接收标志位 MOV A.SBUF ;接收字符 M0V @R1,A ;存数据 INC R1 DJNZ R2,LOOP ;传送8个数据 END 模拟仿真步骤如下: ①启动Medwin仿真软件,在编辑窗口中输入例10-7中的程序,单击“产生代码并装入”快捷键,编译/连接程序,打开菜单“外围部件→串行口”,把串口状态窗口调入屏幕,如图10-23 所示。

图10-23 串口模式 ②打开菜单“查看→数据区Data”,调入数据区窗口,单击列数,选择存储器排列为8列,从30H单元开始,输入8个数据。 ③打开菜单“窗口→纵向平铺窗口”,使寄存器窗口、数据窗口、程序窗口纵向平铺。 ④按F8键单步运行程序,则程序运行在JNB TI,$处,等待一帧字符发送结束。可人工设定发送结束标志,即在图10-23的中断标志复选框TI前画“√”,再按F8键,程序继续运行。 ⑤程序运行在JNB RI,$处,等待接收一帧字符结束。可人工设定接收结束标志,即在图10-23的中断标志复选框RI前画“√”,再按F8键,程序继续运行,则一帧字符装入40H开始单元。 ⑥重复上述步骤,直至全部数据传送完。

单片机IO口模拟串口程序(发送+接收)

前一阵一直在做单片机的程序, 由于串口不够,需要用10 口来模拟出一个串口。 经过若干曲 折并参考了一些现有的资料,基本上完成了。现在将完整的测试程序,以及其中一些需要总 结的部分 贴出来。 程序硬件平台:11.0592M 晶振,STC 单片机(兼容51) /*************************************************************** * 在单片机上模拟了一个串口,使用 P2.1作为发送端 * 把单片机中存放的数据通过 P2.1作为串口 TXD 发送出去 ***************************************************************/ #in elude #i nclude #in clude typedef unsigned char uchar; int i; uchar code in fo[]= { 0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x5 5 }; // SCON: serail mode 1,8-bit UART // T0工作在方式1,十六位定时 // SMOD=1; 0xFE; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率为 2400bps fosc=11.0592MHz TL0 = 0x7F; II 2400bps fosc=11.0592MHz II TH0 = 0xFD; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率 为 2400bps fosc=18.432MHz II TL0 = 0x7F; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率为 2400bps fosc=18.432MHz } void WaitTF0( void ) { sbit n ewTXD = P2A 1; 〃模拟串口的发送端设为 P2.1 void Uartlnit() { SCON = 0x50; TMOD |= 0x21; PCON |= 0x80; TH0 定时器0初始值,延时417us ,目的是令模拟串口的波特率为

51单片机IO口使用DE 经验

DANPAINJI 51单片机I/O口使用经验 字体大小: 小中大作者:来源:日期:2006-08-18 点击:364 按常规,在51端口(P1、P2、P3)某位用作输入时,必须先向对应的锁存器写入1,使FET 截止。一般情况是这样,也有例外。所谓IO口内部与电源相连的上拉电阻而非一常规线性电阻,实质上,该电阻是由两个场效应管并联在一起:一个FET为负载管,其阻值固定;另一个FET可工作在导通或截止两种状态(姑且叫可变FET)。使其总电阻值变化近似为0或阻值较大(20千欧--40千欧)两种情况。当和端口锁存器相连的FET由导通至截止时,该阻值近似为0,可将引脚快速上拉至高电平;当和锁存器相连的FET由截止至导通时,该电阻呈现较大阻值,限制了和端口锁存器相连的FET的导通电流。 51I/O口作为输入端和外部信号相连有时必须考虑上述特性,本人在设计LTP1245热敏打印头驱动板时,资料上推介热敏头“抬头”和“纸尽”信号由头中内嵌检测电路提供,MCU IO口采集该信号时需加缓冲(如74HC04)。当时本人认为51IO口上拉电阻为一较大阻值的固定电阻,对输入信号无影响,故未加缓冲电路(为降低成本能省则省)。可到调试PCBA时发现,“抬头”、“纸尽”状态变化时,采集信号只在3.90V--5.10V之间变化,应为低电平时无低电平输出。究其原因,打印头的“抬头”、“缺纸”信号输出为一光敏三极管的集电极输出,集电极和电源间原有一个负载电阻,饱和导通设计工作电流仅为450--1100微安,当该集电极直接和MCU IO口某位相连时,IO口上拉电阻和光敏三极管负载电阻并联,当IO口上拉时,上拉电阻极小致使光敏三极管直流负载线斜率陡然增大,工作状态进入放大区而非希望的饱和区。当时在不改硬件的条件下,我几乎无计可施,甚至想到了准备烧断IO口上拉电阻(前两天我曾发帖求救怎么烧断IO口上拉电阻的方法)后来听网友建议该方法风险较大,所以总想用软件方法解决。 后来我的解决方法是:采样信号前不是先向对应锁存器写1,而是先写入0,再写入1,延时约10毫秒以上,然后再采样(当然此法只适应于采样频率很低的情况)。这样作的目的是:先写入0迫使IO口上拉电阻先为一较大值,此时如果外部光敏三极管本来处于截止状态,当完成上述一系列锁存器的写入过程后光敏管仍为截止态,IO口正确采样到高电平;此时如果外部光敏三极管基极电流足够大有容许三极管饱和导通的条件(即基极吸收到充分光强),虽然采样一开始集电极被人为钳位在低电平,但当下一时隙和IO口相连的锁存器被写入1时,在IO口上拉电阻中的可变FET导通之前,光敏三极管已先进入饱和态而又把引脚钳位在实际输出的低电平,此时MCU IO口的上拉电阻仍为较大阻值,同时和原光敏三极管集电极负载电阻并联(考虑并联后阻值变化,原光敏三极管集电极负载电阻需增大到适当阻值)充当饱和导通后光敏三极管的负载电阻,事实上,IO口上拉电阻中的可变FET未来得及导通又被截止了,由此又保证了信号低电平的正确采样。经过波形测试问题得

IO模拟串口通信

单片机IO口模拟串口实现数据通信 1设计任务与要求 本设计为单片机IO口模拟串口实现数据通信,它可以用单片机的IO口实现单片机RX和TX的功能。具体要求如下: ●用单片机的P3.4和P3.5分别模拟RX和TX的串行通信功能,能够接收 和发送数据。 ●通过PC机的键盘输入字符,并传送给单片机,由单片机接收后,发达给 PC机,由PC机加以显示。 ●单片机接收由键盘输入的数据后,如果是数字,则由数码管显示,并由 LED灯表示其ASCII码,如果是其他字符,则由仅由LED灯显示其ASCII 码。 2总体方案设计 2.1串行通信的方式设计 本设计要求用单片机的IO口来模拟串口的串行通信,因此有必要先简要介绍一下单片机的IO和通信的基本原理与串行口P3.0和P3.1。 2.1.1并行I/O口 MCS-51单片机共有4个双向的8位并行I/O端口(Port),分别记作P0-P3,共有32根口线,各口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。实际上P0-P3已被归入特殊功能寄存器之列。这四个口除了按字节寻址以外,还可以按位寻址。由于它们在结构上有一些差异,故各口的性质和功能有一些差异。 P0口是双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。P1口是8位准双向I/O口,可驱动4个LS 型负载。P2口是8位准双向I/O口,与地址总线(高8位)复用,可驱动4个LS型TTL负载。P3口是8位准双向I/O口,是双功能复用口,可驱动4个LS 型TTL负载。P1口、P2口、P3口各I/O口线片内均有固定的上拉电阻,当这3个准双向I/O口做输入口使用时,要向该口先写“1”,另外准双向I/O口无高阻的“浮空”状态,故称为双向三态I/O 口。

STC单片机虚拟串口发送程序(超简单)

STC单片机(STC12C5A32S)虚拟串口发送程序 //虚拟串口发送子函数 void Uart(uint8 a) { ACC=a; //TXD3是已经定义的任意的发送端口 TR1=1; TXD3=0; //发送起始位 while(TF1==0); TF1=0; //TF1必须清零,因为只有启用T1中断才会自动清零 TXD3=ACC0; //发送8个位也可以用移位来发送,ACC0-ACC7也必须先定义 while(TF1==0); //表示ACC的8个位,如果用移位发送,就不用这样定义。 TF1=0; TXD3=ACC1; while(TF1==0); TF1=0; TXD3=ACC2; while(TF1==0); TF1=0; TXD3=ACC3; while(TF1==0); TF1=0; TXD3=ACC4; while(TF1==0); TF1=0; TXD3=ACC5; while(TF1==0); TF1=0; TXD3=ACC6; while(TF1==0); TF1=0; TXD3=ACC7; while(TF1==0); TF1=0; TXD3=1; //发送停止位 while(TF1==0); TF1=0; TR1=0; } 该子函数使用T1定时器,T0也可以。采用8位自动重装,重装值为A0 Main() { TMOD = 0x21; //T0:模式1,16位定时器。T1:模式2,8位定时器,自动重装AUXR &= 0x3f; //定时器0和定时器1与普通8051定时器一样(不同的单片机设置可能

不同) TL1 = 0xa0; //虚拟串口波特率:9600 TH1 = 0xa0; ET0 = 1; ET1 = 0; //T1中断一定不要使用,要不接收会错误 TR0 = 1; TR1 = 0; Uart(0xaa); //0xaa是发送的数据,如果接收有误,在发送一个字节后可加点延时//延时 While(1); //具体程序此处省略 } 注:因本人实验的硬件不需要模拟串口来接收数据,故没给出虚拟串口接收程序。 以上程序已验证成功。

单片机IO口结构及工作原理

、Po端口的结构及工作原理 Po端口8位中的一位结构图见下图: 地址∕ttiκ I i O i XWwfr?? 内部总线 i?引脚 PO 口工作康理图 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成下面,先分析组成P0 口的各个部分: 先看输入缓冲器:在P0 口中,有两个三态的缓冲器,在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),上面一个是读锁存器的缓冲器,下面一个是读引脚的缓冲器,读取P0.X引脚上的数据,要使这 个三态缓冲器有效,引脚上的数据才会传输到内部数据总线上。 D锁存器:在51单片机的32根I/O 口线中都是用一个D触发器来构成锁存器的。D 端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 多路开关:在51单片机中,不需要外扩展存储器时,P0 口可以作为通用的输入输出端口(即I/O)使用,对于8031 (内部没有ROM )的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0 口就作为,地址/数据? 总线使用。这个多路选择开关就是用于选择是做为普通I/O 口使用还是作为,数据/地址?总线使用的选择开关了。当多路开关与下面接通时,P0 口是作为普通的I/O 口使用的,当多路开关是与上面接通时,P0 口是作为,地址/数据?总线使用的。 输出驱动部份:P0 口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。

Po 口作为I/O端口使用时,多路开关的控制信号为0 (低电平),V1管截止, 多路开关是与锁存器的Q非端相接的(即P0 口作为I/O 口线使用)。作为地址/数据线使用时,多路开关的控制信号为1,V1管由地址/数据线决定,多路开关与地址/数据线连接。 输出过程: 1、I/O输出工作过程:当写锁存器信号CP有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端 P0.X。这时多路开关的控制信号为低电平0, V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。下图就是由内部数据总线向P0 口输出数据的流程图(红色箭头)。 地址/数抵 控制信号(0. 1) PO. XWftKra 内部总线 ht t p://WWW Z Po口由内部致据忌址向31 Wtt出时的5t?≡ 2、地址输出过程 控制信号为1 ,地址信号为“(时,与门输出低电平,V1管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。

51单片机IO口模拟串口通讯C源程序

51单片机IO口模拟串口通讯C源程序 #include sbit BT_SND =P1^0; sbit BT_REC =P1^1; /********************************************** IO 口模拟232通讯程序 使用两种方式的C程序占用定时器0 **********************************************/ #define MODE_QUICK #define F_TM F0 #define TIMER0_ENABLE TL0=TH0; TR0=1; #define TIMER0_DISABLE TR0=0; sbit ACC0= ACC^0; sbit ACC1= ACC^1; sbit ACC2= ACC^2; sbit ACC3= ACC^3; sbit ACC4= ACC^4; sbit ACC5= ACC^5; sbit ACC6= ACC^6; sbit ACC7= ACC^7; void IntTimer0() interrupt 1 { F_TM=1; } //发送一个字符 void PSendChar(unsigned char inch) { #ifdef MODE_QUICK ACC=inch; F_TM=0; BT_SND=0; //start bit TIMER0_ENABLE; //启动 while(!F_TM); BT_SND=ACC0; //先送出低位

F_TM=0; while(!F_TM); BT_SND=ACC1; F_TM=0; while(!F_TM); BT_SND=ACC2; F_TM=0; while(!F_TM); BT_SND=ACC3; F_TM=0; while(!F_TM); BT_SND=ACC4; F_TM=0; while(!F_TM); BT_SND=ACC5; F_TM=0; while(!F_TM); BT_SND=ACC6; F_TM=0; while(!F_TM); BT_SND=ACC7; F_TM=0; while(!F_TM); BT_SND=1; F_TM=0; while(!F_TM); TIMER0_DISABLE; //停止timer #else unsigned char ii; ii=0; F_TM=0; BT_SND=0; //start bit

51单片机模拟spi串行接口程序

51单片机模拟spi串行接口程序 51单片机模拟spi串行接口程序,在keilc51下编写 sbit CS=P3^5; sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; }sbit CLK= P1^5; sbit DataI=P1^7;

sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; } sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开

51单片机汇编模拟串口通信程序

51单片机汇编模拟串口通信程序 T2作为波特率控制UART_RXD 是硬中断0或1口,如果能进入中断,说明该线有一个起始位产生,进入中断后调 用下面的接收程序。退出硬中断之前还需要将硬中断标志重新复位。 UART_TXD是任何其它IO即可。 UART_SEND: PUSH IE PUSH DPH PUSH DPL PUSH PSW PUSH 00H PUSH ACC CLR EA SETB UART_TXD ;START BIT MOV R0,A CLR TR2 ;TR2置1,计数器2启动,时间计数启动。 MOV A,RCAP2L;计数器2重新装载值 MOV TL2,A ;置计数器2初值;T2需要重新装载 MOV A,DPH MOV A,RCAP2H MOV TH2,A MOV A,R0 SETB TR2 ;TR2置1,计数器 JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 CLR UART_TXD ;START BIT JNB TF2,$

CLR TF2 JNB TF2,$ CLR TF2 MOV R0,#08H UART_SEND_LOOP: RRC A MOV UART_TXD,C ;8 BIT JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 DJNZ R0,UART_SEND_LOOP SETB UART_TXD ;END BIT JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 POP ACC POP 00H POP PSW POP DPL POP DPH POP IE RET ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; UART_REC: PUSH IE PUSH DPH PUSH DPL CLR EA

单片机IO口结构及上拉电阻

单片机IO口结构及上拉电阻 MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。 一、P0口和P2口 图1和图2为P0口和P2口其中一位的电路图。由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。 图1 单片机P0口内部一位结构图

图2 单片机P0口内部一位结构图 P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口 AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为 2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。 二、P1口 图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。 图3 单片机P2口内部一位结构图 作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。 需要说明的是,作为输入口使用时,有两种情况:

用定时器 T0 或 T1 模拟串行口程序

/************************************************************************* 用定时器T0 或T1 模拟串行口程序。 最高波特率(12 clock): 本程序收、发波特率相同。 11.059MHz -- 最高波特率收: 9600, 最低波特率:300 30.000MHz -- 最高波特率收: 28800 最低波特率:300 40.000MHz -- 最高波特率收: 38400 最低波特率:300 ... 使用说明: 1. 本程序使用一个定时器和任意2 个I/O 口模拟一个串行口。 2. 1位起始位,8位数据位,1位停止位。发数据位时先发低位。 3. 支持半双工通讯。收、发波特率相同。 4. 应把定时器中断优先级设置为最高级。 5. 本程序每接收一个字节后就把它放到一个队列缓冲区中(也可使用环行缓冲区), 待缓冲区满后,将缓冲区中的内容原样发回。这是为了测试多字节连续收发的 能力和简化程序。实际应用中应防止缓冲区溢出。 6. 由接收转换到发送时要先调用soft_send_enable (); 由发送转换到接收时要先调用 soft_receive_enable ()。 7. 发送最后一个字节后如果要立刻转为接收,必须等待最后一个字节后发送完毕 w hile ( rs_f_TI == 0) ; // 等待最后一个字节发送完毕 ************************************************************************** 编程说明: ---------------- 发送: 由接收转换到发送时要先调用soft_send_enable (), 它为发送做初始化的工作。 以后就可以调用rs_send_byte () 启动发送一个字节的过程。 发送口平时为高电平,rs_send_byte ()函数使发送口变为低电平开始发送起始位; 同时设置和启动定时器,为发送数据位在预定的时刻产生定时器中断。发送数据位和停止位都在定时器的中断服务程序中进行。 中断服务程序中处理4 种情况:发送数据位、发送停止位、发送完毕、处理错误。---------------- 接收: 由发送转换到接收时要先调用soft_receive_enable (), 它为接收做初始化的工 作。定时器以3 到4 倍波特率的频率产生中断(参见rs_TE ST0 的定义)检测P C 机发送的起始位。一旦检测到起始位,立刻把定时器产生中断的频率调整到与波特率相同,准备在下一个定时器中断中接收第1 个数据位。 中断服务程序中处理以下情况: 1. 收到的是P C 机发送的起始位: 调整定时器产生中断的频率与波特率相同。 2. 收到第8 位数据位: 存储接收到的字节。 3. 收到第1--7 位数据位: 存储到收、发移位暂存器。 4. 收到停止位: 调用soft_recei v e_enable(),检测PC 机发出的下一个起始位。 5. 处理出错的情况。 **************************************************************************/

利用VIRTUAL TERMINAL模拟单片机串口收发实验

利用VIRTUAL TERMINAL模拟单片机串口收发实验 程序 #include //包含头文件 //毫秒级延时函数 void delay(unsigned int x) { unsigned char i; while(x--) { for(i=0;i<120;i++); } } //字符发送函数 void putchar(unsigned char data1) { SBUF=data1; //将待发送的字符送入发送缓冲器 while(TI==0); //等待发送完成 TI=0; //发送中断标志请0 } //字符串发送函数 void putstring(unsigned char *dat) { while(*dat!='\0') //判断字符串是否发送完毕 { putchar(*dat); //发送单个字符 dat++; //字符地址加1,指向先下一个字符 delay(5); } } //主函数 void main(void) { unsigned char c=0; SCON=0x50; //串口方式1 ,允许接收 TMOD=0x20; //T1工作于方式2 PCON=0x00; //波特率不倍增 TL1=0xfd; //波特率设置 TH1=0xfd; //

EA=1; //开总中断 ES=1; //开串口接收中断 //TI = 0; TR1=1; //定时器开启 delay(200); putstring("abc\r\n"); //串口向终端发送字符串,结尾处回车换行putstring("----------------------\r\n"); delay(50); while(1) { } } // void revdata(void) interrupt 4 { unsigned char temp; if(RI==0) return; //如果没有接收中断标志,返回 ES=0; //关闭串口中断 RI=0; //清串行中断标志位 temp=SBUF; //接收缓冲器中的字符 putchar(temp); //将接收的字符发送出去 ES=1; //开启串口中断 }

相关主题
文本预览
相关文档 最新文档