当前位置:文档之家› 工程力学中扭转与弯曲及在机械领域应用

工程力学中扭转与弯曲及在机械领域应用

工程力学中扭转与弯曲及在机械领域应用
工程力学中扭转与弯曲及在机械领域应用

工程力学中扭转与弯曲及在机械领域应用

引言

工程力学是一门理论性较强与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。机械设计过程中广泛应用到工程力学基础内容,机器中每个零件必须满足强度、刚度、稳定性要求,其中机械设计中危险截面扭转强度、弯曲强度、组合变形强度校核是必不可少的内容,直接关系到机器使用寿命和使用安全。本文就扭转、弯曲基本内容与机械领域应用进行探讨。

正文

通过学习工程力学,我了解到工程力学中最基础的两部分是"静力学"和"材料力学"。其中静力学是研究物体平衡问题的部分,静力学部分讲解了物体的受力分析,力系的简化,力系的平衡条件等几方面问题,是工程力学的基础,在工程上具有重要的实用意义;材料力学是研究物体在外力作用下的内力、应力、变形及失效问题的部分,材料力学的目的是在满足强度、刚度和稳定性的要求下,为工程构件的力学设计提供必要的理论基础和分析方法,以便设计出既安全又经济的构件。一台机器中包括众多零件,只有这些零件都满足刚度、强度、稳定性要求整台机器才能正常工作,所以工程力学被广泛应用于机械领域。

工程力学中材料力学部分主要研究对象是杆件,其中杆件变形的基本形式包括轴向拉伸与压缩、剪切、扭曲、弯曲,实际上杆件的变形形式很多,但可归结为以上四种基本形式。其他复杂的变形,都是由以上四种基本变形中的两种或两种以上组合而成的,称之为组合变形。

在机械领域,以上变形的实例很多,比如:吊车的吊钩的拉伸,铆钉的剪切,传动轴的扭转,行车横梁的弯曲等。而扭转和弯曲是其中最重要也是比较复杂的部分。

扭转应力、强度分析及运用

扭转变形:当杆件两端受到大小相等、转向相反、作用面与杆件轴线垂直的两个力偶作用时产生的变形。变形主要表现为各横截面绕杆件轴线的相对转动。

圆柱扭转时横截面上的应力分析,如图1圆柱受大小相等、转向相反、作用面与杆件轴线垂直的两个力偶T,圆柱产生扭转变形,可以发现:

图1

(1)在小变形的情况下,各纵向线近似为直线,但倾斜了一个角度。(2)各圆周的大小、形状及间距均保持不变,只是绕轴线相对转过一个微小的角度。

根据上述变形现象,可以做出如下假设:横截面在变形后仍保持为平面,且横截面的大小、形状均保持不变,横截面间距离也不变,这一假设称为圆轴扭转问题的平面假设。

根据平面假设,可得到以下结论:

(1)由于相邻横截面的间距不变,所以横截面上没有正应力。

(2)由于相邻横截面相对转过了一个角度,即横截面间发生旋转式的相对错动,因而出现了剪切变形,故横截面上有切应力存在;又因半径大小不变,所以切应力方向必与半径垂直。

通过进一步的分析、推导,可得到圆轴扭转时横截面上的切应力公式:

(1)

式中,T--横截面上的扭矩;--横截面上待求应力的点到圆心的距离;--截面对圆心的二次级矩,与截面的形状和尺寸有关,其定义式为。

由式(1)可以看出,横截面上各点的应力与其到轴心的距离成正比,当=R时,=,即横截面外边缘处各点的切应力最大

(2)

式中,,称为抗扭截面模量,是仅与横截面尺寸有关的量。

圆轴的扭转满足强度条件:轴内的最大工作应力不超过许用扭转切应力,即(3)

圆轴的扭转强度校核在汽车方向盘操纵杆设计中的应用,

图2

如图2,汽车方向盘是汽车的一个重要部件,由于方向盘连接汽车转向机构,在实际的工作过程中由于汽车转向频繁,所以汽车方向盘操纵杆是否能满足扭转强度要求,直接影响汽车的实用寿命。因此,在汽车设计过程中对汽车方向盘操纵杆强度校核是必须的过程。

因为汽车方向盘操纵杆两端受到大小相等、转向相反、作用面与杆件轴线垂直的两个力偶作用,可以把其视为产生圆柱扭转变形,根据圆柱扭转满足强度条件,即用公式(3)来校核。

首先,由汽车方向盘操纵杆的材料得到许用扭转切应力,计算抗扭截面模量的值;

其次,将各相关量代入公式(2)中;

最后,将和大小进行比较,后者大于等前者满足要求;前者小于后者不满足条件,可以通过改变汽车方向盘操纵杆的直径大小、改变汽车方向盘操纵杆使用材料等方法使设计满足要求。

弯曲应力、强度分析及运用

弯曲变形:杆件在受到横向力或纵向平面内的力偶作用时,杆件轴线将由直线变成曲线,这种变形称为弯曲变形。

中性层和中性轴概念介绍:弯曲时梁内既不伸长又不缩短的一层纤维称为中性层。中性层与横截面的交线称为中性轴。如图3

图3

纯弯曲时梁截面上的正应力分析,平面弯曲时,如果某段梁的横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲;如果梁的横截面上既有弯矩又有剪力,则这种弯曲称为横力弯曲。

图4 图5

图4所示为纯弯梁的局部示意图。分析横截面上的应力时,需要观察梁的变形,进而确定横截面上的应力分布规律。为此,在梁的表面上画出两条横向线,表示这两个位置的横截面,并在其间画出两条纵向线aa和bb。当梁变形后如图5,变形后可以观察到如下现象:(1)横向线仍保持为平面,这说明变形后梁的横截面仍为平面,但横截面间相对转过一个角度。

(2)纵向线由直线变成曲线,且靠近上表面一侧的纵向线缩短而靠近另一侧的纵向线伸长。根据以上的现象,若将梁看成无数纵向纤维组成,则各纤维只受轴向拉伸与压缩,由变形的连续性可知,从上侧纵向线的缩短到下侧纵向线的延伸,其间必有一层纵向线长度不变,这就是中性层,中性层与横截面的交线,称为中线轴。各横截面间的相对转动就是绕着此轴进行的。理论分析表明:中性轴通过横截面的形心。各条纵向纤维伸长、缩短,说明了此处存

在着拉压应力。进一步推导、分析得到横截面上各点正应力的计算公式:

(4)

式中,y--为所求正应力的点到中性轴的距离;--横截面对中性轴z的二次矩,与截面的形状和尺寸有关,其中矩形,圆形;M--横截面上的弯矩;由式(4)得梁弯曲时,横截面上各点正应力大小与其到中性轴的距离成正比。中性轴上各点的正应力为零,最大正应力出现在距中性轴最远处。且中性轴一侧为拉应力,另一侧为压应力,当y=时,弯曲正压力最大,其值为

(5)

式中,表示截面对中性轴的弯曲截面系数,是与截面形状和尺寸有关的几何量。

梁弯曲正应力满足强度条件:梁的最大正应力不得超过其许用应力,即(6)

梁的弯曲强度校核在汽车车轴设计中的应用:

图6

如图6,汽车车轴是汽车的一个重要部件,由于车轴承载整个车体,在实际的工作过程中由于汽车震动频繁,所以汽车车轴是否能满足弯曲强度要求,直接影响汽车的实用寿命及汽车驾驶的安全。因此,在汽车设计过程中对汽车车轴弯曲强度校核是必须的过程。

因为当汽车静止时承载整个汽车的重力,我们可以等效图6中的两个力,把车轴等效为梁的纯弯曲,横截面上只受到正应力,根据梁的弯曲强度条件,即用公式(6)来校核。

首先,由汽车车轴的材料得到许用正应力,计算截面对中性轴的弯曲截面系数;

其次,将各相关量代入公式(5)中;

最后,将和大小进行比较,后者大于等前者满足要求;前者小于后者不满足条件,可从降低梁内最大弯矩、增大弯曲截面系数以及采用许用应力较大的材料等方法满足强度要求。

杆件存在四种基本的变形,其实在有些工程问题中,还会遇到更加复杂的变形形式,即组合变形。它是由两种或两种以上的基本变形组合而成的,在机械领域这些组合变形也广泛存在。

图7

如图7,AB段是钢制的传动轴与发动机相连接,电动机通过联轴器给轴AB施加扭转力偶,产生扭转变形。同时皮带在张紧的情况下会产生使轴弯曲的力,产生弯曲变形。对这种变形形式,我需要找到轴的危险截面,在危险截面上做应力分析,同时结合更高深的强度理论完成强度的校核,使轴满足设计要求。

学习工程力学这门课,我不仅理解了一些基本定理、定律和结论,也意识到工程力学在解决工程实际问题的重要性。虽然工程力学课程难度较大,我还有很多问题没有弄懂,但我对这门课充满兴趣后续会继续专研这门课。

工程力学第九章梁的应力及强度计算

工程力学第九章梁的应力 及强度计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

教学过程: 复习:1、复习刚架的组成及特点。 2、复习平面静定刚架内力图的绘制过程。 新课: 第九章梁的应力及强度计算 第一节纯弯曲梁横截面上的正应力 一、纯弯曲横梁截面上的正应力计算公式 平面弯曲时,如果某段梁的横截面上只有弯矩M,而无剪力Q = 0,这种弯曲称为纯弯曲。 1、矩形截面梁纯弯曲时的变形观察 现象: (1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角; (2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。 2、假设 (1)平面假设:梁变形后,横截面仍保持为平面,只是绕某一轴旋转了一个角度,且仍与变形后的梁轴曲线垂直。 中性层:梁纯弯曲变形后,在凸边的纤维伸长,凹边的纤维缩短,纤维层中必有一层既不伸长也不缩短,这一纤维层称为中性层。

中性轴:中性层与横截面的交线称为中性轴。 中性轴将横截面分为两个区域——拉伸区和压缩区。 注意:中性层是对整个梁而言的; 中性轴是对某个横截面而言的。 中性轴通过横截面的形心,是截面的形心主惯性轴。 (2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维之间无挤压。各纵向纤维只产生单向的拉伸或压缩。 3、推理 纯弯曲梁横截面上只存在正应力,不存在剪应力。 二、纯弯曲横梁截面上正应力分布规律 由于各纵向纤维只承受轴向拉伸或压缩,于是在正应力不超过比例极限时,由胡克定律可知 ρ εσy E E =?= 通过上式可知横截面上正应力的分布规律,即横截面上任意一点的正应力与该点到中性轴之间的距离成正比,也就是正应力沿截面高度呈线性分布,而中性轴上各点的正应力为零。 三、纯弯曲横梁截面上正应力计算公式 梁在纯弯曲时的正应力公式: Z I My = σ 式中:σ——梁横截面上任一点的正应力; M ——该点所在横截面的弯矩; Iz ——横截面对其中性轴z 的惯性矩;矩形Z I =123 bh ;圆形Z I =64 4D π

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright ? 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系

第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力 考情分析 一、历年真题的分布情况 《工程力学(一)》历年考题的分值分布情况如下:

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:() ''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。

工程力学基础习题

《工程力学》练习题 一、填空题: 1、平面汇交力系平衡的充分必要条件是_____________________________。 2、圆轴扭转时,横截面上各点只有剪应力,其作用线________________,同一半径的圆周上各点剪应力___________________。 3、梁在集中力作用处,剪力Q_______________,弯矩M________________。 4、强度条件 []σ ≤ + W T M2 2 只适用于___________________________。 5、以截面的左侧的外力计算剪力时,向________的外力取正号;向______的外力取负号。若以右侧的外力计算,则外力正负规定与此__________。 6、平面任意力系平衡方程,? ? ? ? ? = = = B A m m X ∑ ∑ ∑ 的附加条件是__________________ 而? ? ? ? ? = = = C B A m m m ∑ ∑ ∑ 的附加条件是_____________________。 7、梁在集中力偶作用处,剪力Q______________,弯矩M________________。 8、梁某截面的弯矩,若梁在该截面附近弯成________________ ,则弯矩为正;弯成________________则弯矩为负。 9、当梁的材料是钢时,应选用______________ 的截面形状;若是铸铁,则应采用_____________________的截面形状。 10、塑性材料的弯扭组合变形圆轴的强度条件为_____ 11、柔性约束对物体只有沿_________的___________力。 12、铰链约束分为_________和_________。 13、平面汇交力系的特点为__________________________________________。 其平衡的充分必要条件为________________________________________。 14、力偶是指______________________________________________________。 15、作用于刚体上的力,均可_________到刚体上任一点,但必须同时

(整理)工程力学第六章答案梁的变形

第五章 梁的变形 测试练习 1. 判断改错题 5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。 ( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。 ( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。 ( ) 5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。 ( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 ( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。 ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一 个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) 5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。 ( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。 ( ) 题5-1-3图 题5-1-4图 题5-1-8图 题5-1-7图 题5-1-9图

2.填空题 5-2-1 挠曲线近似微分方程EI x M x y ) ()(" - = 的近似性表现在 和 。 5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则 =2 1 P P 。 5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。 5-2-4 在梁的变形中挠度和转角之间的关系是 。 5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。 5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是 ,连续条件是 。 5-2-7 图示结构为 次超静定梁。 5-2-8 纯弯曲梁段变形后的曲率与外力偶矩M 的关系为 ,其变形曲线为 曲线。 5-2-9 两根E I 值相同、跨度之比为1:2的简支梁,当承受相同的均布荷载q 作用时,它们的挠度之比为 。 5-2-10 当梁上作用有均布荷载时,其挠曲线方程是x 的 次方程。梁上作用有集中力时,挠曲线方程是x 的 次方程。梁上作用有力偶矩时,挠曲线方程是x 的 次方程。 5-2-11 图示外伸梁,若A B 段作用有均布荷载,B C 段上无荷载,则A B 段挠曲线方程是x 的 次方程;B C 段挠曲线方程是x 的 次方程。 5-2-12 减小梁变形的主要途径有: , , 。 题5-2-2图 题5-2-7图 题5-2-6图 x C 题5-2-11图

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

工程力学 第九章 梁的应力及强度计算备课讲稿

课时授课计划

教学过程: 复习:1、复习刚架的组成及特点。 2、复习平面静定刚架内力图的绘制过程。 新课: 第九章梁的应力及强度计算 第一节纯弯曲梁横截面上的正应力 一、纯弯曲横梁截面上的正应力计算公式 平面弯曲时,如果某段梁的横截面上只有弯矩M,而无剪力Q = 0,这种弯曲称为纯弯曲。 1、矩形截面梁纯弯曲时的变形观察 现象: (1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角; (2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。 2、假设

(1)平面假设:梁变形后,横截面仍保持为平面,只是绕某一轴旋转了一个角度,且仍与变形后的梁轴曲线垂直。 中性层:梁纯弯曲变形后,在凸边的纤维伸长,凹边的纤维缩短,纤维层中必有一层既不伸长也不缩短,这一纤维层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 中性轴将横截面分为两个区域——拉伸区和压缩区。 注意:中性层是对整个梁而言的; 中性轴是对某个横截面而言的。 中性轴通过横截面的形心,是截面的形心主惯性轴。 (2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维之间无挤压。各纵向纤维只产生单向的拉伸或压缩。 3、推理 纯弯曲梁横截面上只存在正应力,不存在剪应力。 二、纯弯曲横梁截面上正应力分布规律 由于各纵向纤维只承受轴向拉伸或压缩,于是在正应力不超过比例极限时,由胡克定律可知 ρ εσy E E =?= 通过上式可知横截面上正应力的分布规律,即横截面上任意一点的正应力与该点到中性轴之间的距离成正比,也就是正应力沿截面高度呈线性分布,而中性轴上各点的正应力为零。

工程力学教学大纲(48学时)

《工程力学》教学大纲 课程编码:01011076 课程类别:专业基础必修课 学时:48 学分:3 适用专业:汽车检测与维修技术 先修课程:高等数学 一、教学目的 本课程是高等职业技术学院工程技术类相关专业的一门技术基础课程。本课程的任务是运用力学的基本原理,研究机械零部件在载荷等因素作用下的平衡规律、运动规律和承载能力,使学生掌握机械工程力学的基础知识和基本技能,学会运用力学的基本原理解决机械工程中简单的力学问题,培养学生正确的思想方法和工作方法,为学习后续课程和继续学习提供必要的基础。 二、教学内容与要求 绪论 教学要求:了解机械工程力学课程的性质、任务和主要内容;了解机械工程力学的研究对象:机械零部件——杆件;了解机械工程力学研究的模型刚体与变形体;分布力与集中力。 重点:工程力学研究的目的、内容、方法。 难点:工程力学的研究方法 第一章构件静力学基础 第一节力的基本概念和公理 第二节常见约束及力学模型 第三节构件的受力图 教学要求:掌握构件受力图的画法,理解力的基本概念和公理,了解常见的约束模型 重点:画构件的受力图 难点:构件的受力分析 第二章力的投影和平面力偶 第一节力的投影和力的分解 第二节平面汇交力系的合成与平衡 第三节力矩和力偶 第四节平面力偶系的合成与平衡 教学要求:掌握平面受力时平衡方程及其应用,理解平衡方程的其他形式,了解平面受力的特殊情况 重点:力的投影、力矩;平面力系的合成与平衡 难点:平衡方程的应用 第三章平面任意力系 第一节平面任意力系的简化 第二节平面任意力系简化的平衡方程及其应用 第三节固定端约束和均布载荷

第四节物体系统的平衡问题 第五节考虑摩擦时构件的平衡问题 教学要求:掌握平衡方程的应用,理解固定端约束,了解工程中的摩擦与自锁问题 重点:任意力系的简化和物体系统的平衡分析 难点:平衡方程的应用 第四章空间力系和重心 第一节力的投影和力对轴之矩 第二节空间力系的平衡方程 第三节空间力系常见约束 第四节轮轴类构件平衡问题的平面解法 第五节物体的重心和平面图形的形心 教学要求:掌握力对轴之矩、合力矩定理,理解力在空间直角坐标轴上的投影,了解形心的概念、形心位置坐标公式;组合图形形心坐标的概念 重点:组合图形形心坐标的电算方法,物体重心的求解 难点:物体重心和平面图形形心的计算 第五章轴向拉伸与压缩 第一节材料力学的基本概念 第二节轴向拉压的工程实例与力学模型 第三节轴力和轴力图 第四节拉压杆横截面的应力和强度计算 第五节拉压杆的变形 第六节材料的力学性能 第七节许用应力与强度准则 第八节应力集中的概念 第九节拉压静不定问题的解法 教学要求:掌握杆件拉伸和压缩时的轴力图,以及强度、刚度计算,理解截面法和杆件内力的概念,了解材料的力学性能;应力集中、静不定问题的求解。 重点:杆件的强度、刚度计算 难点:杆件轴力图的绘制 第六章剪切和挤压 第一节剪切和挤压的工程实例 第二节剪切和挤压的实用计算 第三节剪切胡克定律 教学要求:掌握剪切和挤压的实用计算,理解胡克定律,了解切应力互等定理 重点:剪切与挤压的实用计算 难点:剪切与挤压的实用计算 第七章圆轴扭转 第一节圆轴扭转的工程实例与力学模型 第二节扭矩扭矩图 第三节圆轴扭转时横截面上的应力和强度计算 第四节圆轴扭转时的变形和刚度计算

工程力学课程教学大纲

《工程力学》课程教学大纲 课程代码:210305 课程名称:工程力学/Engineering Mechanics 学时/学分:96 / 6 先修课程:《高等数学》、《线性代数》 适用专业:机械设备及自动化、材料成型及控制工程、汽车应用技术、金属材料工程 开课院系:基础教学学院工程力学教学部 开课院系:基础教学学院工程力学教学部 教材:《工程力学教程》西南交大应用力学与工程系编 2004年7月 参考教材:《理论力学》第六版哈尔滨工业大学理力教研室高教社2002年8月教材: 主要参考书:《材料力学》单辉祖高等教育出版社 2004年 4月第二版 《材料力学》刘鸿文高等教育出版社 2004年第四版 一、课程的性质和任务 《工程力学》包括理论力学和材料力学这两门课的主要部分内容,是机电、材料、汽车等工科大学一门重要的技术基础课。它的任务是使学生在学习高等数学、工程制图等课程的基础上,培养学生对简单工程对象正确建立力学模型的能力,对这些力学模型进行静力学,运动学,动力学(包括瞬时与过程)分析和计算的能力;同时对构件的强度、刚度以及稳定性等问题有明确的基本概念和基本计算能力。能利用工程力学的基本概念判断分析结果正确与否的能力。并为后续课程学习、以及从事工程技术工作打下坚实的力学基础。 二、教学内容和基本要求 理论力学内容部分和基本要求: (一)静力学: 力的概念;约束及约束力;物体的受力分析;各种力系的简化与平衡;摩擦和物体的重心。(二)运动学: 描述点的运动方程、在其基础上求点速度和加速度;刚体的平动与定轴转动方程的建立、如何求其速度和加速度;重点讲授点的复合运动和刚体的平面运动。 (三)动力学: 质点运动微分方程,动力学普遍定理应用,惯性力的概念及达朗伯原理。 学完理论力学后,应完整地理解基本内容,掌握基本概念、基本理论和基本方法,并达到下列要求: 1、具有从简单实际问题中提出理论力学问题的初步能力。 2、能选取分离体并正确画出受力图。 3、平面力系和空间力系的简化;能熟练运用平面力系的平衡方程求解简单物系的平衡问题(包 括考虑有摩擦力的情况)。 4、能正确地运用分解和合成的方法分析点的运动。能熟练运用点的速度合成定理。熟练地计算 刚体作平面运动时角速度和刚体上点的速度。 5、能正确运用动力学普遍定理求解简单的动力学问题。 6、能熟练地运用达朗伯原理求解简单的动反力问题。

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

2021年工程力学第六章答案 梁的变形-工程力学梁的弯曲答案

第五章梁的变形 欧阳光明(2021.03.07) 测试练习 1.判断改错题 5-1-1梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零.() 5-1-2两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。() 5-1-3悬臂梁受力如图所示,若A点上作用的集中力P在A B段上作等效平移,则A截面的转角及挠度都不变。() 5-1-4图示均质等直杆(总重量为W),放置在水平刚性平面上, 若A端有一集中力P作用,使A C B部分仍与刚性 平面贴剪力和) 5-1-5挠曲线近似微分方程不能用于求截面直梁的位移。() 5-1-6等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 () 5-1-7两简支梁的抗刚度E I及跨长2a均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。 题5-1-3图题5-1-4图

( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) 5- 下别按放截面同。 ( ) 5-1-10 图示变截 面梁,当用积分法求挠曲线方程时,因弯矩 方程有三 个 , 则 通 常 有 6 个 积 分 常 量 。 ( ) 5-2-1 挠曲线近似微分方 程y "。 5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则 =2 1 P P 5-2-3 应用叠加原理求梁的变形时应满足的条件是:。 5-2-4 在梁的变形中挠度和转角之间的关系是。 5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是,连续条件是。 5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是,连续条件是。 5-2-7 图示结构为次超静定梁。 题5-1-8图 题5-1-7图 题5-1-9图 题5-2-2图

工程力学(48学时)

《工程力学》课程教学大纲 课程名称:工程力学 考核方式:考试课 学时:48 前导课程: 后续课程: 一、课程定位 1.课程性质 本课程系机械等工科专业的重要技术基础课,是研究结构受力及构件承载能力的课程,是工程技术人员必备的知识。它包括理论力学和材料力学两部份内容。 2.课程作用 课程作用是使学生具有对一般工程结构作受力分析的能力,对构件作强度,刚度计算和稳定性核算的能力,了解材料的主要力学性能并具有测试强度指标的初步能力。根据“以就业为导向,以教学为中心的”的教育理念,把工程力学课程定位在注重培养学生的工程实践能力、技术应用能力和社会适应能力上。同时提出在教学的各个环节强调理论联系实际的教学原则,即要培养学生运用理论知识解决工程中的实际问题的能力,又可有效地把知识转化为相应的工作能力和技能。使本课程为今后应用于压力容器和学习建筑结构、机械设计等后续课程打下必要的力学基础。 二、适用专业、课程代码 本课程大纲适用于城市热能应用技术专业。 课程代码:。 三、课程教学目标 1.知识目标 (1)理解力学模型的建立 (2)掌握刚体系统平衡分析 (3)掌握杆件的强度分析 (4)理解超静定结构的分析 (5)初步掌握锅炉结构的力学模型及其力学分析 2.能力目标

(1)会应用力学概念对实际问题建模 (2)能够对实际问题抽象提炼进行理想状态分析 (3)能够综合实际问题作出比较准确的估算 3.素质目标 (1)培养良好的职业道德修养 (2)训练良好的团队精神 (3)具备自主学习能力,能通过信息数据库获取有关汽车电气系统的知识。 (4)具备一定的独立分析能力 四、课程教学设计

五、课程教学内容学时分配表 六、教学内容纲要 第一部分绪论 (一)教学内容和要求 初步了解工程力学的学习目的、内容和任务。 (二)教学建议(采用的教学方法与手段) 初步了解工程力学的学习目的、内容和任务 第二部分静力学基础理论 (一)教学内容和要求 理解平衡、刚体和力的概念;掌握静力学四个公理;掌握物体的受力分析画物体受力图。 (二)教学重点和难点 1.重点

工程力学

1.低碳钢材料由于冷作硬化,会使()提高。 A.弹性极限 2.杆件的应力与杆件的()有关。 D.外力、截面、杆长、材料 3.截面上的剪应力的方向()。 C.可以与截面形成任意夹角 4.扭转变形时,圆轴横截面上的剪应力()分布。 A.均匀 5.如图所示,简支梁A端剪力为()。 A.16kN 24.图示外伸梁中EI相同,C点的线位移为()。 6.用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗扭刚度较大的是下列哪项?( B.空心圆轴 7.圆形截面梁剪切弯曲时,横截面上最大切应力发生在()。 A.中性轴上,方向平行于剪力 8.圆轴扭转时,表面上任一点处于()应力状态。 B.二向 9.圆轴受外力偶作用如图,圆轴的最大扭矩为()kN.m。 D.6 10.直径为d=100mm的实心圆轴,受内力扭矩T=10kN.m作用,则横断面上的最大剪应力为()MPa。 C.50.93 11.设矩形截面对其一对称轴z的惯性矩为Iz,则当长宽分别为原来的2倍时,该矩形截面对z轴的惯性 D.16Iz 12.在下列关于平面图形几何性质的结论中,错误的是()。 C.图形对对称轴的静矩为零 13.多跨静定梁是由单跨静定梁通过铰链连接而成的()。 A.静定结构 14.多跨静定梁中必须依靠其他梁段的支撑作用才能维持平衡的梁段称为()。 B.附属部分 15.建立虚功方程时,位移状态与力状态的关系是()。 A.彼此独立无关 16.静定刚架在支座移动作用下的位移是由()产生的。 D.扭转变形 17.静定结构的截面尺寸发生改变,()会发生改变。 C.位移 18.静定结构改变材料的性质,()会发生改变。 D.支座反力 19.力产生的内力在其他原因所引起的位移上做的功称为()。 D.内力虚功 20.力产生的内力在自己所引起的位移上做的功称为()。 B.内力实功 21.图示外伸梁中EI相同,A点的转角为()。 答案:D 22.图示外伸梁中EI相同,B点的转角为()。 答案:B 23.图示外伸梁中EI相同,C点的位移为()。 答案:A

材料力学B试题6弯曲变形

弯曲变形 1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2. 外伸梁受载荷如 致形状有下列(A)(B)、(C),(D)答:(B) 3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q x F F x M ) (d d ,d d , d d 2 2S S ===; (B)EI x M x w q x F F x M )(d d ,d d , d d 2 2 S S =-=-=; (C)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -==-=; (D)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -=-==。 答:(B) 4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EI l M EI Fl w B 232 e 3 +=

(↓) 则截面C 处挠度为: (A)2 e 3 322323??? ??+??? ??l EI M l EI F (↓); (B)2 3 3223/323??? ??+??? ??l EI Fl l EI F (↓) ; (C)2 e 3 322)3/(323??? ??++??? ??l EI Fl M l EI F (↓);(D)2 e 3 322)3/(323? ? ? ??-+??? ??l EI Fl M l EI F (↓)。 答:(C) 5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。 答: 6. 7. (a)、(b) 刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。 答:x =0, w 1=0, 1w '=0;x =2a ,w 2=0 =2a , 32 w w '='。 9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。 (a) (b) (c) w ===θw w

工程力学课后习题答案解析

《工程力学》复习资料1.画出(各部分)的受力图 (1)(2) (3) 2.力F作用在边长为L正立方体的对角线上。设Oxy 平面与立方体的底面ABCD相平行,两者之间的距离为h, 试求力F对O点的矩的矢量表达式。

解:依题意可得:?θcos cos ??=F F x ρ ?θsin cos ??=F F y ρ θsin ?=F F z ρ 其中33sin = θ 3 6cos =θ ο45=? 点坐标为:()h l l ,, 则() 3 ) ()(33 33333j i h l F k F j F i F F M ρ ρρρρρρρρ+?+=-+-= 3.如图所示力系由F 1,F 2,F 3,F 4和F 5组成,其作用线分别沿六面体棱边。已知:的F 1=F 3=F 4=F 5=5kN, F 2=10 kN ,OA=OC/2=。试求力系的简化结果。 解:各力向O 点简化 .0.0 .523143=-==-==+-=C O F A O F M C B F A O F M C O F C O F M Z Y X ρρρρρρρ ρρρρρρ ρρρρρ 即主矩的三个分量 kN F F Rx 55==ρ kN F F Ry 102==ρ kN F F F F RZ 5431=+-=ρ ρ 即主矢量为: k j i ρρ ρ5105++ 合力的作用线方程 Z y X == 2 4.多跨梁如图所示。已知:q=5kN ,L=2m 。试求A 、B 、D 处的约束力。 取CD 段 0=∑ci M 02 12 =-?ql l F D 解得 kN F D 5=

工程力学答案81216

1:图示应力状态,其主应力有何特点( ) 1. 2. 3. 4. 2:图示应力状态,其主应力有何特点( ) 1. 2. 3. 4. 3: 一两端受扭转力偶作用的圆轴,下列结论中哪些是正确的( ) 1)该圆轴中最大正应力出现在圆轴横截面上; 2)该圆轴中最大正应力出现在圆轴纵截面上; 3)最大切应力只出现在圆轴横截面上;

4)最大切应力只出现在圆轴纵截面上。 1. 2),3); 2. 2),4); 3. 1),4); 4.全错。 4: 下列结论中正确的是( ): 1. 钢材经过冷作硬化后,其弹性模量不变; 2.钢材经过冷作硬化后,其比例极限不变; 3.钢材经过冷作硬化后,其材料的强度极限可得到提高; 4.钢材经过冷作硬化后,其材料的强度不能得到提高。 5:受扭圆轴中最大切应力为τ,下列结论中哪些是正确的( ) 1) 该圆轴中最大正应力为σmax=τ2) 该圆轴中最大压应力为σmax=-τ; 3) 最大切应力只出现在圆轴横截面上;4) 圆轴横截面上和纵截面上均无正应力。 1. 1),2),3); 2. 1),2),4); 3.全对; 4.全错。

6:图示应力状态,其主应力关系必有( ) 1. 2. 3. 4. 7:箱形截面外伸梁,梁有图示的两种放置方式,在对称弯曲的条件下,两梁的有如下4种关系:正确答案是( ): 1. 2. 3. 4.无法确定 8: 下列结论中正确的是( ): 1.钢材经过冷作硬化后,其延伸率将降低;

2.钢材经过冷作硬化后,其截面收缩率可得到提高; 3.钢材经过冷作硬化后,其抗冲击性能可得到提高; 4.钢材经过冷作硬化后,其材料的强度将降低。 9: 下列结论中正确的是( ): 1.钢材经过冷作硬化后,其截面收缩率可得到提高; 2.钢材经过冷作硬化后,其延伸率可得到提高; 3.钢材经过冷作硬化后,其抗冲击性能可得到提高; 4.钢材经过冷作硬化后,其材料的强度可得到提高。 10: 脆性材料具有以下哪种力学性质( ): 1.试件拉伸过程中出现屈服现象; 2.压缩强度极限比拉伸强度极限大得多; 3.抗冲击性能比塑性材料好; 4.若构件因开孔造成应力集中现象,对强度无明显影响。11:

材料力学习题册答案弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为 零。(×) 两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相 同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×) 等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等 于零的截面处。(×) 若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面 的挠度相等,转角不等。(√) 简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨 度增大一倍后,其最大挠度增加四倍。(×) 当一个梁同时受几个力作用时,某截面的挠度和转角就等于每 一个单独作用下该截面的挠度和转角的代数和。(√) 8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D)

A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移 D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2

工程力学课后习题答案解析

《工程力学》复习资料 1.画出(各部分)的受力图 (1)(2) (3) 2.力F作用在边长为L正立方体的对角线上。设Oxy平面与立方体的底面ABCD 相平行,两者之间的距离为h,试求力F对O点的矩的矢量表达式。

解:依题意可得:?θcos cos ??=F F x ?θsin cos ??=F F y θsin ?=F F z 其中33sin =θ 3 6cos =θ 45=? 点坐标为:()h l l ,, 则

()3)()(3333333j i h l F k F j F i F F M +?+=-+-= 3.如图所示力系由F 1,F 2,F 3,F 4和F 5组成,其作用线分别沿六面体棱边。已知: 的F 1=F 3=F 4=F 5=5kN, F 2=10 kN ,OA=OC/2=1.2m 。试求力系的简化结果。 解:各力向O 点简化 0 .0.0.523143=-==-==+-=C O F A O F M C B F A O F M C O F C O F M Z Y X 即主矩的三个分量 kN F F Rx 55== kN F F Ry 102== kN F F F F RZ 5431=+-= 即主矢量为: k j i 5105++ 合力的作用线方程 Z y X ==2 4.多跨梁如图所示。已知:q=5kN ,L=2m 。试求A 、B 、D 处的约束力。 取CD 段 0=∑ci M 02 12=-?ql l F D 解得 kN F D 5= 取整体来研究,

0=∑iy F 02=+?-+D B Ay F l q F F 0=∑ix F 0=Ax F 0=∑iA M 032=?+?-?l F l ql l F D B 联合以上各式,解得 kN F F Ay A 10-== kN F B 25= 5.多跨梁如图所示。已知:q=5kN ,L=2m ,ψ=30°。试求A 、C 处的约束力。(5+5=10 分) 取BC 段 0=∑iy F 0cos 2=?+?-?C B F l q F 0=∑ix F 0sin =?-?C Bx F F 0=∑ic M 022=??+?-l l q l F By 联合以上各式,解得 kN F Bx 77.5= kN F By 10= kN F C 574.11= 取整体研究 0=∑ix F 0sin =?-?C Ax F F 0=∑iy F 0 cos 2=?+?-?C Ay F l q F

工程力学 第9章 应力状态分析 习题及解析

习题9-1图 x 15-'x x' σy'x'τ 1.25MPa 15 (b-1) 15a 4MP 15-y'x'τx'x'σa 1.6MP x (a-1) 习题9-2图 30 2MPa 0.5MPa -60 x' σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答 第9章 应力状态分析 9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。试求: 1.面内平行于木纹方向的切应力; 2.垂直于木纹方向的正应力。 知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答: (a )平行于木纹方向切应力 6.0))15(2cos(0))15(2sin(2 ) 6.1(4=?-??+?-?---= ''y x τMPa 垂直于木纹方向正应力 84.30))15(2cos(2 ) 6.1(42)6.1(4-=+?-?---+-+-= 'x σMPa (b )切应力 08.1))15(2cos(25.1-=?-?-=''y x τMPa 正应力 625.0))15(2sin()25.1(-=?-?--='x σMPa 9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。若已知胶层切应力不得超过1MPa 。试分析是否满足这一要求。 知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答: 55.1))60(2cos(5.0))60(2sin(2 ) 1(2-=?-??+?-?---= ''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。 9-3 结构中某点处的应力状态为两种应力状态的叠加结果。试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。 知识点:平面应力状态分析 难度:难 解答:

相关主题
文本预览
相关文档 最新文档