当前位置:文档之家› 准确求取地层压力

准确求取地层压力

准确求取地层压力
准确求取地层压力

一,准确求取地层压力

发现溢流显示应立即按关井程序迅速关井;关井后应及时,准确求得关井立压,关井套压,并观察,记录溢流量.

1.压力传递时间.当溢流发生时,井底周围地层液体已开始进入井内,这时地层液体压力下降,在关井后的一段时间内,井底压力并不等于地层压力.在一段时间以后,井底压力将由于地层压力而升高,直至等于地层压力.对于具有良好渗透率的地层,井底压力与地层压力间建立起平衡需10~15分钟,因此,关井后在套压不超过允许关井最高压力的情况下,关井时间不少于15分钟,求取立压,套压以准确的计算地层压力,为压井计算提供依据.

2.接回压凡尔时立压求取方法:慢慢的启动泵并继续泵入,到泵压有一突然升高时留心观察套压,当套压开始升高时停泵,读出套压即将升高时的立管压力即得关井立管压力.如套压升高到关井套压以上某个值,则从读出的立管压力值中减去套压升高值即得关井立管压力.

3.不同工况下的应急措施:

(1)起,下钻中发生溢流,应尽快抢接回压凡尔.只要条件允许,控制溢流量在允许的范围内,尽可能多下钻具,然后关井.

(2)电测时发生溢流应尽快起出电缆.若溢流量将超过关井规定值,则立即砍断电缆并按空井溢流处理.

(3)任何情况下关井,其最大允许关井套压不得超过井口装置额定工作压力,套管抗内压强度的80%和薄弱地层破裂压力所允许关井套压三

者中的最小值.在允许关井套压值范围内严禁放喷.

4.相关计算:

(1)地层压力PP

PP=Pd+0.0098γH

Pd:关井立管压力,MPa.

γ:钻柱内未受油气侵泥浆密度,g/cm3.

H:井深,m.

(2)压井泥浆密度γ1

γ1= PP/(0.0098*H) (g/cm3) 或

Δγ= Pd/(0.0098*H) (g/cm3)

Δγ:平衡溢流时所需的泥浆密度增值.

(3)不同密度下关井允许最大套压值P2

P2=P-0.0098γ2H=P1-0.0098(γ2-γ)H (MPa)

P=0.0098γH+P1 (MPa)

P:套管角或井漏堵漏承压试验时该处所承受的最大压力.

P1:关井试压时套压值,MPa.

γ:试压时泥浆密度,g/cm3.

γ2:溢流关井时的泥浆密度,g/cm3.

(4)低泵冲试验或计算求取低泵冲循环泵压PCI.

使用排量大约为正常钻进的1/3~1/2排量循环,测得其泵压值;其对应泵压值约为正常钻进时的1/9~1/4泵压(Q∝P2).

(5)压井初始循环压力PTi

PTi=Pd+PCi (MPa)

PCi:低泵冲循环时的泵压,MPa.

(6)压井终了循环压力PTf

PTf= PCi*γ1/γ (MPa)

(6)加重泥浆到达钻头所需的时间T

T=VdH1/(60*Q) (分)

Vd:钻杆内容积,升/米.

H1:钻头所在井深,米.

Q:压井时的排量,升/秒.

(7)加重泥浆充满环空(到达井口)所需的时间T1

T1=VaH1/(60*Q) (分)

Va:环空容积,升/米.

(8)压井后钻进所需的泥浆密度γ2

γ2=γ1+γe (g/cm3)

γe:附加泥浆密度,g/cm3.

(9)钻进中所需的加重泥浆量V

一般加重泥浆量按井筒容积的2倍计算.

V=2*1000D2/H (m3)

D:井眼直径,〃.

二,关井后处理方法及措施

关井后应根据关井立管压力和套压的不同情况,分别采取相应的处理措施:

1.关井立管压力为零时,溢流发生是因抽汲,井壁扩散气,钻屑气等使泥浆静液柱压力降低所致:

(1)当关井套压也为零时,说明环形空间污染并不严重;应保持原钻进时的流量,泵压,以原泥浆敞开井口循环,排除侵污泥浆即可.

(2)当关井套压不为零时,应在控制回压维持原钻进流量和泵压条件下排除溢流,恢复井内压力平衡;再用短程起下钻检验,决定是否调整泥浆密度,然后恢复正常作业.循环中应注意勤测量泥浆密度,同时不能将受侵污的泥浆重新泵入井内.在达到对溢流的控制以后,可以适当的提高泥浆密度,使井内压力得到更好的平衡.

2.关井立管压力不为零时,表明由未侵污的泥浆液柱压力不足以防止地层液体侵入井眼,所以必须提高泥浆密度;可采用工程师法,司钻法,边循环边加重法等常规压井方法压井:

(1)所有常规压井方法应遵循在压井作业中始终控制井底压力略大于地层压力的原则.

(2)根据计算的压井参数和本井的具体条件(溢流类型,泥浆和加重剂的储备情况,井壁稳定性,井口装置的额定工作压力等),结合常规压井方法的优缺点选择其压井方法.

3.天然气溢流不允许长时间关井而不作处理.在等候加重材料或在加重过程中,视情况间隔一段时间向井内灌注加重泥浆,同时用节流管汇控制回压,保持井底压力略大于地层压力,排放井口附近含气泥浆.若等候时间长,则应及时实施司钻法第一步排除溢流,防止井口压力过高.

4.空井溢流关井后,根据溢流的严重程度,可采用强行下钻分段压井法,

置换法,压回法等方法进行处理.

5.压井作业应有详细的计算和设计,压井施工前应进行技术交底,设备安全检查,人员操作岗位落实等工作.施工中安排专人详细记录立管压力,套压,泥浆泵入量,泥浆性能等压井参数,对照压井作业单进行压井.压井结束后,认真整理填写压井作业单.

6.加重泥浆要慎重,预防密度太高导致井漏,密度太高压漏地层带来的危险比低密度压井更大.加重时要适量加入降失水剂,稀释剂,以降低失水,改善泥浆的流动性和泥饼质量,并加入烧碱水将PH值提高到9-10.

7.压井过程中发生井漏时,应定时定量向环空灌入泥浆以降低漏速.维持一定液面,保持井内压力平衡,然后堵漏.

8.压井方法

关井后在压井处置上有四种方法:

(1)边加重泥浆边循环压井法.这种处置方法可以在最短的时间内控制住溢流,使井控装置承受的压力最小,承压时间最短,可以减少钻具粘卡等井下事故,因此是最安全的;但这种处置方法由于压井过程中钻柱内的压井泥浆密度不同,给控制立管压力以维持稳定的井底压力带来困难,计算较多较复杂;若压井泥浆密度等差递增,并均按钻具内容积配制每种密度的泥浆量,则立管循环压力也就等差递减,易于控制. (2)继续关井,先加重泥浆,再循环压井法(等待加重法或工程师法).该处置可以在一个循环周完成,所需时间较短,井口压力较小,也较安全,压井多采用这种方法,但是关井时间长,对循环不利,因此该方法效果的

好坏关键取决于是否能迅速加重泥浆.以不变的泵速循环注入加重泥浆;在加重泥浆到达钻头的过程中,调节节流阀使立压由初始循环值下降到终了循环值(加重泥浆低泵冲泵压),使套压值保持不变;当加重泥浆到达钻头后向环空上返过程中,立压值保持不变,套压值逐渐下降,当加重泥浆到达井口时,套压降为零,重建起地层---井眼压力平衡,压井结束.

(3)先循环排出受侵污的泥浆,关井,加重泥浆,再循环压井法(两步控制法或司钻法).这种处置相对来说是安全的,技术上也比较容易掌握,但需要最长的时间和最大限度的应用井口装置.泥浆在第一个循环周内未加重,因此套压不变(等于低泵冲泵压或初始与终了套压相等). (4)先循环排出受侵污的泥浆,然后边加重泥浆边循环压井法.这种处置方法既复杂又需要时间更长.

三,未安装防喷器时发生溢流的处置

目前部分油井在压力较低或稳定区块施工,未安装防喷器,但这些区块的井控工作仍然是重中之重.

1.井控安全风险大.

对于未安装防喷器的井及油气比较高的井,其潜在的井控危险更大,因井控硬件无保障,一旦发生溢流则处理手段有限,如果处理不当就会发生井口失控,着火烧毁设备,环境污染,人员中毒或伤亡等重大事故.因此:

(1)井控工作更要立足于一次井控,严格执行井控技术措施,进入目的层前适当提高泥浆密度平衡钻井.

(2)坚持井控坐岗及时发现油气侵等迹象,坚持干部跟班制度,出现油气侵等迹象时及时组织加重泥浆,避免发生溢流.

(3)井控应急资源准备充分,完好,按要求储备加重材料.

(4)加重配浆装置要及时检查,确保使用正确.

(5)备有能够吸入高密度,高粘度的排污泵.

(6)机泵房,钻台井架,循环罐,探照灯,照明等电路必须按要求专线架设和控制.

2.发生溢流时的措施及要求

(1)在发生溢流情况下,及时启动井控应急预案,要根据溢流程度不同采取相应的措施.

(2)发生间断性溢流,且溢流程度小的情况下,井内有钻具时,及时坚持循环,排出受污染的泥浆.井内无钻具时,及时抢下部分钻具,建立循环并排出受污染的泥浆,再继续尽可能多下钻具,循环观察并适当提高泥浆密度,直至建立压力平衡.

(3)发生连续溢流时,及时建立循环排出污染泥浆并及时加重.

(4)发生溢流时,及时断开井架,钻台,机房,震动筛电源,1#柴油机停机,开探照灯.

(5)做好防火,防爆及人员中毒防护等工作,及时检测H2S,CO有毒有害气体含量,必要时工作人员要佩戴正压呼吸器作业.

(6)尽可能多的抢下钻具(压井钻具结构简化),建立循环,分段循环排出污染泥浆,为加重泥浆压井创造条件.

(7)利用消防枪或消防车,连续向井口喷水,防止着火.

(8)组织加重材料,井控装备,配浆设施,水源,清理钻台周围两侧设施,做好加重泥浆及抢着防喷器等准备.

(9)根据溢流情况测算安全周期,起钻或倒开钻具抢装防喷器,再实施压井.

3.短程起下钻测算安全周期的基本作法

(1)一般情况下试起10~15柱钻具,再下入井底循环观察一个循环周,若泥浆无油气侵,则可起钻;否则,应循环排除受侵污泥浆并适当调整泥浆密度后再起钻.

(2)特殊情况时(需长时间停止循环或井下复杂时),将钻具起至套管角内或安全井段,停泵观察一个起下钻周期或停泵所需的等值时间,再下回井底循环一周,观察一个循环周.若有油气侵,应调整处理泥浆;若无油气侵,便可起钻.

T+T1

T+T1

压井过程中套压变化图

T

压力(MPa)

时间(分)

Pa

压井过程中立压变化图

T

PTi

压力(MPa)

时间(分)

PTf

井喷失控的紧急处理措施:

1、立即停车、停炉、断电,并设置警戒线,一切火源。

2、尽快由四通向井口连续注水,用消防水枪向油气喷流和井口周围大量喷水。迅速做好储水、供水工作。并将氧气瓶油罐等易然易爆品拖离危险区。

3、成立有领导班干部参加的现场抢险组,迅速制定抢险方案,集中统一

领导负责现场施工指挥。

4、测定井口周围及附近的天然气和硫化氢气体含量,划分安全范围。

5、清除井口周围和抢险通道上的障碍物。已着火的井带火清障。

6、换新井口前必须进行技术交底和演习。

7、尽量不在夜间进行井喷失控处理施工。

8、做好人身安全防护工作,避免烧伤、中毒、噪音等伤害

地层压力预测方法(DOC)

地震地层压力预测 摘要 目前,地震地层压力预测方法归纳起来可以分为图解法和公式计算法两大类10余种。本文对各种地震地层压力预测方法进行了系统地归纳和总结,并对各种方法的特点、适用性以及存在的问题进行分析和讨论.在此基础上,就如何提高压力预测的精度,提出了一种简单适用的改进措施,经J1.K地区的实测资料的验证,效果良好。 主题词地层压力地震预测正常压实异常压实 引言 众所周知,油气层的压力是油气层能量的反映,是推动油气在油层中流动的动力,是油气层的“灵魂”。因此,在石油和天然气的勘探开发中,研究油气层的压力具有十分重要的意义。 首先,在油气田勘探中,研究油气层压力特别是油气层异常压力的分布,以及预测和控制油气层压力的方法,不仅可以保证安全快速地钻进,而且可以正确地设计泥浆比重和工程套管程序;同时也可以帮助选择钻井设备类型和有效安全正确的完井方法等。这些都直接关系到钻井的成功率以及油气田的勘探速度等问题。其次,在油气田开发过程中,准确的压力预测以及认真而系统的油气层压力分布规律的研究,不仅可以帮助我们认识和发现新的油气层,而且对于了解地下油气层能量、控制油气层压力的变化,并合理地利用油气层能量最大限度地采出地下油气均具有十分重要的意义。 多少年来,人们在异常地层压力(这里主要指异常高压或超压)预测方面进行了种种尝试,然而直到本世纪70年代以来,随着岩石物理研究的不断深人以及地震技术的不断提高,才真正使得地层压力的地震预测成为现实。 对于异常高压地层,一般表现为高孔隙率、低密度、低速度、低电阻率等特点,因此,凡是可以反映这些特点的各种地球物理方法均可用于检测地层压力。但是,由于各种测井方法均为“事后”技术,这就使得在初探区内利用地震方法进行钻前预测显得尤为重要。与此同时,地震地层压力预测还可以提供较测井方法更为丰富的空间压力分布信息。 利用地震资料进行地层压力预测,主要是利用了超压层的低速特点,因为在正常情况下,速度随深度的增加而增加,当出现超压带时,将伴随出现层速度的降低。可见,取准层速度资料是预测地层压力的关键之一,而选择合适的地层压力预测方法同样是一个十分重要的环节。 到目前为止,地震地层压力预测的方法名目繁多,但就总体而言,大致可分为图解法和公式计算法两大类。本文将对各种地震地层压力预测方法的内容、特点、应用效果以及存在的问题等作一系统全面的叙述。在前人研究工作的基础上,就如何提高地震地层压力预测的精度,本文提出一种简单而实用的改进措施,经JLK(吉拉克)地区实际资料的计算,效果良好。 地震地层压力预测方法综述 图解法 在所有地震地层压力预测方法中,最为直观简便的方法莫过于图解法了。按照判定超压层方式的不同,又可细分为等效深度图解法、比值法和量板法三种。 等效深度图解法 等效深度图解法(或可形象地称之为直接趋势线判别法)是以页岩压实概念为基础

盾构土压力计算

城市地铁盾构施工土压力选择 随着北京2008年申奥成功,我国的城市地铁施工必将走向了一个崭新的一页。城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点,已经被越来越多的人们所认可。在城市地铁盾构施工中,如何设置合理的土压,对于控制地表沉降有着至关重要的意义。 一、土压平衡复合式盾构机三种工况的简要介绍土压平衡复合式盾构有三种工况,即敞开式、半敞开式、土压平衡三种掘进模式。地层围岩条件较好时,螺旋输送机伸入土仓,螺旋输送机的卸料口完全打开,土仓内不保持土压,维持刀盘、土仓、螺旋输送机之间的完全敞开,实现敞开式模式掘进。当围岩稳定性变坏,工作面有坍塌时或有坍塌的可能,或地下涌水不能得到有效控制时,缩回螺旋输送机,关闭螺旋输送机的卸料口,压入压缩空气,土仓会被压力封闭,控制地下水的涌出,防止坍塌的进一步发生,即可实现半敞开式掘进模式;若水压力大或工作面不能达到稳定状态,则先停止螺旋输送机的出碴,切削下来的碴土充满土仓。与此同时,用螺旋输送机排土机构,进行与盾构推进量相应的排土作业,掘进过程中,始终维持开挖土量与排土量的平衡来维持仓内碴土的土压力。以土仓内的碴土压力抗衡工作面的土体压力和水压力,以保持工作面的土体的稳定,防止工作面的坍塌和地下水的涌出,从而使盾构机在不松动的围岩中掘进,确保不产生地层损失,实现土压平衡掘进模式。 二、掘进土压力的设定 在选择掘进土压力时主要考虑地层土压,地下水压(孔隙水压),预先考虑的预备压力地层施工土压 在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧

地层压力公式

地层压力公式 1.静液压力Pm (1)静液压力是由静止液柱的重量产生的压力,其大小只取决于液体密度和液柱垂直高度。在钻井中钻井液环空上返速度较低,动压力可忽略不计,而按静液压力计算钻井液环空液柱压力。 (2)静液压力Pm计算公式: Pm=0.0098ρmHm (2—1) 式中 Pm——静液压力,MPa; ρm——钻井液密度,g/cm3; Hm——液柱垂直高度,m。 (3)静液压力梯度Gm计算公式: Gm=Pm/Hm=0.0098ρm(2—2) 式中 Gm——静液压力梯度,MPa/m。 2.地层压力Pp (1)地层压力是指地层孔隙中流体具有的压力,也称地层孔隙压力。 (2)地层压力Pp计算公式: Pp=0.0098ρpHp(2—3) 式中 Pp——地层压力,MPa; ρp——地层压力当量密度,g/cm3; Hm——地层垂直高度,m。 (3)地层压力梯度Gp计算公式: Gp=Pp/Hp=0.0098ρp(2—4) 式中 Gp——静液压力梯度,MPa/m。 (4)地层压力当量密度ρp计算公式: ρp=Pp/0.0098Hm=102Gp(2-5) 在钻井过程中遇到的地层压力可分为三类: a.正常地层压力:ρp=1.0~1.07g/cm3; b.异常高压:ρp>1.07g/cm3; c.异常低压:ρp<1.0g/cm3。 3.地层破裂压力Pf 地层破裂压力是指某一深度处地层抵抗水力压裂的能力。当达到地层破裂压力时,使地层原有的裂缝扩大延伸或使无裂缝的地层产生裂缝。从钻井安全方面讲,地层破裂压力越大越好,地层抗破裂强度就越大,越不容易被压漏,钻井越安全。一般情况下,地层破裂压力随着井深的增加而增加。所以,上部地层(套管鞋处)的强度最低,易于压漏,最不安全。 (1)地层破裂压力Pf计算公式:

现场地层压力计算

六、地层压力计算 1、地层孔隙压力与压力梯度 (1)地层孔隙压力 式中,P p—-地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa; ρf-—地层流体密度,g/cm3; g—-重力加速度,9、81m/s2; H—-该点到水平面得重直高度(或等于静液柱高度),m、 在陆上井中,H为目得层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm,则, 式中,p h——静液柱压力,MPa; ρm—-钻井液密度,g/cm3; H-—目得层深度,m; g——重力加速度,9.81m/s2。 在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0、6~3、3m,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。 (2)地层孔隙压力梯度 式中Gp—-地层孔隙压力梯度,MPa/m、 其它单位同上式。 2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力 式中 P o-—上覆岩层压力,MPa; H-—目得层深度,m; Φ——岩石孔隙度,%; ρ——岩层孔隙流体密度,g/cm3; ρm—-岩石骨架密度,g/cm3。 (2)上覆岩层压力梯度 式中,G o--上覆岩层压力梯度,MPa/m; P o——上覆岩层压力,MPa; H——深度(高度),m。 (3)压力间关系 式中,Po-—上覆岩层压力,MPa; P p—-地层孔隙压力,MPa; σz--有效上覆岩层压力(骨架颗粒间压力或垂直得骨架应力),MPa。 3、地层破裂压力与压力梯度 (1)地层破裂压力(伊顿法) 式中, Pf-—地层破裂压力(为岩石裂缝开裂时得井内流体压力),MPa; μ——地层得泊松比;

土压力计算方法.

第五章土压力计算 本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。 学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。 第一节土压力的类型 土体作用在挡土墙上的压力称为土压力。 一、土压力的分类 作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。 1.静止土压力 挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。 2.主动土压力 挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。此时作用在墙背上的最小土压力称为主动土压力。 3.被动土压力 挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。此时作用在墙背上的最大土压力称为被动土压力。 大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。 二、影响土压力的因素 1.挡土墙的位移 挡土墙的位移(或转动)方向和位移 量的大小,是影响土压力大小的最主要的因 素,产生被动土压力的位移量大于产生主动 土压力的位移量。 2.挡土墙的形状 挡土墙剖面形状,包括墙背为竖直或是 倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。 3.填土的性质 挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都

(整理)土主动、被动土压力概念及计算公式

主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p >P o >P a 。 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。土体中产生的两组破裂面与水平面的夹角为2 45?- ?。 朗肯主动土压力的计算 根据土的极限平衡条件方程式 σ1=σ3tg 2 (45°+2?)+2c ·tg(45°+2?) σ3=σ1tg 2(45°-?)-2c ·tg(45°-?)

地层压力预测技术

地层压力预测技术 第一章油田的地质特点 油田位于松辽盆地北部,其储油层属于陆湖盆地叶状复合三角洲沉积,是一个大型的多层砂岩油田,共有三套含油组合,即上部黑帝庙、中部萨葡高和下部扶含油组合。由于湖盆频繁而广泛的变化,形成了泛滥平原、分流平原、三角洲外前缘等不同的沉积相带,在萨尔图、葡萄花、高台子含油层段,由于不同的沉积时期和不同的沉积环境,又形成了不同类型的沉积砂体和沉积旋回,因此造成其平面上和垂向上的严重非均质性。 由于这种特定的陆湖相沉积环境,构成了油田的许多基本特点。一是油层多,含油井段长,储量丰度高。萨尔图、葡萄花、高台子油层组,约有49~130多个单层,含油井段几十米到几百米,每平方公里的储量从几十万吨到几百万吨不等。二是油层厚度大,差异也大,最薄的0.2m,一般1m~3m,最大单层厚度可达10m~13m。三是渗透率差异大,空气渗透率最低0.02μm2,最高达5μm2。在纵向剖面上,形成了砂岩与泥岩,厚层与薄层,高渗透层与低渗透层交错分布的复杂情况。 第二章浅气层分布规律及下表层原则 2.1 浅气层的分布规律 浅气层在油田尤其是油田长垣北部的喇、萨、杏油田具

有广泛的分布。在构造轴部的嫩二段顶部粉砂岩及泥质粉砂岩层,嫩三段的粉砂岩及泥质粉砂岩层,嫩四段的细砂岩及粉砂岩层,只要具备以下三条件,就能形成浅气层(在外围就是黑帝庙油层)。 1)具备2.5m视电阻率为10Ω·m,自然电位3mv的砂岩。 2)该砂岩必须在一定海拔深度以上才能形成气层。 3) 同时形成一定的局部构造圈闭及断层遮挡条件(即断层断裂后相对隆起的下盘被断层遮挡),有利于浅气层的聚集。,萨尔图、杏树岗油田浅气含气围见表1-1,喇嘛甸油田浅气含气围见表1-2。 图1-1 浅气层分区示意图

土压力计算

本工程场地平坦,经过与类似工程的比较,土体上部底面超载20kPa;假定支护墙面垂直光滑,故采用郎肯土压力理论计算,计算土压力时首先要确定土压力系数,主动土压力系数和被土压力系数的计算分式分别如下[2]:

主动土压力系数: o 2a tan (45/2)K ?=- 被动土压力系数: 2p (tan 45/2)K ?=?+ 其中: a K ——主动土压力系数; p K ——被动土压力系数; ?——土的摩擦角。

()12210111011222222 218tan 45tan 450.756 2220 20.756202015.12 2200 1.50.75620 15.1210tan 45tan 450.704 222K kPa P K c kPa P K z c kPa K P K z c ?σσγ?γ???? ?=?-=?-= ? ???? ?==-=?-?==-=+??-?=???? ?=?-=?-= ? ????? =-()()()222 3223 331332 200.70421511.09 2200 1.5 00.60.704215 11.0921.5tan 45tan 450.463 222200 1.500.60.463211 5.722kPa P K z c kPa K P K z c kPa P K z γ?γγ+?-?=-=-=+?+??-?=-???? ?=?-=?-= ? ????? =-=+?+??-?-=-4224441442223.082118.09825tan 45tan 450.406 22249.850.406227.514.796288.610.406227.50.94c kPa K P K z c kPa P K z c kPa ?γγ=-?=???? ?=?-=?-= ? ????? =-=?-?=-=-=?-?=

破裂压力计算概述

破裂压力计算概述 1引言 1.1破裂压力概念 地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力 1.2破裂压力的获取途径 水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。 该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。碳酸盐岩地层破裂压力与测井响应具有密切的关系。利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。 1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。到目前为止,国内外提出了许多预测地层破裂压力的方法。比较常用的有Eaton法,Stephen法,黄荣樽法等。1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。现场应用表明,修正后的模型具有较高的精度。 以上方法需要确定地层的泊松比、地层的构造应力系数、抗拉强度、室内岩心三轴试验和现场典型的破裂压力试验。

(完整版)土力学土压力计算

第六章 挡土结构物上的土压力 第一节 概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1.静止土压力(0E ) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。 2.主动土压力(a E ) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(p E ) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力p E 。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: p E >0E > a E 在工程中需定量地确定这些土压力值。 Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂土

泥浆各类计算公式

※各重压力的计算 注:1MPa(兆帕)=(千克力)/厘米2 =1000Kpa(千帕) 粗略计算时可认为 Map = 1Kgf/厘米 2 = 100 Kpa 一.地层·井筒内·地层孔隙, (千克力)Kgf/厘米2 =重力加速度,×地层(井筒内) 液体密度, g/cm3×井深/m (1~2)举例:某井深2000米, 所用泥浆密度为1.20;求井底的静液 柱压力·地层 静液柱压力·井筒内静液柱压力·地层孔隙压力 解:1. 井底静液柱压力,MPa =××2000= MPa 2.地层·井筒内静液柱压力·地层孔隙压力, 千克力Kgf /厘米2 =××2000=235千克力/厘米2 二.压力梯度-地层的各种随压力地层所处的垂直深度的增加而升高,垂 直深度每增加1米(或其他长度单位)压力增加的数值称为压 力梯度;通常以千克力/厘米2·米(Kg/cm2·m)作单位; 计算: a.压力梯度, 千克力(Kgf) /厘米2·米=压力, 千克/厘米2÷深(高)度/米; b1.压力梯度, KPa/米=静液压力KPa÷液柱高度/m b2.压力梯度, KPa/米=液体密度× ※泥浆加重剂用量的计算 泥浆加重剂用量/吨={原浆体积/m3×重晶石密度× (欲加重泥浆密度-原浆密度)} ÷(加重剂密度-欲加重泥浆密度)

※混浆密度计算 混浆密度g/cm3 =(原浆密度×原浆体积m3 +混浆密度×混浆体积m3)÷(原浆体积m3+混浆体积m3) ※聚合物胶液的配制 列:欲配制水:大分子:中(小)分子:=100 m3::的聚合物胶液40m3, 大.小分子各需多少 计算: 一.大分子量=40m3×%(吨)﹦(吨) 二.小分子量﹦40 m3×%=(吨) ※压井时泥浆密度的计算: 1.地层压力,MPa=关井立管压力,MPa+(重力加速度,×泥浆密度,g/cm3×井 深,m) 2. 压井时的泥浆密度,g/cm3=(原泥浆密度+ 安全附加泥浆密 度,g/cm3 )+( 100×关井立管压力/MPa÷井深/m) 例:某井用密度的泥浆钻至1000米时发生井喷, 关井后观察, 立管压力=,P套=,若取安全附加泥浆密度=1.67 g/cm3 问:关井时应采用泥浆密度为多大合适 解:+{100×(+)}÷1000=1.56 g/cm3的泥浆密度合适

地震波阻抗资料预测地层压力总结

地震波阻抗资料预测地层压力 1968年,潘贝克提出利用地震层速度预测地层压力的方法。随着岩石物理研究的不断深入和地震技术的不断提高,使地震技术预测地层压力成为可能,其精度大幅度提高。 在地震压力预测中,经常使用的资料是地震速度谱资料和地震反演得到的地震波阻抗资料。由于地震速度谱资料在纵向上测点较少,不能满足压力精确预测的需要。反演波阻抗资料在纵向上是连续的,可用的信息较多,是压力预测的主要基础资料。 地震波在地层介质中的传播速度与地层的岩性、岩层的压实程度、岩层的埋藏深度以及岩层的地质时代等因素有关,一般情况下,地震波的传播速度随地层埋藏深度的加大而增加。因此,同样岩性的岩石,埋藏深、时代老,要比埋藏浅、时代新的岩石波传播速度要大。但在高压地层段内,由于岩层孔隙空间充填气体或液体,压力的增大和岩石密度的减小,使波在液体和气体中传播的速度要低于在岩石骨架固体中的传播速度。因而,孔隙度和波传播速度有反比关系,即同样岩性岩石,当孔隙度大时,其速度相对较小。孔隙度的变化意味着岩石密度的变化,它同密度亦有反比的关系,即孔隙度变大,密度相对减小。因此,速度的变化实际随岩石密度的增大而增大。综上分析,地震波在地层介质中的传播速度与岩层埋藏深度、岩石沉积年代和岩石密度有正比关系,与岩石孔隙度变化成反比关系,这些特性与常规声波测井的规律性是一致的,因此,用地震波进行地层压力预测的理论是可行的。 异常高压地层具有高孔隙度、低密度的特点,因而在地震速度上具有低速的特征。在浅层正常压实带,地震层速度随着深度的增加而不断增大,具有很强的规律性。但是,若在地下某一深度出现异常高压,则表明该深度的地层处于欠压实状态,其孔隙度比相同深度处正常压实的孔隙度高,地震层速度比相同深度处正常压实的地震层速度小。利用这一特征,即地震层速度在同一深度上处于异常压实带和处于正常压实带的差异,可以定量的计算地下地层压力。 地震层速度预测地层压力的方法,常用的有图解法和公式法两大类。图解法包括等效深度图解法、比值法和量版法三种。公式法包括压实平衡法、等效深度公式计算法、Eaton 法、Fillipone 法和Martinez 法等。 尽管如此,关于异常压力形成机理仍存在许多有争议的问题,异常压力数值模拟也存在一些地质影响因素难以量化的问题,另外,异常压力对油气成藏的控制作用也不十分明确。 Fillippone 法与刘震法 Fillippone 法是有加利福尼亚联合石油公司的W.R.Fillppone 提出的。他在1978年和1982年通过对墨西哥湾等地区的测井、钻井、地震等多方面资料的综合研究,先后提出两套不依赖正常压实趋势线的简单而实用的计算公式,并在墨西哥湾等地的实际应用中取得了良好的效果,具体公式如下 max max min i f ov v v P P v v -=- (!)

土体主动、主动土压力概念及计算公式

[指南]土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。 a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2来表示。由图可知P,P,P。 poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图

6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。土体中产生的两组破裂面与xp

,45:,水平面的夹角为。 2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322 ,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa 1)填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22 由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5粘性土主动土压力分布图 当z=H时p=γHK-2cK aaa 在图中,压力为零的深度z,可由p=0的条件代入式(6-3)求得 0a 2cz, (6-4) 0,Ka 在z深度范围内p为负值,但土与墙之间不可能产生拉应力,说明在z深度范围内,0a0 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的阴影部分面积,即a 1aaa0,,,,P(HK2cK)(Hz)2 (6-5) 212c2,,,,aaHK2cHK,2

地层压力

地层压力(formation pressure)是指由于沉积物的压实作用,地层中孔隙流体(油、气、水)所承受的压力,又称之孔隙流体压力(pore fluid pressure)或孔隙压力(pore pressure)。正常压实情况下,孔隙流体压力与静水压力一致,其大小取决于流体的密度和液柱的垂直高度,凡是偏离静水压力的流体压力即称之为异常地层压力(abnormal pres.sure),简称异常压力。孔隙流体压力低于静水压力时称为异常低压或欠压,这种现象主要发现于某些致密气层砂岩和遭受较强烈剥蚀的盆地。孔隙流体压力高于静水压力时称为异常高压或超压,其上限为地层破裂压力(相当于最小水平应力),可接近甚至达到上覆地层压力。地层压力分类常用的指标是地层压力梯度(单位长度内随深度的地层压力增量,单位为MPa/km)和压力系数(实际地层压力与静水压力之比)。 本文来自: 博研石油论坛详细出处参考https://www.doczj.com/doc/744101333.html,/thread-27166-1-5-1.html 压力系数: 指实测地层压力与同深度静水压力之比值。压力系数是衡量地层压力是否正常的一个指标。压力系数为0.8~1.2为正常压力,大于1.2称高压异常,低于0.8为低压异常。摘自《油气田开发常用名词解释》 压力梯度: 首先理解什么是梯度:假设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则其变化称为该物理参数的梯度,也即该物理参数的变化率。如果参数为速度、浓度或温度,则分别称为速度梯度、浓度梯度或温度梯度。 当涉及到压力的变化率时,即为压力梯度。 区别之处就在于,压力系数为衡量地层压力是否正常的一个指标,压力梯度为压力的变化率。 压力系数就是实际地层压力与同深度静水压力之比。 压力梯度即地层压力随深度的变化率。 地层的压力系数等于从地面算起,地层深度每增加10米时压力的增量。 压力梯度是指地层压力随地层深度的变化率。

压力预测技术研究

随钻地层压力预测技术应用探讨 周生友李恩重杨伟彪雷运木张根法 (河南石油勘探局地质录井公司) 在以往陆上和海上石油勘探的实践中,普遍存在着异常高压地层,这些广泛分布的异常高压地层首先影响的是钻井安全,如果未能及早检测或预测可能钻遇到的异常高压地层,使用的钻井液柱压力小于地层压力时,会引起井涌或井喷事故;反之,钻井液柱压力大于地层的破裂压力梯度时,又将导致井漏,易造成油气储层的污染,使气测仪检测不到气测异常显示,在测试时不能出油气,导致压死油气储层的现象,因而随钻预测地层压力技术就显得格外重要。 一、地层压力形成的原因 异常高压地层分布广泛,从新生界第四系更新统到古生界寒武系、震旦系都存在。它的形成原因有多种解释,大多数学者认为,至少有六种机理可以用来解释沉积盆地内异常高压地层的形成原因,分别是压实效应、成岩作用、密度差的作用、构造应力及构造活动、异常地温梯度、油气生成等。异常高压有可能是某个原因造成的,但往往是几个因素综合作用的结果。在引起异常高压的诸多原因中,压实作用是引起超压异常最基本、最主要的机理。随着埋藏深度的增加和温度的增加,孔隙水膨胀,而孔隙空间随地静载荷的增加而减小,因此,只要有足够的渗流通道,才能使地层水迅速排出、保持正常的地层压力。换句话说,只要孔隙水按自然压实速度排出,孔隙压力才可保持水静压力沉积增加,上覆岩层重量增加,使基岩应力继续增加以平衡增加的上覆岩层压力。但如果水的通道被堵塞或严重受阻,逐渐增多的上覆沉积物重量,只能由孔隙内的流体承担,从而使孔隙压力高于静液压力而形成异常高压。 二、几种随钻地层压力检测技术原理及计算方法 对于随钻地层压力检测技术来说,已经不是什么新技术,它诞生于上世纪60年代,发展在80年代,尤其是80年代中期我国大量引进综合录井仪以后,使地层压力检测技术的应用迅速升温。当时,钻井利用人工随钻采集钻井工程资料进行地层压力检测,物探利用地震资料进行地层压力预测,测井利用声波和密度测井资料进行地层压力预测,录井利用综合录井仪进行随钻地层压力检测,使这项技术成为一时流行的技术。因为录井采用综合录井仪的计算机实时处理的随钻地层压力检测技术,因具有直接性、实时性和准确性而独占鳌头。

地层压力计算

地层压力快速测试解释技术 1.地层压力分布原理: 常规的地层压力是严格遵循达西定律,对于油井的分布曲线应 该是这个规律的。 在不同的压力点其恢复曲线也不同,但最终的地层压力在影响 半径处是相同的。 p r 由上图表明流动过程中如果确定不同的初始压力点,也可以计算出地层re(影响半径)处的地层压力 2压力恢复曲线的测试: 压力恢复曲线的测试是油田油井常用的测压手段,起测试的压力数据是压力-时间变化曲线。常规的测试一般测试地层压力需要3天

以上的时间,而低渗透油藏需要10多天甚至一个月以上的时间来判断和计算地层压力。 P t 3地层压力快速计算的原理: 由地层压力分布曲线和压力测试曲线,看,在同一个井底压力的初始点,测试曲线稍微滞后一点。但压力趋势是一致的,也就是说压力恢复曲线的测试实际就是压力分布曲线的测试。 在这个基础上,我们将t时刻的井底测试压力认为是距生产井r 处的压力传递过来的反应。于是就有了 pt=pr pt----t时刻的井底测试压力 pr---r处的压力于t时刻传递到井筒

基于上述原理,我们就可以利用短时间内的压力恢复曲线来计算地层re处的压力了。 4测试时间要求: 因为地层恢复过程有一些不可预料的因素,而且,测试仪器的精度等一些客观因素,在分析计算的时候,需要大量的数据来修正计算误差。所以低渗透游藏一般测试时间安排至少一天,如果是常规油藏,测试时间4-6小时就可。 测试数据密度点要求:因为是短时间测试,需要高密度和高精度的压力传感器,一般设置为30秒一个测试压力点即可。 5低渗透油藏的新的测试方法: 由于油井恢复速度慢,至少一天的时间,担心影响产量,可以测试对应水井,但要求是水井的注水压力高。在地面用压力传感器和计算机自动化采集压降数据4-6小时即可。这样是以水井的影响半径处的地层压力来替代油井的测试。以减少测试时间。 6 技术优点: 不占大量的生产时间,快速动态的分析地层压力变化。计算方法合理,利用测试密度点是为了得到地层压力分布曲线的曲率,尤其适应低渗透油藏的测试计算。因为老油田具备一些大孔道,其低渗透层的压力恢复规律反而被掩盖了。必须通过分层解释技术来分析。 7 技术要求: 要求开放式测试数据,不下封隔器,常规的测压数据就可以,水

朗肯土压力计算

5.3 朗肯土压力理论 朗肯土压力理论是根据半空间的应力状态和土的极限平衡条件而得出的土压力计算方法。 图5-5(a)表示一表面为水平面的半空间,即土体向下和沿水平方向都伸展至无穷,在离地表z 处取一单位微体M ,当整个土体都处于静止状态时,各点都处于弹性平衡状态。设土的重度为,显然M 单元水平截面上的法向应力等于该处土的自重应力,即: 而竖直截面上的法向应力为: 由于土体内每一竖直面都是对称面,因此竖直截面和水平截面上的剪应力都等于零,因而相应截面上的法向应力和都是主应力,此时的应力状态用莫尔圆表示为如图5-5(b)所示的圆Ⅰ,由于该点处于弹性平衡状态,故莫尔圆没有和抗剪强度包线相切。 图5-5 半空间的极限平衡状态 设想由于某种原因将使整个土体在水平方向均匀地伸展或压缩,使土体由弹性平衡状态转为塑性平衡状态。如果土体在水平方向伸展,则M 单元在水平截面上的法向应力不变而竖直截面上的法向应力却逐渐减少,直至满足极限平衡条件为止(称为主动朗肯状态),此时达最低限值,因此,是小主应力,而是大主应力,并且莫尔圆与抗剪强度包线相切,如图5-5(b)圆Ⅱ所示。若土体继续伸展,则只能造成塑性流动,而不致改变其应力状态。反之,如果土体在水平方向压缩,那末不断增加而却仍保持不变,直到满足极限平衡条件(称为被动朗肯状态)时达最大限值,这时,是大主应力而是小主应力,莫尔圆为图5-5(b)中的圆Ⅲ。 由于土体处于主动朗肯状态时大主应力所作用的面是水平面,故剪切破坏 面与竖直面的夹角为[图5-5(c)],当土体处于被动朗肯状态时,大主应力所作用的面是竖直面,故剪切破坏面与水平面的夹角为[图5-γz z γσ=z K z γσ0=z σx σz σz σa σa σz σx σz σx σp σp σz σ??? ? ?-?245???? ? ?-?245?

地层压力预测件Predict界面翻译

一、开始一个新的项目 Create a Project: Step 1—Specify Project General Information 创建一个项目:步骤1—具体项目的概要信息 Project location 项目位置 Project name 项目名字 Description 描述 Analyst 分析人员 Default depth unit 默认深度单位 Copy library as a well into project 复制库文件作为一口井到项目中

Create a well—step 1: Specify Data Source 创建一口井—步骤1:具体的数据来源Source well 井的来源 None 没有 From a well in this project (copy well information only) 来自于这个项目中的一口井(只复制井的信息) From a well in this project (Copy well information and all data inside this well) 来自于这个项目中的一口井(复制井的信息和这口井的所有数据) From an LAS file 来自一个LAS文件 View generation 视图生成 Automatically create views using the system default views 用系统默认的视图自动创建视图 View name generate schemes 视图名字产生方案

Create a Well – Step2: Collect Well General Information 创建一口井—步骤2:选择井的概要信息 Well name 井的名子 Description 描述 Operator 操作人员 Analyst 分析人员 Unique Well Identifier 井的唯一标识符 Rig name 钻探设备名字 Status状态 Well type 井的类型 Security level 安全级别 Spud date 开钻日期 Completion date 完钻日期 Depth unit 深度单位 Air gap 空气间隙 Water depth 水深 Elevation 海拔 Total MD 总测量深度 Total TVD 总实际垂直深度

准确求取地层压力

一,准确求取地层压力 发现溢流显示应立即按关井程序迅速关井;关井后应及时,准确求得关井立压,关井套压,并观察,记录溢流量. 1.压力传递时间.当溢流发生时,井底周围地层液体已开始进入井内,这时地层液体压力下降,在关井后的一段时间内,井底压力并不等于地层压力.在一段时间以后,井底压力将由于地层压力而升高,直至等于地层压力.对于具有良好渗透率的地层,井底压力与地层压力间建立起平衡需10~15分钟,因此,关井后在套压不超过允许关井最高压力的情况下,关井时间不少于15分钟,求取立压,套压以准确的计算地层压力,为压井计算提供依据. 2.接回压凡尔时立压求取方法:慢慢的启动泵并继续泵入,到泵压有一突然升高时留心观察套压,当套压开始升高时停泵,读出套压即将升高时的立管压力即得关井立管压力.如套压升高到关井套压以上某个值,则从读出的立管压力值中减去套压升高值即得关井立管压力. 3.不同工况下的应急措施: (1)起,下钻中发生溢流,应尽快抢接回压凡尔.只要条件允许,控制溢流量在允许的范围内,尽可能多下钻具,然后关井. (2)电测时发生溢流应尽快起出电缆.若溢流量将超过关井规定值,则立即砍断电缆并按空井溢流处理. (3)任何情况下关井,其最大允许关井套压不得超过井口装置额定工作压力,套管抗内压强度的80%和薄弱地层破裂压力所允许关井套压三

者中的最小值.在允许关井套压值范围内严禁放喷. 4.相关计算: (1)地层压力PP PP=Pd+0.0098γH Pd:关井立管压力,MPa. γ:钻柱内未受油气侵泥浆密度,g/cm3. H:井深,m. (2)压井泥浆密度γ1 γ1= PP/(0.0098*H) (g/cm3) 或 Δγ= Pd/(0.0098*H) (g/cm3) Δγ:平衡溢流时所需的泥浆密度增值. (3)不同密度下关井允许最大套压值P2 P2=P-0.0098γ2H=P1-0.0098(γ2-γ)H (MPa) P=0.0098γH+P1 (MPa) P:套管角或井漏堵漏承压试验时该处所承受的最大压力. P1:关井试压时套压值,MPa. γ:试压时泥浆密度,g/cm3. γ2:溢流关井时的泥浆密度,g/cm3. (4)低泵冲试验或计算求取低泵冲循环泵压PCI. 使用排量大约为正常钻进的1/3~1/2排量循环,测得其泵压值;其对应泵压值约为正常钻进时的1/9~1/4泵压(Q∝P2). (5)压井初始循环压力PTi

地层压力预测技术参考Word

地层压力预测技术 第一章大庆油田的地质特点 大庆油田位于松辽盆地北部,其储油层属于内陆湖盆地叶状复合三角洲沉积,是一个大型的多层砂岩油田,共有三套含油组合,即上部黑帝庙、中部萨葡高和下部扶杨含油组合。由于湖盆频繁而广泛的变化,形成了泛滥平原、分流平原、三角洲内外前缘等不同的沉积相带,在萨尔图、葡萄花、高台子含油层段内,由于不同的沉积时期和不同的沉积环境,又形成了不同类型的沉积砂体和沉积旋回,因此造成其平面上和垂向上的严重非均质性。 由于这种特定的内陆湖相沉积环境,构成了大庆油田的许多基本特点。一是油层多,含油井段长,储量丰度高。萨尔图、葡萄花、高台子油层组,约有49~130多个单层,含油井段几十米到几百米,每平方公里的储量从几十万吨到几百万吨不等。二是油层厚度大,差异也大,最薄的0.2m,一般1m~3m,最大单层厚度可达10m~13m。三是渗透率差异大,空气渗透率最低0.02μm2,最高达5μm2。在纵向剖面上,形成了砂岩与泥岩,厚层与薄层,高渗透层与低渗透层交错分布的复杂情况。 第二章浅气层分布规律及下表层原则 2.1 浅气层的分布规律 浅气层在大庆油田尤其是大庆油田长垣北部的喇、萨、

杏油田具有广泛的分布。在构造轴部的嫩二段顶部粉砂岩及泥质粉砂岩层,嫩三段的粉砂岩及泥质粉砂岩层,嫩四段的细砂岩及粉砂岩层,只要具备以下三条件,就能形成浅气层(在外围就是黑帝庙油层)。

1)具备2.5m视电阻率为10Ω·m,自然电位3mv的砂岩。 2)该砂岩必须在一定海拔深度以上才能形成气层。 3) 同时形成一定的局部构造圈闭及断层遮挡条件(即断层断裂后相对隆起的下盘被断层遮挡),有利于浅气层的聚集。,萨尔图、杏树岗油田浅气含气范围见表1-1,喇嘛甸油田浅气含气范围见表1-2。 图1-1 浅气层分区示意图 表1-1 萨尔图、杏树岗油田浅气层分布及防喷地质要求

相关主题
文本预览
相关文档 最新文档