当前位置:文档之家› 惯性信息辅助的载波相位模糊度求解算法

惯性信息辅助的载波相位模糊度求解算法

惯性信息辅助的载波相位模糊度求解算法
惯性信息辅助的载波相位模糊度求解算法

相位解缠算法研究

一、引言 合成孔径雷达干涉测量技术(synthetic aperture radar interferometry, InASR)将合成孔径雷达成像技术与干涉测量技术成功地进行了结合,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确的测量出图像上每一点的三维位置和变化信息。 合成孔径雷达干涉测量技术是正在发展中的极具潜力的微波遥感新技术,其诞生至今已近30年。起初它主要应用于生成数字高程模型(DEM)和制图,后来很快被扩展为差分干涉技术( differential InSAR , DInSAR)并应用于测量微小的地表形变,它已在研究地震形变、火山运动、冰川漂移、城市沉降以及山体滑坡等方面表现出极好的前景。特别,DInSAR具有高形变敏感度、高空间分辨率、几乎不受云雨天气制约和空中遥感等突出的技术优势,它是基于面观测的空间大地测量新技术,可补充已有的基于点观测的低空间分辨率大地测量技术如全球定位系统(GPS)、甚长基线干涉(VLBI)和精密水准等。尤其InSAR在地球动力学方面的研究最令人瞩目。 二维相位解缠是InSAR 数据处理流程中重要步骤之一,也是主要误差来源,无论是获取数字高程模型还是获取地表形变信息,其精确程度都高度依赖于有效的相位解缠。因此,本人在课程期间对相位解缠的相关文献进行了阅读。 二、InSAR基本原理

用两副雷达天线代替两个光源1S ,2S ,对地面发射相干信号,将 得到类似的条纹图。因为雷达信号与光线本质上都是电磁波,所以只要保证雷达天线载具运行轨道的稳定,那么两个信号到达地面上某一点处的路程差是确定的,只与该点在地面上的位置有关。在 InSAR 干涉测量中有两种模式,一种是在载具(卫星或飞机)上搭载一具天线,而载具两次通过不同轨道航线飞经目标地域上空,此种称之为单天线双航过模式;另一种在载具上搭载两副天线,只飞经目标地域上空一次,此种方式称之为双天线单航过模式。不论是哪种方式都可以用图 2.2 来模拟并作出几何解释。 在测量中两副天线或两次航过接收的数据可以各获得对地面同一区域的两幅包含幅值与相位信息的二维复数据图像,分别以1S ,2S 表示为 111114||exp()||exp()j r S S S π?λ==

载波相位差分

载波相位差分原理 由于自身结构及测量中随机噪声误差的限制测距码差分GPS 仅可满足m 级动态定位需要;载波相位测量噪声误差远低于测距码,在静态相对定位中已实现10-6~10-8的精度,但整周未知数求解需进行长时间的静止观测,数据需事后处理,限制了该方法在动态定位中的应用。然而快速逼近整周模糊度技术的出现使利用载波相位差分技术实时求解载体位置成为可能。具有快速高精度定位功能的载波相位差分测量技术,简称RTK (real time Kinematic )技术。 载波相位差分定位技术是在基准站上安置一台GPS 接收机,对卫星进行连续观测,并通过无线电传输设备实时地将观测数据及测站坐标信息传送给用户站;用户站在接收卫星信号的同时通过无线接收设备接收基准站信息,根据相对定位原理实时处理数据并以cm 级精度给出用户站的三维坐标。载波相位差分定位技术可分为修正法和求差法:前者将载波相位的修正量发送给用户站,对用户站的载波相位进行改正实现定位;后者将基准站的载波相位发送给用户,由用户站将观测值求差进行坐标解算。 星站间的相位差值由三部分组成 ()()j i j i j i j i t t N t N δ?+-+=Φ00 (1) 式中()0t N j i 为起始整周模糊度,()0t t N j i -为从起始时刻至观测时刻的整周变化值,j i δ?为观测相位的小数部分。则星站间距离为载波波长与星站相位差的乘积,即

()()()j i j i j i j i t t N t N δ?λρ+-+=00~ (2) 若在基准站利用已知坐标和卫星星历可求得星站间的真实距离j i ρ,星站间伪距观测值则可表示为 ()i i j i j i j i j i j i V M T I t t c ++++-?+=δδδδδρρ~ (3) 公式中i M δ为多路径效应,i V 为GPS 接收机噪声。在基准站可求出伪距改正数 ()i i j i j i j i j i j i j i V M T I t t c ++++-?=-=δδδδδρρδρ~ (4) 用此改正数对用户站伪距观测值进行修正,有 ()()() ()() i k i k j i j k j i j k i k j k j i j k V V M M T T I I t t c -+-+-+-+-?+=-δδδδδδδδρδρρ~ (5) 当基准站和用户站之间的距离小于30km ,可认为j i j k I I δδ=,j i j k T T δδ=,则 ()()()()()() δρ δδδδρδρρ?+-+-+-= -+-+-?+=-2 2 2 ~k j k j k j i k i k i k j k j i j k Z Z Y Y X X V V M M t t c (6) 式中()()()i k i k i k V V M M t t c -+-+-?=?δδδδδρ。 将载波相位伪距观测值(2)代入上式,则可得 ()()()()()()( ) ()()() δρ δ?δ?λλλρρρρδρρ?+-+-+-= -+---+-+=+-=-2 2 2 000~~~k j k j k j j i j k j i j k j i j k j i j i j i j k j i j k Z Z Y Y X X t t N t t N t N t N (7) 上式中令)()()(000t N t N t N j i j k j -=为起始整周数之差,在观测过程中若卫星跟踪不失锁,)(0t N j 即为常数,令载波相位测量差值 ()()()() j i j k j i j k t t N t t N δ?δ?λλ?-+---=?00 (7)式可表示为

电力载波通信相关知识

一、电力载波通信相关知识简介 1、通信系统的组成 通信的目的是为了交换信息。一般通信系统的组成可用下图概括: 信源是信息产生的 来源,是一些可视或可闻的信息,这些信息通常都是些非电信号,要转换为电信号才能进行传输,这个工作通常由输入设备完成,如电话机、电报机、摄像机。交换设备是沟通输入设备和发送设备的接续装置,(在其他通信系统有可能不需要这一过程,电信号直接送入到发送设备进行调制)。 发送设备的任务是将各种信息的电信号经过处理(调制)使之满足信道传输的要求。 信道是信息传输的媒介,概括来讲分为有线和无线两种,其中有线传输包括:电力载波、光纤通信;无线传输包括微波、特高频等。 接收设备和输出设备与发送设备和输入设备的作用相反。 1.1载波通信系统的组成 载波通信系统的组成可以用下图表示: 上图中: 用户通常是电话机或远动设备专用的调制解调器; 交换机是接通电话用户的交换机接续设备,分人工和自动接续两种;载波机相当于通信系统的发送和接收设备,它的作用是把语音信号转换成适合线路传输的频率的信号。或将线路传输的高频信号还原成语音信号。 高频通道在电力系统中通常是指,由高频电缆、结合滤波器、耦合电容器、高压线路等组成的传输通道。 2、载波通信系统的类型和应用 在载波通信系统中,根据传输媒介的不同,载波通信可以分为以下几种类型:(1)架空明线载波通信 架空明线是指沿专用通信杆架设的金属线(铁线或铜线),90年代以前,架空明线载波通信在我国长途通信中曾被大量使用,目前,已被光纤通信取代。(2)对称电缆载波通信 对称电缆是埋在地下的一种电缆,电缆分缆芯和护层两部分,传输频带为12-252kHz,可传输60路电话。 (3)同轴电缆载波通信 同轴电缆可架设或埋地,根据同轴线缆的不同,最高传输频率可达60MHz,载波通信容量最高可达13200路。 (4)电力载波通信 电力载波通信是在工频为50Hz的电力输电线路上传输的一种载波通信。根据所使用的耦合方式的不同,分为相地结合和相相结合高频通道。通信所采用有载波通信为相地结合的高频通道、保护专用载波收发信机通常采用相相结合的高频通

差分GPS定位

差分GPS定位(DGPS)简介 随着GPS技术的发展和完善,应用领域的进一步开拓,人们越来越重视利用差分GPS技术来改善定位性能。它使用一台GPS基准接收机和一台用户接收机,利用实时或事后处理技术,就可以使用户测量时消去公共的误差源电离层和对流层效应,并能将卫星钟误差和星历误差消除,因此,现在发展差分GPS技术就显得越来越重要。 GPS定位是利用一组卫星的伪距、星历、卫星发射时间等观测量来实现的,同时还必须知道用户钟差。因此,要获得地面点的三维坐标,必须对4颗卫星进行测量。在这一定位过程中,存在着三部分误差。一部分是对每一个用户接收机所公有的,例如,卫星钟误差、星历误差、电离层误差、对流层误差等;第二部分为不能由用户测量或由校正模型来计算的传播延迟误差;第三部分为各用户接收机所固有的误差,例如内部噪声、通道延迟、多径效应等。 利用差分GPS定位技术(DGPS),除第三部分误差无法消除外,第一部分误差完全可以消除,第二部分误差大部分可以消除,其主要取决于基准接收机和用户接收机的距离。差分GPS定位已将卫星钟误差和星历误差消除,并将电离层延迟和对流层延迟误差部分消除,定位精度大大提高。所以,差分GPS定位技术(DGPS)在最近几年中得到了迅速发展和广泛应用。 根据差分GPS基准站发送的信息方式可将差分GPS定位技术(DGPS)分为三类,即:位置差分、伪距差分和相位差分。这三类差分方式的工作原理是相同的,即都是由基准站发送改正数,由用户站接收并对其测量结果进行改正,以获得精确的定位结果。所不同的是,发送改正数的具体内容不一样,其差分定位精度也不同。 1. 位置差分原理 这是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。 安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。由于存在着轨道误差、时钟误差、SA影响、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正。 最后得到的改正后的用户坐标已消去了基准站和用户站的共同误差,例如卫星轨道误差、SA影响、大气影响等,提高了定位精度。以上先决条件是基准站和用户站观测同一组卫星的情况。位置差分法适用于用户与基准站间距离在100km以内的情况。 2. 伪距差分原理 伪距差分是目前用途最广的一种技术。几乎所有的商用差分GPS接收机均采用这种技术。国际海事无线电委员会推荐的RTCM SC-104也采用了这种技术。 在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较并求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

载波相位动态实时差分RTK技术

载波相位动态实时差分RTK技术 常规的GPS测量方法,如静态、快速静态、动态测量都需要事后进行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。 高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时不到一秒钟。流动站可处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持四颗以上卫星相位观测值的跟踪和必要的几何图形,则流动站可随时给出厘米级定位结果。 RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要求基准站接收机实时地把观测数据(伪距观测值,相位观测值)及已知数据传输给流动站接收机,数据量比较大,一般都要求9600的波特率,这在无线电上不难实现。 RTK定位技术可广泛用于: 1.各种控制测量传统的大地测量、工程控制测量采用三角网、导线网方法来施测,不仅费工费时,要求点间通视,而且精度分布不均匀,且在外业不知精度如何,采用常规的GPS静态测量、快速静态、伪动态方法,在外业测设过程中不能实时知道定位精度,如果测设完成后,回到内业处理后发现精度不合要求,还必须返测,而采用RTK来进行控制测量,能够实时知道定位精度,如果点位精度要求满足了,用户就可以停止观测了,而且知道观测质量如何,这样可以大大提高作业效率。如果把RTK用于公路控制测量、电子线路控制测量、水利工程控制测量、大地测量、则不仅可以大大减少人力强度、节省费用,而且大大提高工作效率,测一个控制点在几分钟甚至于几秒钟内就可完成。 2.地形测图过去测地形图时一般首先要在测区建立图根控制点,然后在图根控制点上架上全站仪或经纬仪配合小平板测图,现在发展到外业用全站仪和电子手簿配合地物编码,利用大比例尺测图软件来进行测图,甚至于发展到最近的外业电子平板测图等等,都要求在测站上测四周的地形地貌等碎部点,这些碎部点都与测站通视,而且一般要求至少2-3人操作,需要在拼图时一旦精度不合要求还得到外业去返测,现在采用RTK时,仅需一人背着仪器在要测的地形地貌碎部点呆上一二秒种,并同时输入特征编码,通过手簿可以实时知道点位精度,把一个区域测完后回到室内,由专业的软件接口就可以输出所要求的地形图,这样用RTK仅需一人操作,不要求点间通视,大大提高了工作效率,采用RTK配合电子手簿可以测设各种地形图,如普通测图、铁路线路带状地形图的测设,公路管线地形图的测设,配合测深仪可以用于测水库地形图,航海海洋测图等等。 3.放样程放样是测量一个应用分支,它要求通过一定方法采用一定仪器把人为设计好的点位在实地给标定出来,过去采用常规的放样方法很多,如经纬仪交会放样,全站仪的边角放样等等,一般要放样出一个设计点位时,往往需要来回移动目标,而且要2-3人操作,同时在放样过程中还要求点间通视情况良好,在生产应用上效率不是很高,有时放样中遇到困难的情况会借助于很多方法才能放样,如果采用RTK技术放样时,仅需把设计好的点位坐标输入到电子手簿中,背着GPS接收机,它会提醒你走到要放样点的位置,既迅速又方便,由于GPS是通过坐标来直接放样的,而且精度很高也很均匀,因而在外业放样中效率会大大提高,且只需一个人操作

通信原理知识点汇编

通信原理复习资料 一、基本概念 第一章 1、模拟通信系统模型 模拟通信系统模型 模拟通信系统是利用模拟信号来传递信息的通信系统 2、数字通信系统模型 噪声源 数字通信系统模型 数字通信系统是利用数字信号来传递信息的通信系统 3、数字通信的特点 优点: (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3 )便于处理、变换、存储 (4 )便于将来自不同信源的信号综合到一起传输 (5 )易于集成,使通信设备微型化,重量轻 (6)易于加密处理,且保密性好 缺点: 更多精品文档 (1) 需要较大的传输带宽 (2) 对同步要求高 4、 通信系统的分类 模拟信息源 * 调制器 信 道编码 数 字 调 制 信 道 译 码 信 源 译 码 受信者

(1)按通信业务分类:电报通信系统、电话通信系统、数据通信系统、图像通信系统 (2)按调制方式分类:基带传输系统和带通(调制)传输系统 (3 )调制传输系统又分为多种调制,详见书中表1-1 (4)按信号特征分类:模拟通信系统和数字通信系统 (5)按传输媒介分类:有线通信系统和无线通信系统 (6)按工作波段分类:长波通信、中波通信、短波通信 (7 )按信号复用方式分类:频分复用、时分复用、码分复用 5、通信系统的主要性能指标:有效性和可靠性 有效性:指传输一定信息量时所占用的信道资源(频带宽度和时间间隔),或者说是传输的速度”可题。 可靠性:指接收信息的准确程度,也就是传输的质量”问题。 (1 )模拟通信系统: 有效性:可用有效传输频带来度量。 可靠性:可用接收端最终输出信噪比来度量。 (2 )数字通信系统: 有效性:用传输速率和频带利用率来衡量。 可靠性:常用误码率和误信率表示。 码元传输速率R B :定义为单位时间(每秒)传送码元的数目,单位为波特(Baud ) 信息传输速率R b :定义为单位时间内传递的平均信息量或比特数,单位为比特/秒 6、通信的目的:传递消息中所包含的信息 7、通信方式可分为:单工、半双工和全双工通信 8、信息量是对信息发生的概率(不确定性)的度量。一个二讲制码元含1b的信息量;一个 M进制码元含有log z M比特的信息量。等概率发送时,信息源的熵有_________________________ 更多精品文档

通信原理知识点

第一章 1.通信的目的是传输消息中所包含的息。消息是信息的物理表现形式,信息是消息的有效内容。.信号是消息的传输载体。 2.根据携载消息的信号参量是连续取值还是离散取值,信号分为模拟信号和数字信号., 3.通信系统有不同的分类方法。按照信道中所传输的是模拟信号还是数字信号(信号特征分类),相应地把通信系统分成模拟通信系统和数字通信系统。按调制方式分类:基带传输系统和带通(调制)传输系统。 4.数字通信已成为当前通信技术的主流。 5.与模拟通信相比,数字通信系统具有抗干扰能力强,可消除噪声积累;差错可控;数字处理灵活,可以将来自不同信源的信号综合刭一起传输;易集成,成本低;保密性好等优点。缺点是占用带宽大,同步要求高。 6.按消息传递的方向与时间关系,通信方式可分为单工、半双工及全双工通信。 7.按数据码先排列的顾序可分为并行传输和串行传输。 8.信息量是对消息发生的概率(不确定性)的度量。 9.一个二进制码元含1b的信息量;一个M进制码元含有log2M比特的信息量。等概率发送时,信源的熵有最大值。 10.有效性和可靠性是通信系统的两个主要指标。两者相互矛盾而又相对统一,且可互换。在模拟通信系统中,有效性可用带宽衡量,可靠性可用输出信噪比衡量。 11.在数字通信系统中,有效性用频带利用率表示,可靠性用误码率、误信率表示。 12.信息速率是每秒发送的比特数;码元速率是每秒发送的码元个数。 13.码元速率在数值上小于等于信息速率。码元速率决定了发送信号所需的传输带宽。 第二章 14.确知信号按照其强度可以分为能量信号和功率信号。功率信号按照其有无周期性划分,又可以分为周期性信号和非周期性信号。 15.能量信号的振幅和持续时间都是有限的,其能量有限,(在无限长的时间上)平均功率为零。功率信号的持续时间无限,故其能量为无穷大。 16.确知信号的性质可以从频域和时域两方面研究。 17.确知信号在频域中的性质有4种,即频谱、频谱密度、能量谱密度和功率谱密度。 18.周期性功率信号的波形可以用傅里叶级数表示,级数的各项构成信号的离散频谱,其单位是V。 19.能量信号的波形可以用傅里叶变换表示,波形变换得出的函数是信号的频谱密度,其单位是V/Hz 。 20.只要引入冲激函数,我们同样可以对于一个功率信号求出其频谱密度。 21.能量谱密度是能量信号的能量在频域中的分布,其单位是J/Hz。功率谱密度则是功率信号的功率在频域中的分布,其单位是W/Hz。 22.周期性信号的功率谱密度是由离散谱线组成的,这些谱线就是信号在各次谐波上的功率分量|Cn|2,称为功率谱,其单位为w。但若用δ函数表示此谱线。则它可以写成功率谱密度|C(f)|2δ(f-nf0)的形式。 23.确知信号在时域中的特性主要有自相关函数和互相天函数。 24.自相关函数反映一个信号在不同时间上取值的关联程度。

INSAR相位解缠方法比较分析

INSAR相位解缠方法比较分析 【摘要】合成孔径雷达干涉测量技术(Interferometric Synthetic Apeurtre Radar,简称InSAR)是近二十年发展起来的一种先进的空间观测技术,它通过对同一地区的两幅单视复数图像进行配准、干涉、去除平地效应、滤波、解缠、地理编码等一系列处理,最终获取DEM。相位解缠是InSAR数据处理的关键技术和难点,也是InSAR产品的主要误差源。本文选取相干性较好四组SAR影像对进行实验,借助于Mcrosoft visual C++6.0平台和Matlab平台,对六种最常用的解缠方法从解缠精度和效率两个方面来分析比较各种方法。 【关键词】InSAR;缠绕相位;相位解缠;误差 合成孔径雷达(Synthetic Apeurture Rada,简称SAR)是50年代末研制成功的一种微波传感器,也是微波传感器中发展最快、最有效的传感器之一。它是一种主动传感器,与其他测地技术相比,SAR具有不受光照以及恶劣天气等条件的影响,可进行全天时、全天候地对地观测,对地物具有一定穿透能力,分辨率不受传感器平台高度的影响等优点。因此,被广泛地应用于地质、环境、海洋、水文、灾害、测绘、农业、林业、气象和军事等领域。 早在1952年,美国Goodyear宇航公司便研制成功了第一个实用化的SAR 系统,1953年获得了第一幅机载SAR影像,到70年代中期机载SAR技术己经比较成熟,到了70年代末期星载SAR已经由实验研究转向了应用研究,进入80年代后,星载SAR得到了迅猛发展。我国1976年开始研制合成孔径雷达,1979年获取了我国第一批合成孔径雷达图像,1987我国研制了新一代机载合成孔径雷达系统,90年代初,中国研制出机载合成孔径雷达实时成像传送处理器,目前我国星载SAR系统也正在积极研究当中。 InSAR是基于SAR成像基础和干涉测量原理上的一种雷达主动成像遥感测量技术。它的原理是通过两副天线同时观测,或一定时间间隔的两次平行观测,获取同一景观的复图像对,由于目标与天线的几何关系,在复图像对上产生相位差,形成干涉图纹。干涉图包含了图像点与天线位置差的精确信息,干涉合成孔径雷达相位解缠算法利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确地测量出图像上每一点的三维位置。 InSAR干涉测量数据处理流程分为七个步骤,分别为:图像配准,配准完成后主图像和重采样的辅图像复共轭相乘,去平地效应,滤波处理,相位解缠,基线估计,生成DEM。其中,相位解缠是干涉数据处理过程中关键环节,直接影响数字高程模型(DEM)的精度。 由于三角函数的周期性,干涉图中各点的相位值只能落入主值(- ,]的范围内,所以干涉纹图中的相位只是真实相位的主值,要得到反映高程信息的真实相位值必须对每个相位值加上2 的整数倍,这个过程称为相位解缠。 相位解缠是InSAR数据处理中的重要环节,自20世纪70年代末至今人们已经发展了几十种相位解缠算法,这些算法可以分为三大类,第一类是以枝切法为代表的基于路径跟踪的相位解缠算法,它主要是通过沿着预先确定的一致性路径进行相邻像元的相位差值积分来实现相位解缠。积分时路径要绕开一些低质量、不一致的区域,这是路径跟踪算法的核心思想。这些方法都是一种局域算子,即误差被限制在局部区域内不会传播。第二类是以最小二乘算法为代表的基于最小范数思想的相位解缠算法,它是通过在整体上使缠绕相位的梯度与真实相位的

伪距差分和载波相位差分

1.伪距差分 目前应用最广的一种差分。它是在基准站上,观测所有卫星,根据基准站的精确坐标和各卫星的坐标,求出每颗卫星每一时刻到基准站的真实距离。再与测得的伪距比较,得出伪距改正数,将其传输至流动站接收机来改正测量的伪距,提高定位精度。 伪距差分和载波相位差分实现过程和重难点: 基准站伪距公式: ()i i i i i i m m m m m m R r c t t dI dT ρ=+?-?+?++ (1) i m R 接收机到第I 颗卫星的伪距 i m r 接收机到第I 颗卫星的真实距离 m t ?接收机钟差 i t ?第I 颗卫星钟差 i m ρ?星历误差 i m dI 电离层误差 i m dT 大气层误差 知道卫星星历和基准站坐标可以求出卫星到基准站真实距离i m r 则伪距改正数可以表示为:i i i m m m dr r R =- 接收机伪距公式: ()i i i i i i n n n n n n R r c t t dI dT ρ=+?-?+?++ (2) 在接收机距离机站在200-300Km 的情况下,通过接收机伪距测量值加上伪距改正数: i i m n dr R +可以消除电离层,大气层和星历误差。 2221/2()[()()()]i i i i i i m n n n m n n n dr R r c t t x x y y z z D +=+?-?=-+-+-+? 2222()()()()i i i i i m n n n n dr R D x x y y z z +-?=-+-+- 其中i m R 可以由基站发送信息中得到。 在解出卫星星历后求出卫星坐标,在基站信息中可以得到基站天线坐标,则可以求出i m r ,则

InSAR图像相位解缠的最小费用流法及其改进算法研究

InSAR图像相位解缠的最小费用流法 及其改进算法研究 蒋廷臣1,2,焦明连1,史建青1,王秀萍 1 (1.淮海工学院测绘工程学院,江苏连云港 222001; 2.武汉大学卫星导航定位技术研究中心,武汉 430079) 摘要:最小费用流法是基于网络流的相位解缠方法,解决了许多解缠方法无法消除相位噪声对高相干区域影响的问题,在此基础上,本文针对该方法解缠时速度较慢和对计算机性能要求较高的缺点而提出改进算法,即将干涉图像分为若干子区域分别进行处 理,再利用基于Contourlet变换的超小波方法进行融合处理,最后用算例进行了验证,结果表明最小费用流法及其改进算法是一个 较好的解缠方法。 关键词:干涉测量相位解缠最小费用流法分块算法小波融合 一、前言 随着测绘新技术新理论的发展,现代大地测量范畴得到了较大拓宽,现在,合成孔径雷达干涉测量(Interferometry Synthetic Aperture Radar—InSAR)已成为其分支学科。合成孔径雷达干涉测量 ( InSAR)利用合成孔径雷达数据的相位信息提取地面三维信息,主要用于测量地面的高程和监测其变形。随着COSMOS和terraSAR卫星的发射成功,该技术日益受到各国政府部门以及科学工作者的重视。 在InSAR数据处理过程中,相位解缠是合成孔径雷达干涉测量的关键流程,它的准确性直接影响到 InSAR生成的数字高程模型的精确性。现在所有的解缠方法都是基于这样的假设,即 φ差的绝对值小于π。解缠后的真实相位是平滑且变化缓慢,同时图像各相邻像素的干涉相位 但是,雷达阴影、去相关等因素引起的噪声和伪信号往往造成相位数据不连续,给相位解缠带来极大的困难,目前大部分算法都无法圆满地解决这些问题 ,解缠的结果常常会有较大的误差,由此得到的数字高程模型就会与实际情况存在较大的差别。如何能够从质量较差的数据当中提取有用的信息,而忽略噪声对解缠过程的影响,成为一个急待解决的问题。 基于上述,本文根据统一的解缠数学模型和网络优化原理,阐述了最小费用流法法的相位解缠方法,并针对该方法解缠时速度较慢而提出分块算法,将整幅图像分为若干子区域分别进行处理 ,再利用超小波方法进行融合处理,从而得到较理想的解缠效果,同时利用算例进行了比较分析,较好地解决了上述问题。 二、最小费用流法解缠原理 2.1统一解缠模型 经过多年对相位解缠方法的研究,现在已有很多的解缠方法。在1996年,Ghiglia和Romero 第一作者简介:蒋廷臣(1975-),男,汉族,四川蓬安人,武汉大学测绘学院博士生,主要从事GPS与宽幅SAR融合的相关理论与方法研究。 第二作者简介:焦明连(1963-),男,汉族,河南商丘人,副教授,主要从事主要从事精密工程测量和测绘教育研究。

37 baidu 差分GPS载波相位测量整周模糊度的快速求解

胡国辉孟浩袁信 摘要:对Cholesky分解整周模糊度的求解进行了改进,在求解整周模糊度的过程中,首先采用LAMBDA法对整周模糊度进行整数线性变换再作Cholesky分解,然后利用最优剪枝法(best cut)对整周模糊度进行搜索,实验结果表明该方法具有快速搜索整周模糊度的能力,可以满足采用GPS载波相位测量确定姿态以及GPS载波相位测量与INS组合的实时性。 关键词:导航整周模糊度载波相位Cholesky分解 中图分类号:V241.5 FAST CARRIER PHASE AMBIGUITY RESOLUTION FOR DIFFERENCE GPS Hu Guohui1, Meng Hao2, Yuan Xin1 1(Department of Automatic Control, Naijing University of Aeronautics & Astronautics,Nanjing,210016) 2(Department of Automatic Control, Harbin Engineering University,Harbin,150001) Abstract The paper presents a new development method for Cholesky ambiguity search method. The method makes use of an ambiguity reparametrization, Cholesky decomposition and best cut. Experiment results show that the method can achieve fast search ability, and satisfy real time attitude determination and GPS/INS integration with GPS carrier phase measurement. Key words navigation, ambiguity, carrier phase, Cholesky factorization 单纯采用Cholesky分解整周模糊度的求解[1]往往搜索次数较多,采用LAMBDA法[2]对整周模糊度进行整数线性变换再作Cholesky分解,使变换后的整周模糊度方差更小,有效的提高了搜索速度,实验结果表明该算法能快速确定整周模糊度,能满足采用载波相位的姿态确定以及与惯导组合着陆的实时性要求。 1 整周模糊度的求解 对于双天线GPS载波相位测量,系统的状态方程和观测方程为 (1) 式中:

InSA_R相位解缠最小范数算法的研究

InSAR相位解缠最小范数算法的研究 第一章绪论 1.1论文研究的背景 合成孔径雷达干涉测量(InSAR)是20世纪60年代末发展起来的一项技术,在近20年来受到了世界各国的广泛关注获得了迅猛发展并逐渐趋于成熟。由于合成孔径雷达干涉测量主要是利用主动微波式传感器,它的出现大大地扩展了合成孔径雷达、光学传感器等的应用领域。它不仅能够获取高精度的高程信息,同时还可以全天时、全天候监测陆地表面和冰雪表面地形等的微小变化,监测的时间间隔从几天到几年,监测精度可达毫米级,并且它对某些目标物体还具有一定的穿透能力。其更令人瞩目的是,这项技术还可用于研究过去长时间无法到达的冰川和冰源的变化情况,也可用于一些灾害性地表形变的探测,如地震、火山爆发、等以及地表三维的重建,因而成为了遥感研究的热点川。 1.1.2 相位解缠研究的现状 相位解缠技术最早出现在20世纪60年代末70年代初,当时主要是信号处理的需要,所研究的主要是一维问题。除合成孔径雷达干涉测量中应用外,还在合成孔径声纳、光学干涉、微波干涉、核磁共

振等方面有重要应用。二维相位解缠始于20世纪70年代末。在 过去的30多年里,InSAR的相位解缠的方法发展十分迅速,达到了三、四十种,文献(王超,2002)列出了多种算法,但以上基本上可以分为两大类,即路径跟踪法(Path Following)和最小二乘法(Least Square),路径跟踪法基于像元到像元的局部运算来解缠,而最小二乘法是通过使解缠后解缠前相位的梯度差整体最小来进行求解的。 各种算法都有其自身的优缺点,适用于特定条件的数据,普适性都不是很好,因此算法的选择一般应根据实际情况而定。 1.2 本文研究内容 我国是一个地质灾害频繁的国家,近些年来各种地质灾害接踵而来,如地震、滑坡、地面沉降等,这些地质灾害以地表形变为直接特征,严重影响了人民生命与则一产的安全,因此对地表形变的监测显得尤为重要。合成孔径雷达技术能够利用雷达信号中的相位信息来提取地表的三维信息,精度可达毫米级,己成为目前DEM生产的主要技术手段之一,在地下资源探测以及军事目标探测等方面都具有其独特的优越性和发展潜力。相位解缠作为InSAR技术应用处理中至关重要的一个环节,也因此显得尤为重要。 本文主要研究内容包括以下几个方面: 1、对相位解缠中最小范数算法的理论进行归纳和研究. 2、从对合成孔径雷达干涉测量的常用数据分析入手,在C#编程语言的基础上,结合WPS, GIS等技术和手段,对基于最小范数算法的InSAR相位解缠软件的四种基于最小范数相位解缠算法,包括

载波相位差分接收机自主完好性监测研究

第36卷第3期2011年3月武汉大学学报 信息科学版 Geo matics and Info rmat ion Science of W uhan U niver sity V ol.36N o.3M ar ch 2011 收稿日期:2011 01 08。 文章编号:1671 8860(2011)03 0271 05文献标志码:A 载波相位差分接收机自主完好性监测研究 孟领坡1 吴 杰1 袁义双2 (1 国防科技大学航天与材料工程学院,长沙市德雅路,410073) (2 95172部队,长沙市,410115) 摘 要:首先提出了浮点变换完全去相关法,该方法能够在单历元动态确定整周模糊度。研究了基于载波相位测量的完好性监测方法。利用最小二乘残差构造统计检验量,对整周模糊度进行检测。分析了定位误差保护限与卫星构型、漏警概率的关系。实测数据表明,整周模糊度在单历元动态求解的成功率为100%,增加1颗卫星将使垂直定位误差保护限减少约0.2m,统计检验量检测周跳的正确率为100%。关键词:卫星导航;接收机自主完好性监测;检测门限;整周模糊度;周跳中图法分类号:P228.41 目前,接收机自主完好性监测(receiver au tonom ous integ rity m onitor ing,RAIM)算法主要有距离比较法、奇偶矢量校验法和最小二乘残差法3种。这3种方法在数学上是等效的 [1] 。由于 不能实时可靠地确定整周模糊度,目前国内的RAIM 技术研究都采用伪距为基本观测量[1 3]。为了增强导航系统的可用性,减少对观测卫星数目的依赖,最近的RAIM 研究引入外部测量信息,如SINS [4]、气压高度表[5,6]等。基于伪距观测量的导航和完好性监测,因其观测噪声较大、定位精度不高,只能满足航路飞行和非精密进近应用。基于载波相位观测量的实时导航技术,能够满足精密进近着陆的精度要求,其关键就是整周模糊度的实时可靠求解。在短基线(小于20km)条件下,两测站的大气延迟相关性较强,观测量的双差能消除大部分测量误差[7] 。此时,波长的大小对正确求解整周模糊度至关重要,波长越长,正确求解越容易[8]。 本文首先提出了一种单历元在航确定整周模糊度的浮点变换完全去相关法。该方法采用宽巷组合载波相位双差、伪距双差观测量,求解浮点模糊度,由于宽巷组合载波波长较长,因而减少了伪距双差测量误差对浮点模糊度精度的影响;对浮点模糊度方差 协方差阵进行一次Cholesky 分解,得到浮点转换矩阵,使浮点模糊度完全去相 关,从而减少模糊度整周搜索范围;以最小二乘残差平方和最小为标准,确定单历元整周模糊度;用多历元一致性检验方法,对不同历元得到的整周 模糊度解进行检验,提高了其可靠性。 针对定位结果完好性监测问题,本文提出了基于载波相位双差残差平方和的RAIM 算法。检测门限由误警概率、可见卫星颗数确定。本文还研究了由漏警概率、卫星几何分布构型和载波测量均方差确定保护限的方法,由最小二乘残差平方和检测、保护限检测综合构成完好性监测。因为载波相位测量精度高,所以残差平方和检测的门限可以设得很小,大大降低了完好性监测的误警率和漏警率。 1 高精度定位模型 建立基站北天东坐标系,坐标原点为基站观测天线几何中心o;x 轴为过o 点的子午面与水平 面的交线,指向北方向;y 轴垂直于过o 点的水平面指向上方;o x y z 构成右手直角坐标系。基站、动态站同时跟踪两颗GPS 卫星k 、j ,以j 号卫星为参考星,测量载波L 1、L 2,采用双频宽巷组合 = L 1- L 2形式,可得双频载波宽巷组合线性化双差观测方程: y =1 r j 02-r k 02d X +N jk 12 + jk 12 (1)

通信原理知识

1、 信息源(也作发终端)的作用是把各种消息转换成原始电信号。发送设备对原始信号完成某种变换,使原始电信号适合在信道中传输。信道是指信号传输的通道,提供了信源与信宿之间在电气上的联系。信宿(也称收终端)是将复原的原始电信号转换成相应的消息。 2、通信系统分类: 按调制方式可分为:基带传输和频带传输。 按信道中所传信号的不同分:数字通信和模拟通信。 按传输媒质分:通信可分为有线通信和无线通信。 按工作频段分:长波通信、中波通信、短波通信、微波通信等。 按信号复用方式可分为FDM、时分复用方式(TDM)和码分复用方式(CDM)等; 3、信源编码和信源解码:信源编码有两个作用,其一,进行模/数转换;其二,数据压缩,即设法降低数字信号的数码率。 4、数字通信系统有如下优点:(1)抗干扰、抗噪声能力强,无噪声积累。(2)便于加密处理,保密性强。(3)差错可控。(4)利用现代技术,便于对信息进行处理、存储、交换。(5)便于集成化,使通信设备微型化。 主要有以下两个缺点。 (1)数字信号占用的频带宽。(2)对同步要求高,系统设备比较复杂。 5、通信系统的性能指标归纳起来有以下几个方面。 (1)有效性(2 可靠性(3)适应性(4)经济性 (5)保密性(6)标准性(7)维修性(8)工艺性 6、数字通信涉及的问题:(1)信道与噪声 (2)数字终端技术 (3)数字基带传输技术(4)数字频带传输技术 (5)数字同步技术 (6)差错控制编码技术 7、信道的定义及分类:信道是信号的传输媒质。具体地说,信道是指由有线或无线线路提供的信号通路;抽象地说,信道是指定的一段频带,它让信号通过,同时又给信号以限制和损害。信道的作用是传输信号。广义信道通常也可分成两种:调制信道和编码信道。编码信道是包括调制信道及调制器、解调器在内的信道。它与调制信道模型有明显的不同:即调制信道对信号的影响是通过k(t)和n(t)使调制信号发生“模拟”变化;而编码信道对信号的影响则是一种数字序列的变换,即把一种数字序列变换成另一种数字序列,故有时把编码信道看成是一种数字信道。 8、恒参信道对信号传输的影响不随时间而变,或者随时间变化很缓慢,通常若在数字信号中几个最长符号时间内,信道特性基本不变即可认为此信道为恒参信道。 恒参信道对信号传输的影响:恒参信道对信号传输的影响主要是线性畸变 (1)幅度-频率畸变 (2)相位-频率畸变(群迟延畸变) 随参信道对信号传输的影响:(1)一般衰落(频率弥散现象)(2)频率选择性衰落 9、信道内的噪声(干扰):(1)无线电噪声(2)工业噪声3)天电噪声(4)内部噪声 10、通信中常见的几种噪声:1. 高斯噪声2. 白噪声3. 高斯白噪声 4. 窄带高斯噪声 5. 余弦信号加窄带高斯噪声。 11、模拟信号数字化的基本原理:(一)模拟信号的抽样(1)抽样定理 (2)带通信号

常用GPS载波相位差分电文格式分析与比较

文章编号:100723817(2003)0520029202中图分类号:P228.41 文献标识码:B 常用GPS载波相位差分电文格式分析与比较 张九宴 刘 晖 黄其欢 (武汉大学GPS工程技术研究中心,武汉市珞喻路129号,430079) 摘 要 介绍了差分GPS传输载波相位差分信息的常用电文格式,比较了其优缺点,提出了在低带宽的条件下 更适合采用CMR格式的结论。 关键词 数据链;数据格式;RTCM;CMR 实时载波相位差分技术,由于其定位精度高、速度快已经得到了广泛应用[1]。但是该定位模式除了需要用户拥有GPS接收机外,还需要基准站和数据通信链。基准站接收机将接收到的所有的卫星信息,经基准站的控制器(计算机)处理,数据链将处理得到的信息连同基准站自身的一些信息发 月为全球推广应用差分GPS业务设立了SC2104专门委员会,制定各种数据格式标准。最早于1985年发表了RTCM Ⅴ1.0版本的建议文件。现在广泛应用于RT K的是1994年正式公布的Ⅴ2.1和1998年公布的Ⅴ2.2。Ⅴ2.1主要增加了与实时动态定位(RT K)有关的电文,Ⅴ2.2增加了支持G LONASS差分导航电文。RTCM标准最多能定义64种电文,已定义的有34种,电文由二进制编码的数据流组成。德国GEO++系统为了更好地传输F KP区域改正参数,重新定义了RTCM的私有电文Type59,称为RTCM++,在RTCM++的基准上,SAPOS系统制订了RTCM2Adv标准。 1)RTCM的通用电文格式。每种电文由(N+2)个字组成,电文头两个字,称为通用电文,数据部分为可变长度N 个字组成。每个字由30bit构成,可分解为5个6bit的字节, 25bit~30bit构成字节5,为奇偶校验码,以校验接收到的RTCM数据。每种电文的电文头(通用电文)的格式和内容相同,主要包含了用于解码的同步信息引导字、电文类型识别、基准站识别、修正Z计数、序号、帧长和卫星状况。其中Z 计数的意义和GPS导航电文的Z计数相同,范围是1h,但其分辨率已从6s提高到0.6s。具体格式可见文献[2]。 2)用于RT K主要电文格式。已定义的电文中用于RT K的是Type3,Type22和Type18221这6种电文。Type3和Type22发送的基准站坐标的信息,这些信息在一定的时间内是不发生变化的。其中Type3提供的是基准站在WGS2 84坐标系中的坐标信息。Type18221提供的是观测量信息,这是两套实用于RT K的电文,其中Type18/19提供的是未加改正的原始观测值,定位精度达到厘米级;Type20/21提供的是差分改正数,定位精度为分米级。Type18发送的是原始未加改正的以周为单位的载波相位观测值,主要包括载波识别、观测时间、码识别、卫星识别以及原始载波相位观测值等。其中载波相位观测值占32位,精度为1/256周,范围是±8388608周。电文Type19为原始的以m为单位的伪 位,精度为0.02,范围是85899345.90m,和的格式完全相同,长度相等,只是内容稍有差别。 提供的是载波相位改正数,Type21则是伪距改正数 。 [2]。 CMR(Compact Measurement Record)是Trimble公司于1996年开始设计的一套用于RT K的差分格式标准,主要是针对RTCM格式的码发送率必须高于4800bis/s这一不足之处而制订的,CMR的码发送率只有RTCM的一半,即2400bis/s。现在使用的是2001年公布的Ⅴ2.0。 1)CMR电文格式。用3位表示电文的类型,最多可定义8种电文。每种电文由帧头/尾、电文头和数据三部分组成。帧头/尾由6byte构成,其中帧头4byte,帧尾标准是2byte,但是有的电文类型不是2byte,比如电文1是31byte。电文头6byte,数据部分长度不定。 2)用于RT K主要电文格式[3,4]。主要电文是Type0, Type1和Type3。Type0主要发送的是由GPS卫星得到的L1,L2载波相位和伪距观测值。电文头包括了参考站的编号、电文类型等信息。数据一部分是载波L1上的观测值,包含L1上的原始伪距观测值(24bit)、L1相位观测值和L1伪距之差(20bit)、L1的信噪比等信息。另一部分是L2上的观测值,包含L2的伪距和L1的伪距之差(16bit)、L2的相位观测值和L1的伪距之差(20bit),L2的信噪比等信息。而Type3发送的是由G LONASS卫星得到的载波相位和伪距观测值。具体可参见文献[3] 电文Type1发送的是参考站的坐标信息,数据部分19byte,包含天线相位中心在WGS284坐标系中的坐标、天线高、地面点和天线相位之间的偏差以及坐标的精度等。说明参考站名称,点的特征等信息是由Type2发送,Type2由ASCII码构成,应用时可以不用发播。 由于参考站的信息是不变的,不需要每秒更新一次,一 92 测绘信息与工程 Journal of G eomatics 2003 Oct.;28(5)

相关主题
文本预览
相关文档 最新文档