当前位置:文档之家› 高中物理热学知识点

高中物理热学知识点

高中物理热学知识点
高中物理热学知识点

高中物理热学知识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

选修3-3《热学》

一、知识网络

分子直径数量级

物质是由大量分子组成的 阿伏加德罗常数

油膜法测分子直径

分子动理论 分子永不停息地做无规则运动 扩散现象

布朗运动 分子间存在相互作用力,分子力的F -r 曲线

分子的动能;与物体动能的区别 物体的内能 分子的势能;分子力做功与分子势能变化的关系;E P -r

曲线

物体的内能;影响因素;与机械能的区别 单晶体——各向异性(热、光、电等) 晶体 多晶体——各向同性(热、光、电等) 有固定的熔、沸点

非晶体——各向同性(热、光、电等)没有固定的熔、沸点

浸润与不浸润现象——毛细现象——举例 饱和汽与饱和汽压 液晶 体积V 气体体积与气体分子体积的关系

温度T (或t ) 热力学温标 分子平均动能的标志 压强的微观解释

压强P 影响压强的因素

求气体压强的方法 改变内能的物理过程 做功 ——内能与其他形式能的相互转化

热传递——物体间(物体各部分间)内能的转移

热力学第一定律 能量转化与守恒 能量守恒定律

热力学第二定律(两种表述)——熵——熵增加原理

能源与环境 常规能源.煤、石油、天然气 新能源.风能、水能、太阳能、核能、地热能、海洋能等

二、考点解析

分 子 动 理 论 热力 学

固体 热力学定律 液体 气体

考点64 物体是由大量分子组成的 阿伏罗德罗常数 要求:Ⅰ

阿伏加德罗常数(N A =6.02×1023mol -1)是联系微观量与宏观量的桥梁。

设分子体积V 0、分子直径d 、分子质量m ;宏观量为.物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ。

(1)分子质量:A A ==N V N m ρμ

(2)分子体积:A

A 10PN N V V μ== (对气体,V 0应为气体分子占据的空间大小)

(3)分子直径:○1球体模型.V d N =)2

(343A π 303A 6=6=ππV N V d (固体、液体一般用此模型)○2立方体模型.30=V d (气体一般用此模型)(对气体,d 应理解为相邻分子间的平均距离)

(4)分子的数量:A

1A 1A A ====N V V N V M N V N M

n ρμρμ固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列);气体分子不可估算大小,只能估算气体分子所占空间、分子质量。

考点65 用油膜法估测分子的大小(实验、探究) 要求:Ⅰ

在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤C 的内容及实验步骤E 中的计算式:

A .用滴管将浓度为0.05%的油酸酒精溶液逐滴滴入量筒中,记下滴入1mL 的油酸酒精溶液

的滴数N ;

B .将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为0.05%的油酸酒精溶液,逐

滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数n ;

C .________________________________________________________________________

D .将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长1cm 的正方形为单位,计

算出轮廓内正方形的个数m (超过半格算一格,小于半格不算)

E .用上述测量的物理量可以估算出单个油酸分子的直径 d = _______________ cm . 考点66 分子热运动 布朗运动 要求:Ⅰ

1)扩散现象:不同物质彼此进入对方(分子热运动)。温度越高,扩散越快。

扩散现象说明:组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈;分子间有间隙

2)布朗运动:悬浮在液体中的固体微粒的无规则运动,不是液体分子的无规则运动! 布朗运动发生的原因是受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而布朗运动说明了分子在永不停息地做无规则运动.

(1)布朗运动不是固体微粒中分子的无规则运动.(2)布朗运动不是液体分子的运

动.(3)课本中所示的布朗运动路线,不是固体微粒运动的轨迹.(4)微粒越小,温度越高,布朗运动越明显.

3)扩散现象是分子运动的直接证明;布朗运动间接证明了液体分子的无规则运动 考点67 分子间的作用力 要求:Ⅰ

x 0

E P r 0 1)分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快。

2)实际表现出来的分子力是分子引力和斥力的合

力。随分子间距离的增大,分子力先变小后变大再

变小。(注意:这是指 r 从小于r 0开始到增大到无

穷大)。

3)分子力的表现及变化,对于曲线注意两个距

离,即r 0(10-10m )与10r 0。①当分子间距离为r 0

(约为10-10m )时,分子力为零,分子势能最小;

②当分子间距离r >r 0时,分子力表现为引力。当分子间距离由r 0增大时,分子力先增大后减小;③当分子间距离r <r 0时,分子力表现为斥力。当分子间距离由r 0减小时,分子力不断增大

考点68 温度和内能 要求:Ⅰ

温度和温标:1)温度:反映物体冷热程度的物理量(是一个宏观统计概念),是物体分子平均动能大小的标志。任何同温度的物体,其分子平均动能相同。

2)热力学温度(T)与摄氏温度(t)的关系为:T =t+273.15(K )

说明:①两种温度数值不同,但改变1 K 和1℃的温度差相同。②0K 是低温的极限,只能无限接近,但不可能达到。③这两种温度每一单位大小相同,只是计算的起点不同。摄氏温度把1大气压下冰水混合物的温度规定为0℃,热力学温度把1大气压下冰水混合物的温度规定为273K (即把-273℃规定为0K )。.

内能:1)内能是物体内所有分子无规则运动的动能和分子势能的总和,是状态量.

改变内能的方法有做功和热传递,它们是等效的.三者的关系可由热力学第一定律得到

ΔU =W+Q .

2)决定分子势能的因素:宏观)分势能跟物体的体积有关。微观)子势能跟分子间距离r 有关。

3)固体、液体的内能与物体所含物质的多少(分子数)、物体的温度(平均动能)和物体的体积(分子势能)都有关

气体:一般情况下,气体分子间距离较大,不考虑气体分子势能的变化(即不考虑分子间的相互作用力)

4)一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能。

5)理想气体的内能:理想气体是一种理想化模型,理想气体分子间距很大,不存在分子势

能,所以理想气体的内能只与温度有关。温度越高,内能越大。

(1)理想气体与外界做功与否,看体积,体积增大,对外做了功(外界是真空则气体对外不做功),体积减小,则外界对气体做了功。 (2)理想气体内能变化情况看温度。

(3)理想气体吸不吸热,则由做功情况和内能变化情况共同判断。(即从热力学第一定律

判断)

6)关于分子平均动能和分子势能理解时要注意.

(1)温度是分子平均动能大小的标志,温度相同时任何物体的分 子平均动能相等,但平均速率一般不等(分子质量不同).

(2)分子力做正功分子势能减少,分子力做负功分子势能增加。

(3)分子势能为零一共有两处,一处在无穷远处,另一处小于r 0 分子力为零时分子势能最小,而不是零。

(4)理想气体分子间作用力为零,分子势能为零,只有分子动能。

考点69 晶体和非晶体 晶体的微观结构 要求:Ⅰ

考点70 液体的表面张力现象 要求:Ⅰ

1)表面张力:表面层分子比较稀疏,r >r 0在液体内部分子间的距离在r 0左右,分子力几乎为零。液体的表面层由于与空气接触,所以表面层里分子的分布比较稀疏、分子间呈引力作用,在这个力作用下,液体表面有收缩到最小的趋势,这个力就是表面张力。

2)浸润和不浸润现象:

3)毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为

毛细现象。

考点71 液晶 要求:Ⅰ

1)液晶具有流动性、光学性质各向异性.

2)不是所有物质都具有液晶态,通常棒状分子、碟状分子和平板状分子的物质容易具有液晶态。天然存在的液晶不多,多数液晶为人工合成.

3)向液晶参入少量多色性染料,染料分子会和液晶分子结合而定向排列,从而表现出光学各向异性。当液晶中电场强度不同时,它对不同颜色的光的吸收强度也不一样,这样就能显示各种颜色.

4)在多种人体结构中都发现了液晶结构.

考点72 气体实验定律 理想气体 要求:Ⅰ

1)探究一定质量理想气体压强p 、体积V 、温度T 之间关系,采用的是控制变量法

2)三种变化: 玻意耳定律:PV =C

查理定律: P / T =C 盖—吕萨克定律:V/ T =C

温变化图线 等容变化图线 等压变化图线

提示:①等温变化中的图线为双曲线的一支,等容(压)变化中的图线均为过原点的直线(之所以原点附近为虚线,表示温度太低了,规律不再满足);②图中双线表示同一气体不同状态下的图线,虚线表示判断状态关系的两种方法;③对等容(压)变化,如果横轴物理量是摄氏温度t ,则交点坐标为-273.15

3)理想气体状态方程:

多晶体 如金属 1、有确定几何形状 2、制作晶体管、集成电路 3、各向异性 晶体 1、无确定几何形状 2、各向同性

有确定熔点 熔解和凝固时放出的热量相等

体 单晶体 12、无确定熔点

3、各向同性 T 1<T 2

V 1<V 2

p 1<p 2

理想气体,由于不考虑分子间相互作用力,理想气体的内能仅由温度和分子总数决定 ,与气体的体积无关。对一定质量的理想气体,有112212p V p V T T =(或恒定=T

pv ) 4)气体压强微观解释:由大量气体分子频繁撞击器壁而产生的,与温度和体积有关。 (1)气体分子的平均动能,从宏观上看由气体的温度决定

(2)单位体积内的分子数(分子密集程度),从宏观上看由气体的体积决定

考点73 饱和汽和饱和汽压 要求:Ⅰ说明:相对湿度的计算不做要求

1)汽化?

??→→发生的剧烈的汽化现象在液体表面和内部同时沸腾的汽化现象在任何温度下都能发生只在液体表面进行并且蒸发 沸腾只在一定温度下才会发生,液体沸腾时的温度叫做沸点,沸点与温度有关,大气压增大时沸点升高

2)饱和汽与饱和汽压

在密闭容器中的液面上同时进行着两种相反的过程:一方面分子从液面飞出来;另一方面由于液面上的汽分子不停地做无规则的热运动,有的汽分子撞到液面上又会回到液体中去。随着液体的不断蒸发,液面上汽的密度不断增大,回到液体中的分子数也逐渐增多。最后,当汽的密度增大到一定程度时,就会达到这样的状态:在单位时间内回到液体中的分子数等于从液面飞出去的分子数,这时汽的密度不再增大,液体也不再减少,液体和汽之间达到了平衡状态,这种平衡叫做动态平衡。我们把跟液体处于动态平衡的汽叫做饱和汽,把没有达到饱和状态的汽叫做未饱和汽。在一定温度下,饱和汽的压强一定,叫做饱和汽压。未饱和汽的压强小于饱和汽压。

饱和汽压:(1)饱和汽压只是指空气中这种液体蒸汽的分气压,与其他气体的压强无关。(2)饱和汽压与温度和物质种类有关。在同一温度下,不同液体的饱和气压一般不同,挥发性大的液体饱和气压大;同一种液体的饱和气压随温度的升高而迅速增大。(3)将不饱和汽变为饱和汽的方法:①降低温度②减小液面上方的体积③等待(最终此种液体的蒸气必然处于饱和状态)

3)空气的湿度

(1)空气的绝对湿度:用空气中所含水蒸气的压强来表示的湿度叫做空气的绝对湿度。

(2)空气的相对湿度:同温度下水的饱和汽压

水蒸气的实际汽压相对湿度= 相对湿度更能够描述空气的潮湿程度,影响蒸发快慢以及影响人们对干爽与潮湿感受。

4)汽化热:液体汽化时体积会增大很多,分子吸收的能量不只是用于挣脱其他分子的束缚,还用于体积膨胀时克服外界气压做功,所以汽化热还与外界气体的压强有关。 考点74 做功和热传递是改变物体内能的两种方式 要求:Ⅰ

1)绝热过程:系统只通过做功而与外界交换能量,它不从外界吸热,也不向外界放热

2)热传递:热传导、热对流、热辐射

3)热量和内能:⑴不能说物体具有多少热量,只能说物体吸收或放出了多少热量,热量是过程量,对应一个过程。离开了热传递,无法谈热量。不能说“物体温度越高,所含热量越多”。

⑵改变物体内能的两种方式:做功和热传递。做功是内能与其他形式的能发生转化;热传递是不同物体(或同一物体的不同部分)之间内能的转移,它们改变内能的效果是相同的。

考点75 热力学第一定律 能量守恒定律 要求:I

1)热力学第一定律:

(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。

(2)数学表达式为:ΔU=W+Q 绝热:Q=0;等温:ΔU=0,如果是气体向真空扩散,W=0

2

(1)能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。

(2)第一类永动机:不消耗任何能量,却可以源源不断地对外做功,人们把这种不消耗能量的永动机叫第一类永动机。根据能量守恒定律,任何一部机器,只能使能量从一种形式转化为另一种形式,而不能无中生有地制造能量,因此第一类永动机是不可能制成的

考点76 热力学第二定律要求:Ⅰ

1)学第二定律的两种表述:①热量不能自发地从低温物体传递到高温物体。②不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。

2热机:①热机是把内能转化为机械能的装置。其原理是热机从热源吸收热量Q1,推动活塞做功W,然后向冷凝器释放热量Q2。②由能量守恒定律可得: Q1=W+Q2 。们把热机做的功和它从热源吸收的热量的比值叫做热机效率,用η表示,即η= W / Q1 。热机效率不可能达到100%

3)第二类永动机:①设想:只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。

②第二类永动机不可能制成,表示尽管机械能可以全部转化为内能,但内能却不能全部转化成机械能而不引起其他变化;机械能和内能的转化过程具有方向性。

考点77 能源与环境能源的开发和应用要求:Ⅰ

能量耗散:各种形式的能量向内能转化,无序程度较小的状态向无序程度较大的状态转化。

能量耗散虽然不会使能的总量不会减少,却会导致能的品质降低,它实际上将能量从可用的形式降级为不大可用的形式,煤、石油、天然气等能源储存着高品质的能量,在利用它们的时候,高品质的能量释放出来并最终转化为低品质的内能。故能量虽然不会减少但能源会越来越少,所以要节约能源。

三种常规能源是:煤、石油、天然气。开发和利用新能源:新能源主要指太阳能、生物能、风能、水能等。这些能源一是取之不尽、用之不竭,二是不会污染环境等等。

检测题

1、(2012新课标)关于热力学定律,下列说法正确的是____

A.为了增加物体的内能,必须对物体做功或向它传递热量

B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功

D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程

2、(2012 大纲卷)下列关于布朗运动的说法,正确的是

A.布朗运动是液体分子的无规则运动 B. 液体温度越高,悬浮粒子越小,布朗运动越剧C.布朗运动是由于液体各个部分的温度不同而引起的

D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的

3、(2012 广东)草叶上的露珠是由空气中的水汽凝结成水珠,这一物理过程中,水分子间的

A 引力消失,斥力增大

B 斥力消失,引力增大

C 引力、斥力都减小

D 引力、斥力都增大

4、(2012 福建)(1)关于热力学定律和分子动理论,下列说法正确的是____。

A.一定量气体吸收热量,其内能一定增大 B.不可能使热量由低温物体传递到高温物体C.若两分子间距离增大,分子势能一定增大 D.若两分子间距离减小,分子间引力和斥力都增大

5、(2012 福建)(2)空气压缩机的储气罐中储有1.0atm的空气6.0L,现再充入1.0 atm的空气9.0L。设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为()。

A.2.5 atm B.2.0 atm C.1.5 atm D.1.0 atm

6、(2012 江苏)下列现象中,说明液体存在表面张力的有____________

A.水黾可以停在水面上 B.叶面上的露珠呈球形

C.滴入水中的红墨水很快散开 D.悬浮在水中的花粉做无规则运动

7、(2012 江苏)(1)密闭在钢瓶中的理想气体,温度升高时压强增大,从分子动理论的角度分析,这是由于分子热运动的 _______增大了,

该气体在温度为T1、T2时的分子速率分布图像如题

12A-1图所示,则T1_______(选填“大于”或“小于”)T2

(2)如图12A-2图所示,一定质量的理想气体从状

态A经等压过程到状态B,此过程中,气体压强

P=1.0×105Pa,吸收的热量Q=7.0×102J,求此过程中

气体内能的增量。

8、(2012四川).物体由大量分子组成,下列说法正确的是

A.分子热运动越剧烈,物体内每个分子的动能越大 B.分子间引力总是随着分子间距离减小而减小

C.物体的内能跟物体的温度和体积有关

D.只有外界对物体做功才能增加物体的内能

9、(2012海南)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由

静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正

确的是________.

A.在r>r0阶段,F做正功,分子动能增加,势能减小

B.在r

C.在r=r0时,分子势能最小,动能最大

D.在r=r0时,分子势能为零

E.分子动能和势能之和在整个过程中不变

10、(2013·西安模拟)一定质量气体,在体积不变的情况下,温度升高,压强增大的原因是( )

A.温度升高后,气体分子的平均速率变大 B.温度升高后,气体分子的平均动能变大

C.温度升高后,分子撞击器壁的平均作用力增大 D.温度升高后,单位体积内的分子数增多,撞击到单位面积器壁上的分子数增多了

11.(2013·抚顺模拟)下列说法中正确的是()

A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动

B.叶面上的小露珠呈球形是由于液体表面张力的作用

C.液晶显示器是利用了液晶对光具有各向异性的特点

D.当两分子间距离大于平衡位置的间距r0时,分子间的距离越大,分子势能越小

12.(2013·烟台模拟)如图,一定质量的理想气体经历如图所示的AB、BC、CA三个变化过程,则:符合查理定律的变化过程是________;C→A过程中气体________(选填“吸收”或“放出”)热量,_______(选填“外界对气体”或“气体对外界”)做功,气体的内能_______(选填“增大”、“减小”或“不变”).

13、(2007山东)36.(8分)某压力锅的结构如图所示。盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就

把压力阀顶起。假定在压力阀被顶起时,停止加热。(1)若此

V,阿伏加德罗常数为

时锅内气体的体积为V,摩尔体积为

N,写出锅内气体分子数的估算表达式。

A

(2)假定在一次放气过程中,锅内气体对压力阀及外界做功1

J,并向外界释放了2 J的热量。锅内原有气体的内能如何变化变

化了多少

P(1-αH),其中常数α>0。结合气(3)已知大气压强P随海拔高度H的变化满足P=

体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体温度有何不同。

14、(2008山东)喷雾器内有lOL水,上部封闭有latm的空气2L。关闭喷雾阀门,用打气筒向喷雾器内再充入1 atm的空气3L(设外界环境温度一定,空气可看作理想气体)。 (1)当水面上方气体温度与外界温度相等时.求气体压强,并从微观上解释气体压强变化的原因。

(2)打开喷雾阀门,喷雾过程中封闭气体可以看成等温膨胀,此过程气

体是吸热还是放热简要说明理由。

15、(2009山东)36.(8分)一定质量的理想气体由状态A经状态B变

为状态C,其中A→B过程为等压变化,B→C过程为等容变化。已知V A=0.3m3,

T A=T C=300K,T B=400K。

(1)求气体在状态B时的体积。(2)说明B→C过程压强变化的微观原因

(3)设A →B 过程气体吸收热量为Q 1,B →C 过程气体放出热量为Q 2,比较Q 1、Q 2的大小并说明原因。

16、(2010山东)36.(8分) 一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V 0,开始时内部封闭气体的压强为p 0。经过太阳暴晒,气体温度由T 0=300K 升至T 1=350K 。

(1) 求此时气体的压强。

(2) 保持T 1=350K 不变,缓慢抽出部分气体,使气体压强再

变回到p 0。求集热器内剩余气体的质量与原来总质量的

比值。判断在抽气过程中剩余气体是吸热还是放热,并

简述原因。

17、(2011山东) (8分)⑴人类对物质属性的认识是从宏观到微观不断深入的过程。以下说法正确的是 。 a .液体的分子势能与体积有关 b .晶体的物理性质都是各向异性的 c .温度升高,每个分子的动能都增大 d .露珠呈球状是由于液体表面张

力的作用

⑵气体温度计结构如图所示。玻璃测温泡A 内充有理想气体,通过细玻璃管B 和水银压强计相连。开始时A 处于冰水混合物中,左管C 中水银面在O 点处,右管D 中水银面高出O 点h 1=14cm 。后将A 放入待测恒温槽中,上下移动D ,使C 中水银面仍在O 点处,测得D 中水银面高出O 点h 2=44cm 。(已知外界大气压为1个标准大气压,1标准大气压相当于76cmHg )①求恒温槽的温度。②此过程A 内气体内能 (填“增大”或“减小”),气体不对外做功,气体将 (填“吸热”或“放热”)。

18、(2012山东)36.(8分)(1)以下说法正确的是 。

a .水的饱和汽压随温度的升高而增大

b .扩散现象表明,分子在永不停息地运动

c .当分子间距离增大时,分子间引力增大,分子间斥力减小

d .一定质量的理想气体,在等压膨胀过程中,气体分子的平均动能减小

(2)如图所示,粗细均匀、导热良好、装有适量水银的U 型管竖直放置,右端与大气相通,左端封闭气柱长20l cm =(可视为理想气体),两管中水银面等高。先将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面10h cm =(环境温度不变,大气压强075p cmHg =)

1求稳定后低压舱内的压强(用“cmHg ”做单位) ○

2此过程中左管内的气体对外界 (填“做正功”“做负功”“不做功”),气体将 (填“吸热”或放热“)。 O

A B C

D 软胶管

19.(2013·潍坊模拟)(1) 下列说法正确的是

A. 0°C的冰与0°C的水分子的平均动能相同

B. 温度高的物体内能一定大

C. 分子间作用力总是随分子间距离的增大而减小

D. 随着制冷技术的不断提高,绝对零度一定能在实验室中达到

(2)一定质量的理想气体压强p与热力学温度T的关系图象如图所示,气体在状态A时的体积V。= 2m3,线段AB与p轴平行.

①求气体在状态B时的体积;

②气体从状态A变化到状态B过程中,对外界做功30J,问该过程中气体吸热还是放热热量为多少

20.(2013·日照模拟) 在某高速公路发生一起车祸,车祸系轮胎爆胎所致。已知汽车行驶前轮胎内气体压强为2.5atm,温度为27℃,爆胎时胎内气体的温度为87℃,轮胎中的空气可看作理想气体。 (1)求爆胎时轮胎内气体的压强;

(2)从微观上解释爆胎前胎内气体压强变化的原因;

(3)爆胎后气体迅速外泄,来不及与外界发生热交换,判断此过程胎内原有气体内能

如何变化简要说明理由。

热学高中物理选修试题

热学高中物理选修-试题

————————————————————————————————作者:————————————————————————————————日期: ?

一、分子动理论(微观量计算、布朗运动、分子力、分子势能) 1、用油膜法测出分子的直径后,要测定阿伏加德罗常数,只需知道油滴( ) A、摩尔质量 B 、摩尔体积 C 、体积 D 、密度 2、将1cm 3 油酸溶于酒精中,制成200cm 3油酸酒精溶液。已知1cm3溶液中有50滴。现 取一滴油酸酒精溶液滴到水面上,随着酒精溶于水后,油酸在水面上形成一单分子薄层。已 测出这薄层的面积为0.2m 2,由此估测油酸分子的直径为( ) A 、2×10-10m B 、5×10-10m C 、2×10-9m D、5×10-9m 3、只要知道下列哪一组物理量,就可以估算出气体中分子间的平均距离( ) A.阿伏加德罗常数、该气体的摩尔质量和质量 B .该气体的摩尔质量和密度 C .阿伏加德罗常数、该气体的摩尔体积 D.该气体的密度、体积和质量 4、若以M表示水的摩尔质量,V表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水 蒸气的密度,NA 为阿伏加德罗常数,m 、V0表示每个水分子的质量和体积,下面是四个关 系式:(1) m V N A ρ= (2) 0V N M A =ρ (3) A N M m = (4) A N V V =0其中 ( ) A.(1)和(2)都是正确的 B.(1)和(3)都是正确的 C .(3)和(4)都是正确的 D.(1)和(4)都是正确的 5、关于布朗运动,下列说法正确的( ) A.布朗运动就是分子的无规则运动 B.布朗运动是液体分子的无规则运动 C.温度越高, 布朗运动越剧烈 D.在00C 的环境中, 布朗运动消失 6、关于布朗运动,下列说法中正确的是( )?A .悬浮在液体或气体中的小颗粒的无规则 运动就是分子的无规则运动 B.布朗运动反映了悬浮微粒分子的无规则运动 C.分子的热运动就是布朗运动 D.悬浮在液体或气体中的颗粒越小,布朗运动越明显 7、在较暗的房间里,从射进来的阳光中,可以看到悬浮在空气中的微粒在不停地运动,这些微 粒的运动是( ) A.是布朗运动 ? B .空气分子运动 C.自由落体运动 ?D .是由气体对流和重力引起的 运动 8、做布朗运动实验,得到某个观测记录如图所示. 图中记录的是 ( ) A.分子无规则运动的情况 B.某个微粒做布朗运动的轨迹 C .某个微粒做布朗运动的速度—时间图线 D.按等时间间隔依次记录的某个运动微粒位置的连线 9、以下关于分子力的说法正确的是( ) A.分子间既存在引力也存在斥力 B.液体难以被压缩表明液体分子间只有斥力存在 C.气体分子间总没有分子力的作用 D .扩散现象表明分子间不存引力 10、分子间的相互作用力由引力f 引和斥力f 斥两部分组成,则( ) A.f 引和f 斥是同时存在的 B.f 引总是大于f 斥,其合力总是表现为引力 C.分子间的距离越小,f 引越小,f 斥越大 D .分子间的距离越小,f 引越大,f 斥越小 11、若两分子间距离为r 0时,分子力为零, 则关于分子力、分子势能说法中正确的是( ) A.当分子间的距离为r 0时,分子力为零,也就是说分子间既无引力又无斥力 B.分子间距离大于r 0时,分子距离变小时,分子力一定增大 C .分子间距离小于r 0时,分子距离变小时,分子间斥力变大,引力变小 D.在分子力作用范围内,不管r >r0,还是r

高考物理真题热学

高考物理真题——选修3-3 热学 2016年 (全国新课标I 卷,33)(15分) (1)(5分)关于热力学定律,下列说确的是__________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分) A .气体吸热后温度一定升高 B .对气体做功可以改变其能 C .理想气体等压膨胀过程一定放热 D .热量不可能自发地从低温物体传到高温物体 E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 (2)(10分)在水下气泡空气的压强大于气泡表面外侧水的压强,两压强差p ?与气泡半径r 之间的关系为2p r σ?=,其中0.070N/m σ=。现让水下10m 处一半径为0.50cm 的气泡缓慢上升。已知大气压强50 1.010Pa p =?,水的密度 331.010kg /m ρ=?,重力加速度大小210m/s g =。 (i)求在水下10m 处气泡外的压强差; (ii)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值。 (全国新课标II 卷,33)(15分) ⑴(5分)一定量的理想气体从状态a 开始,经历等温或 等压过程ab 、bc 、cd 、da 回到原状态,其p -T 图像如图 所示.其中对角线ac 的延长线过原点O .下列判断正确 的是 . A .气体在a 、c 两状态的体积相等 B .气体在状态a 时的能大于它在状态c 时的能 C .在过程cd 中气体向外界放出的热量大于外界对气体做的功 D .在过程da 中气体从外界吸收的热量小于气体对外界做的功 E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功 ⑵(10分)一氧气瓶的容积为30.08m ,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气30.36m .当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实

高中物理之热学专题复习与练习

高中物理之热学专题复 习与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章热学 一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

(word完整版)高中物理热学试题及答案

热学试题 一选择题: 1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离 A.阿伏加徳罗常数,该气体的摩尔质量和质量 B.阿伏加徳罗常数,该气体的摩尔质量和密度 C.阿伏加徳罗常数,该气体的质量和体积 D.该气体的质量、体积、和摩尔质量 2.关于布朗运动下列说法正确的是 A.布朗运动是液体分子的运动 B.布朗运动是悬浮微粒分子的运动 C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果 D.温度越高,布朗运动越显著 3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误 ..的 A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN A C.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是 A.固体分子间的引力总是大于斥力 B.气体能充满任何仪器是因为分子间的斥力大于引力 C.分子间的引力和斥力都随着分子间的距离增大而减小 D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小 5.关于物体内能,下列说法正确的是 A.相同质量的两种物体,升高相同温度,内能增量相同 B.一定量0℃的水结成0℃的冰,内能一定减少 C.一定质量的气体体积增大,既不吸热也不放热,内能减少 D.一定质量的气体吸热,而保持体积不变,内能一定减少 6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同 B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大 C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大 D.它们的分子数目不相同,分子的平均动能相同 7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则 A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量 C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量 8.关于气体压强,以下理解不正确的是 A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小 B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的 C.容器内气体的压强是由气体的重力所产生的 D.压强的国际单位是帕,1Pa=1N/m2

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

高中物理专题-热力学定律

高中物理专题-热力学定律 在绝热气缸中封闭着两部分同种类的气体A和B,中间用绝热活塞隔开,活塞用销钉固定着。开始时两部分气体的体积和温度都相同,气体A的质量大于气体B的质量。撤去销钉后活塞可以自由移动,最后达到平衡。关于B部分气体的内能和压强的大小 A.内能增加,压强不变B.内能不变,压强不变 C.内能增加,压强增大D.内能不变,压强增大 【参考答案】C 【试题解析】因为气体A的质量大于气体B的质量,故开始时气体A的压强大于气体B的压强,撤去销钉后,A气体膨胀对B气体做功,故B气体内能增加,压强增大,选C。 【知识补给】 功和内能 (1)气体做功的特征是气体体积的变化,若气体只有压强的变化而无体积的变化,气体不做功。 (2)做功的对象是实物,故气体向真空膨胀不做功。 (3)理想气体被绝热压缩,则内能增加,温度升高,体积减小,压强一定增大;理想气体绝热膨胀,则内能减少,温度降低,压强一定增大。 如图所示,内壁光滑的绝热气缸竖直立于地面上,绝热活塞将一定质量的理想气体封闭在气缸中,活塞静止时处于A位置。现将一重物轻轻地放在活塞上,活塞最终静止在B位置。则活塞在B位置时与活塞在A位置时相比较

A.气体的内能可能相同 B.气体的温度一定不同 C.单位体积内的气体分子数不变 D.单位时间内气体分子撞击单位面积气缸壁的次数一定增多 如图所示,绝热气缸固定在水平地面上,气缸内用绝热活塞封闭着一定质量的理想气体。开始时活塞静止在图示位置现用力使活塞缓慢向右移动一段距离,则在此过程中 A.外界对缸内气体做正功 B.缸内气体的内能不变 C.缸内气体在单位时间内作用于活塞单位面积的冲量增大 D.在单位时间内缸内气体分子与活塞碰撞的次数减少 如图所示,用绝热活塞把绝热容器隔成容积相同的两部分,先把活塞锁住,将质量和温度都相同的理想气体氢气和氧气分别充入容器的两部分,然后提起销子,使活塞可以无摩擦地滑动,当活塞平衡时 A.氢气的温度不变B.氢气的压强减小 C.氢气的体积减小D.氧气的温度升高 绝热气缸的质量为M,绝热活塞的质量为m,活塞与气缸壁之间无摩擦且不漏气,气缸中密封一部分理想气体,最初气缸被销钉固定在足够长的光滑固定斜面上。如图所示,现拔去销钉,让气缸在斜面上自由下滑,当活塞与气缸相对静止时,被封气体与原来气缸静止在斜面上时相比较,下列说法中正确的是 A.气体的压强不变B.气体的内能减小

高中物理热学知识点

选修3-3《热学》 一、知识网络 分子直径数量级 物质是由大量分子组成的 阿伏加德罗常数 油膜法测分子直径 分子动理论 分子永不停息地做无规则运动 扩散现象 布朗运动 分子间存在相互作用力,分子力的F -r 曲线 分子的动能;与物体动能的区别 物体的内能 分子的势能;分子力做功与分子势能变化的关系;E P -r 曲线 物体的内能;影响因素;与机械能的区别 单晶体——各向异性(热、光、电等) 晶体 多晶体——各向同性(热、光、电等) 有固定的熔、沸点 非晶体——各向同性(热、光、电等)没有固定的熔、沸点 浸润与不浸润现象——毛细现象——举例 饱和汽与饱和汽压 液晶 体积V 气体体积与气体分子体积的关系 温度T (或t ) 热力学温标 分子平均动能的标志 压强的微观解释 压强P 影响压强的因素 求气体压强的方法 改变内能的物理过程 做功 ——内能与其他形式能的相互转化 热传递——物体间(物体各部分间)内能的转移 热力学第一定律 能量转化与守恒 能量守恒定律 热力学第二定律(两种表述)——熵——熵增加原理 能源与环境 常规能源.煤、石油、天然气 新能源.风能、水能、太阳能、核能、地热能、海洋能等 二、考点解析 考点64 物体是由大量分子组成的 阿伏罗德罗常数 要求:Ⅰ 阿伏加德罗常数(N A =6.02×1023mol -1)是联系微观量与宏观量的桥梁。 设分子体积V 0、分子直径d 、分子质量m ;宏观量为.物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ。 (1)分子质量:A A ==N V N m ρμ (2)分子体积:A A 10PN N V V μ== (对气体,V 0应为气体分子占据的空间大小) 分 子 动 理 论 热力 学 固体 热力学定律 液体 气 体

高中物理热学试题及答案

热学试题 一选择题: 1只知道下列那一组物理量,就可以估算出气体中分子间的平均距离 A. 阿伏加徳罗常数,该气体的摩尔质量和质量 B. 阿伏加徳罗常数,该气体的摩尔质量和密度 C. 阿伏加徳罗常数,该气体的质量和体积 D .该气体的质量、体积、和摩尔质量 2. 关于布朗运动下列说法正确的是 A. 布朗运动是液体分子的运动 B. 布朗运动是悬浮微粒分子的运动 C. 布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果 D. 温度越高,布朗运动越显著 3. 铜的摩尔质量为口(kg/ mol ),密度为p (kg/m3),若阿伏加徳罗常数为NA,则下列 说法中哪个是错毘.的 A. Im3铜所含的原子数目是p NA/ 口 B . 1kg铜所含的原子数目是p NA C. 一个铜原子的质量是(口/ N A) kg D .一个铜原子占有的体积是(口/ p NA) m 4. 分子间同时存在引力和斥力,下列说法正确的是 A. 固体分子间的引力总是大于斥力 B. 气体能充满任何仪器是因为分子间的斥力大于引力 C. 分子间的引力和斥力都随着分子间的距离增大而减小 D. 分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小 5. 关于物体内能,下列说法正确的是 A. 相同质量的两种物体,升高相同温度,内能增量相同 B. —定量0C的水结成0C的冰,内能一定减少

C. 一定质量的气体体积增大,既不吸热也不放热,内能减少

D. —定质量的气体吸热,而保持体积不变,内能一定减少 6. 质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100 C时 A. 它们的分子数目相同,分子的平均动能相同 B. 它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大 C. 它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大 D. 它们的分子数目不相同,分子的平均动能相同 7. 有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐 渐变大,若不计气泡中空气分子的势能变化,则 A. 气泡中的空气对外做功,吸收热量B .气泡中的空气对外做功,放出热量 C.气泡中的空气内能增加,吸收热量 D .气泡中的空气内能不变,放出热量 &关于气体压强,以下理解不正确的是 A. 从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小 B. 从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的 C. 容器内气体的压强是由气体的重力所产生的 D ?压强的国际单位是帕,1Pa= 1N/mf 9. 一定质量的理想气体处于平衡状态I ,现设法使其温度降低而压强升高,达到平衡状态n 则() A. 状态I时气体的密度比状态n时的大 B. 状态I时分子的平均动能比状态n时的大 C. 状态I时分子的平均距离比状态n时的大 D. 状态I时每个分子的动能都比状态n时分子平均动能大 10. 如图所示,气缸内装有一定质量的气体,气缸的截面积为s,其活塞为梯形,它的一个 面与气缸成0角,活塞与器壁间的摩擦忽略不计,现用一水平力F推活塞,汽缸不动, 此时大气压强为P。,则气缸内气体的压强P为

高中物理热学 理想气体状态方程 试题及答案

高中物理热学-- 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

高中物理最新试题精选 热学部分

高中物理最新试题精选 热学部分 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.下列说法中正确的是[] A.物体的温度升高,物体所含的热量就增多 B.物体的温度不变,内能一定不变 C.热量和功的单位与内能的单位相同,所以热量和功都作为物体内能的量度 D.热量和功是由过程决定的,而内能是由物体的状态决定的 2.下列说法中正确的是[] A.布朗运动说明分子之间存在相互作用力 B.物体的温度越高,其分子的平均动能越大 C.水和酒精混合后总体积会减小,说明分子间有空隙 D.物体内能增加,一定是物体从外界吸收了热量 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一块,说明分子间存在斥力 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来二者的体积之和,说明分子间存在引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力,又有斥力 4.当两个分子间的距离r=r0时,分子处于平衡状态.设r1<r0<r2,则当两个分子间的距离由r1变到r2的过程中,分子势能[] A.一直减小B.一直增大 C.先减小后增大D.先增大后减小 5.对于一定质量的某种理想气体,如果与外界没有热交换,则[] A.若气体分子的平均动能增大,则气体的压强一定增大 B.若气体分子的平均动能增大,则气体的压强一定减小 C.若气体分子的平均距离增大,则气体分子的平均动能一定增大 D.若气体分子的平均距离增大,则气体分子的平均动能一定减小 6.已知某理想气体的内能E与该气体分子总数N和热力学温度T的乘积成正比,即E=kNT.现对一有孔的金属容器加热,加热前后容器内气体的质量分别为m1、m2,则加热前后容器内气体的内能E之比为[] A.m1/m2B.m2/m1C.1D.无法确定 7.一定质量的理想气体,从状态R出发,分别经历如图2-1所示的三种不同过程的状态变化到状态A、B、C.有关A、B、C三个状态的物理量的比较,下列说法中正确的是[] 图2-1 A.气体分子的平均速率vA>vB>vC

46道高中物理33题热学热门大题整理大全

1\如图5所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸底的距离为h=10 cm,活塞与汽缸可无摩擦滑动且不漏气,大气压强为p0=1.0×105 Pa。 图5 (1)求此时桌面对汽缸的作用力F N; (2)现通过电热丝将气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值。 解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S, 解得F N=(p0-p)S=(1.0×105 Pa-0.5×105 Pa)×10×10-4 m2=50 N。 (2)设温度升高至T时活塞距离汽缸底距离为H,则气体对外界做功W=p0ΔV=p0S(H-h), 由热力学第一定律得ΔU=Q-W,解得H=12 cm。 气体温度从T0升高到T的过程,由理想气体状态方程得pSh T0=p0SH T , 解得T=p0H ph T0=105×0.12 0.5×105×0.10×300 K=720 K。 答案(1)50 N(2)720 K ( 等压变化,W=pΔV;只要温度发生变化,其内能就发生变化。 (4)结合热力学第一定律ΔU=W+Q求解问题。

2.如图8所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度h 1=0.50 m ,气体的温度t 1=27 ℃。给汽缸缓慢加热至t 2=207 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中缸内气体增加的内能ΔU =300 J ,已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2。求: 图8 (ⅰ)活塞距离汽缸底部的高度h 2; (ⅱ)此过程中缸内气体吸收的热量Q 。 解析 (ⅰ)气体做等压变化,根据盖—吕萨克定律可得 h 1S T 1=h 2S T 2,解得h 2=0.80 m 。 (ⅱ)在气体膨胀的过程中,气体对外做功为 W 0=p 0·ΔV =[1.0×105×(0.80-0.50)×5.0×10-3] J =150 J 。 根据热力学第一定律可得气体内能的变化为 ΔU =-W 0+Q ,得Q =ΔU +W 0=450 J 。 答案 (ⅰ)0.80 m (ⅱ)450 J 3.(2018·山西联考)如图4所示,上端开口的光滑圆柱形绝热汽缸竖直放置,质量m =5 kg ,横截面积S =50 cm 2的活塞将一定质量的理想气体封闭在汽缸内,在汽缸内距缸底某处设有体积可忽略的卡环a 、b ,使活塞只能向上滑动,开始时活塞搁在a 、b 上,缸内气体的压强等于大气压强,温度为300 K 。现通过内部电热丝缓慢加热汽缸内气体,直至活塞恰好离开a 、b 。已知大气压强p 0=1.0×105 Pa ,g 取10 m/s 2。

高中物理热学知识点梳理

高中物理热学知识点梳理 一、分子动理论、能量守恒定律 1.阿伏加德罗常数N A=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V S {V:单分子油膜的体积(m3),S:油膜表面积(m2)} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.扩散现象、布朗运动说明分子的无规则热运动;布朗运动指的是悬浮在液体中的固体颗粒的运动,是液体分子撞击它引起的;温度越高,颗粒越小,布朗运动越明显 6.温度是物体分子热运动的平均动能的标志;分子势能是由它们的相对位置决定的。 7.分子速率是“中间多、两头少”,温度升高,速率大的分子占的比率增大 8.晶体具有一定的熔点,非晶体没有确定的熔点;单晶体具有各向异性,多晶体、非晶体具有各向同性;(晶体内部的物质微粒是静止的,非晶体内部的物质微粒的排列是不规则的) 9.表面张力的方向:从微观上看表面的分子受到指向液体内部的力,扩展到宏观上表现为指向液体表面切线方向。 10.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的) W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出,它违反了能量守恒定律} 11.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出,它违反了热力学第二定律} 12.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} (1)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

高中物理热学教程

图3-4-1 3.4 液体的表面张力 3.4.1、表面张力和表面张力系数 液体下厚度为分子作用半径的一层液体,叫做液体的表面层。表面层内的分子,一方面受到液体内部分子的作用,另一方面受到气体分子的作用,由于这两个作用力的不同,使液体表面层的分子分布比液体内部的分子分布稀疏,分子的平均间距较大,所以表面层内液体分子的作用力主要表现为引力,正是分子间的这种引力作用,使表面层具有收缩的趋势。 液体表面的各部分相互吸引的力称为表面张力,表面张力的方向与液面相切,作用在任何一部分液面上的表面张力总是与这部分液面的分界线垂直。 表面张力的大小与所研究液面和其他部分的分界线长度L 成正比,因此可写成 L f σ= 式中σ称为表面张力系数,在国际单位制中,其单位是N/m ,表面张力系数σ的数值与液体的种类和温度有关。 3.4.2表面能 我们再从能量角度研究张力现象,由于液面有自动收 缩的趋势,所以增大液体表面积需要克服表面张力做功,由图3-4-1可以看出,设想使AB 边向右移动距离△x ,则此过程中外界克服表面张力所做的功为 S x AB x f x F W ?=??=?=?=σσ22外 式中△S 表示AB 边移动△x 时液膜的两个表面所增加的总面积。若去掉外力,AB 边会向左运动,消耗表面自由能而转化为机械能,所以表面自由能相当于势能,凡势能都有减小的趋势,而S E ∞,所以液体表面具有收缩的趋势,例如体

积相同的物体以球体的表面积最小,所以若无其他作用力的影响,液滴等均应为球体。 例 将端点相连的三根细线掷在水面上,如图3-4-2所示,其中1、2线各长1.5cm ,3线长1cm ,若在图中A 点滴下某种杂质,使表面张力系数减小到原来的0.4,求每根线的张力。然后又把该杂质滴在B 点,求每根线的张力:已知水的面表张力系数α=0.07N/m 。 A 滴入杂质后,形成图3-4-3形 状,取圆心角为θ的一小段圆弧,该线段在线两侧张力和表面张力共同 作用下平衡,则有 1 )4.0(2 sin R a a aT θθ -=,式中 cm R πθ θ 25 .2,2 2 sin 1= ≈ 代入后得 0,1067.11432=?===-T N T T T 。 B 中也滴入杂质后,线3松弛即03='T ,形成圆产半径 π23 2= R cm ,仿上面 解法得 N aR T T 4 2211026.0-?=='='。 3.4.3、表面张力产生的附加压强 表面张力的存在,造成弯曲液面的内、外的压强差,称为附加压强,其中最简单的就是球形液面的附加压强,如图3-4-4所示,在半径为R 的球形液滴上任取一球冠小液块来分析(小液块与空气的分界面的面积是S ',底面积是S ,底面上的A 点极靠近球面),此球冠形小液体的受力情况为: 在S 面上处处受与球面垂直的大气压力作用,由对称性易知,大气压的合力方向垂直于S 面,大小可表示为 S p F 0=。 A B 1 2 3 图3-4-2 图3-4-3

高中物理热学题

热学 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 例2 如图7-1所示,已知一定质量的理想气体,从状态1变化到状态2。问:气体对外是否做功? 例3 一定质量的理想气体的三个状态在V-T图上用A,B,C三个点表示,如图7-3所示。试比较气体在这三个状态时的压强pA,pB,pC的大小关系有:() A.pC>pB>pC B.pA<pC<pB C.pC>pA>pB D.无法判断。

例4 如图7-5,A,B是体积相同的气缸,B内有一导热的、可在气缸内无摩擦滑动的、体积不计的活塞C,D为不导热的阀门。起初,阀门关闭,A内装有压强p1=2.0×105a温度T1=300K的氮气。B内装有压强P2=1.0×105Pa,温度 T2=600K的氧气。打开阀门D,活塞C向右移动,最后达到平衡,以V1和V2分别表示平衡后氮气和氧气的体积,则V1∶V2 =______(假定氧气和氮气均为理想气体,并与外界无热交换,连接气缸的管道体积可忽略) 例5 如图7-6所示,一个横截面积为S的圆筒型容器竖直放置,金属圆板A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板A与容器内壁之间的摩擦,若大气压强为P0,则被圆板封闭在容器中气体的压强p等于() 例6 如图7-9所示,在一个圆柱形导热的气缸中,用活塞封闭了一部分空气,活塞与气缸壁间是密封而光滑的,一弹簧秤挂在活塞上,将整个气缸悬吊在天花板上。当外界气温升高(大气压不变)时,()

高中物理热学知识点归纳

选修3-3热学知识点归纳 一、分子运动论 1.物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是10?10m (2)分子质量 分子质量很小,一般分子质量的数量级是10?26kg (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值:N A =6.02×1023mol ?1 设微观量为:分子体积V0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: A A N V N m 1 μρ==分子体积: V 0=V VV V =V 1V V (对气体V0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30 =V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1A 1A A N V V N V M N V N M n === =ρμρμ

2.分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)扩散现象:不同物质能够彼此进入对方的现象。本质:由物质分子的无规则运动产生的。 (3)(3)布朗运动 (4)布朗运动是悬浮在液体(或气体)中的固体微粒的无规 则运动。布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。 (5)①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 (6)因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。 (7)②布朗运动产生的原因 (8)大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (9)③影响布朗运动激烈程度的因素 (10)固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

{高中试卷}高中化学热学中的物理模型专题辅导[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

高中物理热学中的物理模型 随着高考和新课标改革的深入,热学中的气体三大定律已不再做为考试内容,取而代之的是有关分子动理论,能量守恒定律等内容.而在这些内容中,估算题是一类重要的问题.解答这类问题时,关键是要建立起相应的物理模型.笔者在此文中举几个平时做题中常见的模型,以求抛砖引玉. 1. 单分子层模型 在用油膜法测分子直径时,油酸分子在液体表面形成一层油膜,由于这时的油酸分子直径是散开的,所以可以认为油酸分子没有形成堆积,所形成的油膜为单分子油膜层,这样,我们就可以利用公式S V d = 来计算油酸分子直径了. 例1 将3cm 1的油酸溶液溶于酒精,制成3cm 200的酒精溶液,已知3cm 1的酒精油酸溶液 有50滴,现取1滴酒精油酸溶液滴到水面上,随着酒精溶于水中,油酸在水面上形成一单分子层,已测出这一薄层的面积为2 m 2.0,由此可估算出油酸分子的直径多大? 解析 1滴酒精油酸溶液含有油酸的体积为: ?= 2001V 3103m 101cm 501-?= 单分子油膜层的厚度即油酸分子直径: m 105m 2 .0101S V d 1010 --?=?== 2. 球体模型 由于固体和液体分子间距离很小,因此,在估算分子直径数量级的计算中,常常把固体和液体的分子看成是紧密挨在一起的. 例2 已知铜的密度为33m /kg 109.8?=ρ,相对原子量为64,通过计算求每个铜原子所占的体积以及每个铜原子的直径. 解析 因为铜的相对原子量为64,所以铜的摩尔质量为m ol /kg 1064M 3-?=, 铜的摩尔体积为ρM V mol =, 因此每个铜原子的体积为 . 3293 2333 A A mol 0m 101m 1002.6109.8104.6N M N V V --?≈????===ρ 由于铜原子间距离很小,我们可以把铜原子看成是紧密挨在一起的球形,

高中物理热学题解题思路

热学计算题解题技巧 一、知识储备 1、气体的等温、等压、等容变化,理想气体状态方程 2、浮力的计算g V F 排排浮ρ=,物体受到的浮力等于它排开气体、液体的重力 3、液体中某一点压强与深度的有关gh P ρ=液,ρ是液体的密度,h 是该点距离液面的高度差 4、在小范围内气体压强处处相等,在大范围内(比如大气层)气体压强也随高度变化 5、某一面积上压力的计算:S P F ?=;某一面积上的压力等于压强乘以面积 6、某一平面受力平衡时,压强关系:该平面上面的压强之和等于下面的压强之和 ` 7、热力学温度与摄氏温度换算:K t T )273(+=,T 是热力学温度,t 是摄氏温度 8、温度不同,气体的密度会不相同。给定某一温度0T 的密度0ρ,可以通过等压变化过程,可以计算出任意温度T 下气体的密度 9、气体压强的单位,一种是帕斯卡,一种是厘米汞柱cmHg 二、关键点 1、热学计算题的研究对象通常是一个热学系统,考察的最多的是理想气体,这类题目的套路比较简单。我们学习理想气体的等温、等压、等容变化以及理想气体状态方程,前提条件都是一定质量的气体,所以我们解题的时候也要找到我们要分析的这个一定质量的气体,通常这个一定质量的气体会在一个密闭空间里,所以解热学计算题,一定要找到这个密闭空间。 2、理想气体的变化方程等式前后对应的是两个稳定的状态(①状态到②状态),所以解题的时候一定要找准这两个状态,这就要求我们通过读题分析清楚整个的变化过程(①状态到②状态再到③状态),同时要确定是等温、等容还是等压过程,还是三个都变化了。 3、所谓的这个热学系统,也就是一定质量的气体,也就是这个密闭空间,只有三个参

高中物理之热学专题复习与练习

一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

相关主题
文本预览
相关文档 最新文档