当前位置:文档之家› 船舶电气设备及系统郑华耀主编课后习题参考答案

船舶电气设备及系统郑华耀主编课后习题参考答案

船舶电气设备及系统郑华耀主编课后习题参考答案
船舶电气设备及系统郑华耀主编课后习题参考答案

1-1、铁磁材料具有哪三种性质?

答:铁磁材料具有“高导磁率”、“磁饱和”以及“磁滞和剩磁”等三种性质。

1-2、为什么通电线圈套在铁心上,它所产生的磁通会显著增加?

答:通电线圈未套在铁心上时,其产生的磁通所经过的磁路主要是空气隙,磁阻很大,因此磁通一般较小。当通电线圈套在铁心上时,磁通所经过的磁路有很大的一段是由铁磁材料组成的,磁路的磁阻显著下降,所以它所产生的磁通会显著增加。

1-3、铁磁材料在交变磁化时,为什么会产生磁滞和涡流损耗?直流电磁铁的铁心为什么是由整块铸铁制成的?

答:①由于铁磁材料有磁滞和剩磁的性质,需要一定的外界提供一定的能量来克服磁滞和剩磁的作用实现交变磁化,因此交变磁化时会产生磁滞损耗。交变磁化的磁通将在铁心中感应电动势,而由于铁磁材料本身具有一定的导电能力,感应的电动势将在铁心中形成涡流(以铁心中心轴线为圆心的同心环形电流),涡流在导体上产生的损耗就是涡流损耗。②直流电磁铁产生的磁通是大小和方向都恒定不变的直流磁通,直流磁通不会产生涡流损耗,因此没有必要象交流电磁铁那样采用硅钢片制造,为了使制造工艺简化,直流电磁铁的铁心就常常采用整块铸铁制成。

1-7、交、直流接触器有什么不同点?(注:本题主要指交、直流接触器的电磁机构)答:交、直流接触器的不同点基本上体现在交、直流电磁铁的不同点上,即,它们的电磁机构的不同点上。交、直流接触器电磁机构的主要不同点有:①铁心构造不同,②线圈结构不同,③工作原理方面存在差异。

1-9、交流接触器为什么要用短路环?

答:为了避免衔铁的振动。交流接触器的线圈通过的是交流电流,在铁心中产生的是交变磁通。在一个周期内,交流电流和交变磁通都有两个瞬时值为零的“过零点”。在“过零点”瞬间,铁心产生的电磁吸力为零。而交流接触器的衔铁是靠反力弹簧释放的,工作时衔铁是靠电磁吸力克服反力弹簧作用力而吸合的,因此若不采用短路环,在“过零点”衔铁就会出现振动。短路环是用良导体焊接成的,将铁心的一部分套住。接触器工作时产生的交变磁通也通过被短路环套住的部分铁心,且在短路环中感应电动势,产生电流。短路环中的电流也会产生磁通,而且,接触器线圈产生的磁通为零时(变化率最大),短路环感应的电动势、产生的电流和磁通都达到最大,因此保证接触器线圈电流“过零点”时铁心产生的磁通和吸力不围零,从而避免衔铁的振动。也就是说,交流接触器铁心中的短路环是避免铁心两部分产生的磁通同时为零,从而避免衔铁的振动的。

1-10、交流接触器为什么要用钢片叠成?

答:交流电磁铁工作时,线圈通入的是交流电流,在铁心中产生的是交变磁通,交变磁通会在铁心中产生涡流损耗。为了减少涡流损耗,铁心的应该由片间涂有绝缘材料的硅钢片叠压而成。

1-11、交流接触器铁心卡住为什么会烧毁线圈?(应该说是“衔铁卡住”较合适)答:交流电磁铁是恒磁通型的,只要电源电压和频率不变,因为U≈E=4.44NfΦ,其磁通基本不变,因此不管衔铁是否吸合,电磁铁产生的吸力基本保持不变。但是,衔铁吸合前,磁路的磁阻大,线圈通过的电流大;衔铁吸合后磁路的磁阻小,线圈通过的电流小(因为磁势IN=磁阻×Φ,Φ不变而磁阻大,I就大;磁阻小,I就小)。若接触器工作时交流电磁铁的衔铁卡住(即不能完全吸合),将使线圈一直保持较大的电流,产生的铜损耗增加,很容易

使线圈因过热而烧毁。

第2章变压器

2-1、变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时是怎样反映它们的作用的?

答:主磁通:沿铁心闭合,同时与原、副边绕组交链,并在所交链的绕组中感应电动势。它是实现能量转换的媒介,是变压器的工作磁通,占总磁通的绝大部分。变压器的端电压一定,主磁通维持在一个恒定的值。在分析变压器时常以励磁电抗X m反应主磁通的作用。

漏磁通:主要沿非铁磁材料闭合,仅与原边绕组或者副边绕组交链,在所交链的绕组中感应电动势,起漏抗压降的作用,在数量上远小于主磁通。在分析变压器时,以漏抗Xσ反映漏磁通的作用。

主磁通由原边绕组和副边绕组磁通势共同产生,漏磁通仅由原边或副边绕组磁通势单独产生。

2-2、感应电动势的量值与哪些因素有关?励磁阻抗Zm的物理意义如何?Xm的大小与哪些因素有关?

答:①因素有:绕组的匝数、电源的频率和与绕组交链磁通的幅值。②物理意义是:电阻部分用来反映变压器磁路损耗在一相电路中的等效,电抗部分则反映变压器在磁路中产生主磁通时,对电路相电流产生相位的影响和对相电压产生电压降落的影响。励磁阻抗Z m=R m+jX m,反映变压器铁损大小的等效电阻。③绕组匝数、磁路磁阻以及电源频率

2-3、额定电压为110/24V变压器,若将原边绕组接于220V交流电源上,其结果如何?若将220/24V的变压器接于110V交流电源上,其结果又将如何?

答:若将110/24V变压器的原边绕组接于220V交流电源上,由于这时原边电压增加一倍,就要求磁路的磁通也增加一倍。在半饱和区再使磁通增加一倍,则励磁电流将大大增加,使绕组的铜耗和铁心损耗大大增加,变压器将很快烧毁。

若将220/24V的变压器接于110V交流电源上,磁路的磁通减少,对于变压器运行没有什么不良影响。只是此时磁路完全不饱和,变压器铁心的利用率降低而已。同时,变压器副边输出电压减小为12V,不能满足原来负载的要求。

2-4、额定频率为50Hz的变压器接于频率为60Hz的额定电压上,以及额定频率为60Hz的变压器接于频率为50Hz的额定电压上,将对变压器运行带来什么影响?50Hz和60Hz的变压器能通用吗?

答:频率增加铁心损耗也增加。若电源电压不变,则磁路的磁通Φ减少,励磁电流减小,绕组的铜损耗略有减少;同理,60Hz接于50Hz的额定电压上,铁耗有所减少,但磁路饱和程度增加,绕组的铜耗有所增加。

由于空载电流较小,频率在50Hz和60Hz之间变化,铜耗和铁耗的变化量都不太不大,而且一个增加另外一个就减少,同时考虑变压器都有一定的过载能力。因此,在50Hz和60Hz 的变压器还是可以通用的。

2-5、一台额定电压为220/110V的变压器,原、副边绕组匝数N1、N2分别为2000和1000,若为节省铜线,将匝数改为400和200,是否可以?

答:不可以。根据U≈E=4.44fNΦm可知,当匝数减小而为了维持同样电压,必须导致磁通大大增加,必然使得磁路饱和,电流显著增大。题中条件下,匝数减少为原来的1/5,为了平衡电源电压,磁通需要增加到原来的5倍,磁路严重饱和,电流增加的倍数可达原来的几十倍,若没有保护措施,线圈将瞬间烧毁。

2-6、变压器负载运行时引起副边电压变化的原因是什么?副边电压变化率的大小与这些因素

有何关系?当副边带什么性质负载时有可能使电压变化率为零?

答:①变压器负载运行,引起副边端电压变化的原因有:短路阻抗,负载的大小和性质。②短路阻抗的大,负载的大,副边电压变化率就大。③当副边带电容性负载时有可能使电压变化率为零。

2-7、根据图2-4所示的简化等效电路图,列出电

压平衡方程式,并分别画出感性及容性负载

时的相量图。

答:①电压平衡方程式为:

ú2=?2R L +j ?2X L

?1=-?2

ú1=-ú2+?1R K +j ?1X K

②相量图如右图所示。

2-8、变压器空载时,原边加额定电压,虽然原边

电阻中r 1很小,可空载电流并不大,为什么?

答:变压器空载运行时,从电源输入的电流主要在铁心磁路中产生交变的主磁通,交变的主磁通在原边绕组将感应幅值接近电源电压的反电势,且

与电源电压的实际相位几乎相反。原边绕组上的反电势作用是与电源电压相平衡,使加在原边绕组电阻r 1中电压很小。因此,虽然r 1很小,但空载电流并不大。

2-9、一台50Hz 的单相变压器,若误把原边绕组接到与其额定电压相同直流电源上,会发生

什么现象?

答:当原边接到直流电源上时,主磁通是恒定直流磁通,原、副边绕组中没有感应电动势。没有感应电动势与电源电压相平衡,直流电源电压将全部降落在原边绕组的电阻上,产生巨大的短路电流。若没有短路保护措施,原边绕组很快将被烧毁。

2-10、在使用电压互感器及电流互感器时,各应注意什么?为什么?

答:⑴电压互感器:①副边绕组不许短路。如果副边绕组短路,则变成短路运行,电流从空载电流变成短路电流,造成原副边绕组电流均变得很大,会使互感器绕组过热而烧毁。②铁心和副边绕组的一端必须可靠接地。避免由于绝缘老化或损坏造成漏电,危及人身安全。③副边所带的负载阻抗不能低于额定负载阻抗。互感器的精度将受到影响。

⑵电流互感器意:①副边绕组不许开路。若副边开路,原边电流完全用于励磁,磁场变得很强,将在副边感应出很高的电压,将击穿绝缘,危及人身及设备安全。②铁心和副边绕组的一端必须可靠接地。避免由于绝缘老化或损坏造成漏电,危及人身安全。③副边所带的负载阻抗不能高于额定负载阻抗,否则也将影响互感器的测量精度。

第3章 异步电动机

3-1、什么叫转差率?如何根据转差率判断异步电动机的运行状态?

答:所谓转差率,就是转差的比率,是转子转速与气隙旋转磁场之间的转差与气隙旋转磁场的相对比率。其定义式为s=(n 0-n)n 0。根据转差率可以判断异步电动机转子与气隙旋转磁场的关系,从而判断异步电动机的运行状态,具体如下:

当s <0时,n >n 0,发电制动状态;当s=0时,n=n 0,理想空载运行状态;当0<s <

1

题图2-7 感性及容性负载时的相量图

时,n <n 0,电动运行状态;当s=1时,n=0,堵转状态,或者电动机起动的瞬间;当s >1时,n <0,反接制动运行状态。

3-2、异步电动机处于发电机运行状态和处于电磁(反接)制动运行状态时,电磁转矩和转子转

向之间的关系是否一样?应该怎样分析,才能区分这两种运行状态?

答:关系都是一样的,所谓制动,从字面上看就是“制止运动”,只有电磁转矩与转子转向相反才能制动。要区分这两种运行状态可以从转差率进行判断:当s <0时,异步电动机处于发电制动状态。此时转子转速n 高于气隙旋转磁场的转速n 0;当s >1时,异步电动机处于反接制动运行状态。此时,转子转速n 与气隙旋转磁场的转速n 0方向相反,若以气隙旋转磁场的转速n 0方向为参考正方向,则转子转速n 低于气隙旋转磁场的转速n 0。

3-3、如果将绕线式异步电动机的定子绕组短接,而把转子绕组连接到对称三相电源上,将会

发生什么现象?

答:绕线式异步电动机的转子仍然能够正常转动。

当此时转子转向与气隙旋转磁场转向相反,气隙旋转磁

场相对于转子的速度为n 0;气隙旋转磁场相对于定子的

转速为sn 0,转向也与转子转向相反,如右图(题图3-3)所示。 在题图3-3中,转子绕组通入三相交流电流,产生的旋转磁场以n 0(相对于转子)或s n 0 (相对于定子)的转

速按照a 、b 、c 的相序顺时针旋转,切割定子绕组感应电势,产生电流如图3-3 b)所示。根据左手定则,定子绕组受力F 方向为:A ↓、X ↑,而由于定子固定不动,转子将受到相反方向力的作用,因此电磁转矩T 和转子转速n 的方向都为逆时针方向。

3-4、与同容量的变压器相比较,异步电动机的空载电流大,还是变压器的空载电流大?为什

么?

答:空载电流大,因为异步电动机磁路中含有气隙,气隙磁阻大,使得产生额定磁通量的励磁磁动势增大,相应励磁电流就大,约占额定电流的20%~40%;而变压器主磁路是闭合的不含有气隙,其励磁电流也小的多,约占额定电流的3%~8%。

3-5、一台三相异步电动机,如果把转子抽掉,而在定子绕组上加三相额定电压,会产生什么

后果?

答:磁路中气隙将大大增加,即磁路的导磁率减小。当定子绕组施加三相额定电压,磁通仍为额定值,在磁路的磁阻增大的情况下,需要有很大的励磁磁动势,励磁电流将大大超过额定电流,很快将使定子绕组烧毁。

3-6、异步电动机定子绕组与转子绕组没有直接的电气联系,为什么负载增加时,定子电流和

输入功率会自动增加,试说明其物理过程。从空载到满载电机主磁通有无变化?

答:当负载增加时,转子电流将增大。而转子电流的去磁性质将使主磁通出现下降的趋势,定子绕组感应的电势也将出现减少的趋势。当电源电压不变时,定子绕组的电流将自动增加,以补偿转子电流的去磁作用。因此,负载增加时,定子电流和输入功率会自动增加。 由于定子绕组的电阻和漏抗都较小。因此,从空载到满载,若不考虑定子漏阻抗影响,异步电机的主磁通基本不变。若考虑定子漏阻抗影响,则主磁通略有减少。

3-7、三相异步电动机正常运行时,如果转子突然被卡住而不能转动,试问这时电动机的电流

有无变化?对电动机有何影响?

a) 三相电流 b) 方向 题图3-3 转子接电源

答:如果转子突然卡住,转子感应电动势将突然增大,致使转子电流突然增大,产生较大的电流冲击和机械力矩的冲击。而根据磁势平衡关系知,转子电流增大定子电流也将增加,电机定、转子绕组的铜损耗增加,时间稍长绕组将过热,若保护装置不动作则可能烧毁绕组。

3-8、在分析异步电动机时,转子边要进行哪些折算?为什么要进行这些折算?折算的条件是什么?

答:⑴有:①频率折算,②绕组折算。⑵折算的目的是:①由于转子电路的电灵频率随转子转速(或电机的转差率)变化而变化,难于直接进行电气分析。因此需要进行频率折算,将转子电量的频率折算成与定子电量频率一致的等效电量,以便进行电气分析。即用一个静止不动的绕组代替实际转动的转子绕组,而且两个绕组对磁路的影响必须一样。②通过频率折算后的转子绕组与变压器的情况相同,但频率折算后的静止绕组的匝数与定子绕组匝数不一样,仍然不能进行直接的电气分析,因此还必须象变压器一样进行绕组折算,用一个匝数相同的等效绕组代替频率折算后的静止绕组,从而消除磁路分析的麻烦得到与变压器相似的等效电路。

⑶进行频率折算和绕组折算的条件是:折算前后等效绕组与实际绕组的①磁势一样,②产生的电磁功率和损耗一样。

3-9、异步电动机的等效电路与变压器的等效电路有无差别?等效电路中的

s s

-

1r

2

′代表什么?

能否用电感或电容代替?为什么?

答:①首先,两种等效电路是有相似的地方的。两者相同点主要是:形式一样;变压器的原边和三相异步电动机定子边都采用每相参数的实际值,而变压器的副边和异步电动机转子都采用折合值。

②但是,两者却有如下突出的不同点:变压器中折合只是绕组匝数折合,而异步电动机除了绕组匝数折合外,还有频率、相数折合。变压器负载运行时,变压器的负载阻抗只需要乘以变比的平方,便可以用等效电路计算,变压器的输出的电功率的性质及功率因素完全取决于负载的性质,可以是电阻性、电感性或电容性的。而三相异步电动机运行时,实际输出机械功率,但在等效电路上用一个等效电阻表示,其上消耗(电功率)代表了电动机输出的机械功率。也就是说,机械功率的大小与电动机转差率有关,性质也是电阻上的有功功率,不可能有电感性或者电容性的。转子电路中是机械功率的等效电阻。

3-10、异步电动机带额定负载运行时,若电源电压下降过多,会产生什么后果?试说明其原因。如果电源电压下降20%,对异步电动机的最大转矩、起动转矩、功率因数等各有何影响?

答:⑴异步电动机带额定负载运行时,若电源电压下降过多,将使定、转子电流都将增大较多,电机的铜损耗增加较多,可能使电机出现过热现象,从而加速绕组绝缘的老化,甚至烧毁。这是因为异步电动机产生的电磁转矩与电源电压的平方成正比,电压下降电机产生的电磁转矩减小,在额定负载小运行时转子转速将明显下降,转差率将增加较多。从转子电流计算公式看,转子电流增大较多,同时引起定子电流有较大的增加。

⑵由于异步电动机的最大转矩和起动转矩都与电源电压的平方成正比,电源电压下降20%,即电源电压为原来的0.8,因此异步电动机的最大转矩和起动转矩都为额定电压时的

0.64,即下降了36%。

⑶根据前面的分析,电压下降,转差率增加,转子回路的等效电阻r′2/s减小,转子电路的功率因数cos?2=(r′2/s)/[x′22+(r′2/s)2]将减小。而带额定负载时定子电流主要成分是转子电流分量,励磁电流分量所占的比例较小,cos?2减小则定子电路的功率因数cos?1也将比额定电压时对应的数值有所减小。

3-11、漏抗大小对异步电动机的运行性能,包括起动电流、起动转矩、最大转矩、转子电路的功率因数等有何影响?

答:漏抗大小对异步电动机的运行性能有影响,具体表现为:由于等效电路可知,漏抗增大,起动电流减小;由于转矩与功率因数表达式(式3-23、式3-21和式3-10)可知,起动转矩、最大转矩、转子电路的功率因数都减小。

3-12、有些三相异步电动机有380/220V两种额定电压,定子绕组可以连接成星形,也可连接成三角形。试问在什么情况下采用何种连接方法?

答:三相异步电动机有两种额定电压380/220V时,一般同时标注其连接形式为Y/△。因为对于已经出厂的异步电动机,其磁路的磁通与相绕组感应的电动势基本确定,也就是说定子一相绕组的耐压已经确定。但三相绕组采用Y或△连接形式,电机线间电势有不同的数值。因此,当三相异步电动机标出的额定电压380/220V时,说明其定子一相绕组的额定电压为220V。当异步电动机定子三相绕组采用Y连接时,其额定电压为380V;当异步电动机定子三相绕组采用△连接时,其额定电压为220V。

3-13、三相异步电动机在满载和空载下起动时,起动电流和起动转矩是否一样?

答:三相异步电动机的机械特性与其所带负载没有任何关系,因此在满载和空载下起动时,其起动电流和起动转矩都是一样的。这可从异步电动机的电流和起动转矩计算公式得到验证。若忽略励磁电流,起动电流可由P.40页式3-9进行计算(令s=1);起动转矩则可由P.44页式3-23或P.43页式3-18进行计算(令s=1)。而式3-9、式3-18和式3-23都与其所带负载的大小没有任何关系。

3-14、如果电动机的三角形连接误接成星形连接,或者星形连接误接成三角形连接,其后果将如何?

答:①如果电动机的三角形连接误接成星形,则定子每相绕组的端电压下降为原来的1/3,主磁通将大大减小,若要使流过电动机绕组不超过额定电流,由于式3-12可知,应该减小电动机所带的负载转矩。否则当接额定负载运行时,绕组中电流将增加,超过额定值,致使保护器件动作或者烧毁绕组(因为T减小,转速将下降,转差率s将增加,由式3-9可知,I2将增大;由式3-12可知,Φ↓只有I2↑才能使T保持额定值与额定负载转矩平衡)。

②如果电动机的星形连接被误接为三角形,则定子每相绕组的端电压将为原额定电压的3倍,为了感应电动势与电源电压平衡,要求主磁通也要增加到为原来的3倍,磁路将严重饱和,励磁电流大大增加,也会致使保护器件动作或者烧毁绕组。

3-16、单相分相式电动机如何改变其旋转方向?罩极式电动机的旋转方向能否改变?

答:改变单相分相式电动机旋转方向,可单独改变其任意一个绕组的接线(即,将其两根引线脱开对调一下再接上。注:若同时改变其两个绕组的接线则电动机旋转方向将不会改变)。这是因为,单独改变其任意一个绕组的接线时,流过该绕组电流方向变反,两个绕组流过的电流相位关系发生变化(原来电流相位比另一绕组电流超前的绕组,单独改变任意一个绕组的接线后,该绕组电流相位变成滞后流过另一绕组的电流),而单相分相式电动机两个绕组产生的旋转磁场的转向总是从电流相位超前的绕组向电流相位滞后的绕组转动。电流相位关系发生变化,电动机产生的旋转磁场旋转方向就与原来的旋转方向相反,电动机的转向也就与原来的转向相反,即单相分相式电动机的旋转方向得到改变。

3-17、一台三相异步电动机铭牌上标明f=50Hz,n N=960r/min,问该电动机的极数是多少?

解:由于异步电动机的额定转差率为1%~9%,即s N≈0.01~0.09,通过s N、n N和n0

之间的关系,以及n0、f和p之间的关系可以求出该电动机的极对数,具体过程如下:

n0=n N/(1-s N)=960/(0.91~0.99)=969.7~1054.9r/min

p=60f/n0=3000/(969.7~1054.9)=2.8~3.1,而p只能为整数,∴p=3(对极)。即,该电动机的极数是6(个)极。

答:该电动机的极数是6极。

3-18、三相鼠笼式异步电动机在额定状态附近运行,当(1)负载增大、(2)电压升高、(3)频率升高时,其转速和定子电流分别有何变化?

答:⑴根据三相异步电动机的固有机械特性、调压人工机械特性和调频人工机械特性,可以知道:①当负载增大时,三相异步电动机的转速有所下降;②当电压升高时,三相异步电动机的转速有所上升;③当频率升高时,三相异步电动机的转速也有所上升。(【注】:调频人工机械特性可以由于P.36页式3-1的理想空载转速或磁场的同步转速表达式推知:当f↑,n0也↑,整个机械特性向上平移;当f↓,n0也↓,整个机械特性向下平移。)

⑵由三相异步电动机的相量图及磁势平衡方程式可知,定子电流等于转子电流与励磁电流的相量和,要分析定子电流可以先分析转子电流的情况。由异步电动机的机械特性及P.40页式3-9的转子电流表达式可知:①由于负载增大时,异步电动机的转速略有下降,转差率增大,转子电流增大。而电源电压不变则主磁通不变,励磁电流不变。因此,当电压升高时,三相异步电动机的定子电流增大;②由于电压升高时,异步电动机的励磁电流增大,且转子电流由于电动势E20的增大也相应增大。因此,当电压升高时,三相异步电动机的定子电流增大;③由于电源电压不变,定、转子绕组感应电动势也基本不变,当频率升高时,由4.44公式可知,主磁通减小,励磁电流减小。又由于频率升高时转子漏抗X20=2 fL20增大,E20基本不变,则转子电流减小。因此,当频率升高时,三相异步电动机的定子电流减小。

第4章同步电机

4-1、同步发电机的转速为什么必须是常数?频率为50Hz的柴油发电机应该为多少极?

答:同步发电机输出的交流电的频率f与转子转速n存在如下关系:n=60f/p。对于某一同步发电机,由于其极对数p在电枢绕组绕制时已经确定。因此为了保持发电机输出电压的频率一定,发电机的转速n就是必须是常数。

柴油发电机组的柴油机,一般属于中、低速柴油机。根据公式n=60f/p,若柴油机的转速n为750r/min时,发电机的极对数p为4;当n为600r/min时,发电机的极对数p为5;当n为500r/min时,发电机的极对数p为6;当n为428.6r/min时,发电机的极对数p为7;当n为375r/min时,发电机的极对数p为8;当n为333r/min时,发电机的极对数p为9;当n为300r/min时,发电机的极对数p为10。

4-2、同步电机和异步电机在结构上有哪些不同之处?

答:常用的旋转磁极式同步电机与异步电动机的定子基本结构完全相同,转子结构却区别较大。同步电机转子有隐极式和凸极式两种,转子励磁绕组通过电刷和滑环加直流电流励磁;异步电动机转子有鼠笼式和绕线式两种,自成回路的转子导体感应电势产生电流。

4-3、隐极式和凸极式同步发电机各有什么特点,各适用于哪些场合?

答:一般隐极式转子极对数少,结构细长,能够承受较大的离心力。在磁路上的特点是其气隙均匀。常适用于高速运行同步电机,如气轮发电机和高速柴油机。

凸极式转子有凸出的磁极,磁极的极性沿着转子圆周按N、S相间的规律分布,磁极对数多、转子的外径大,产生的离心力大。在磁路上特点是气隙不均匀,对着极弧(直轴方向)

气隙小,极间(交轴方向)气隙大,也就是在磁极轴线位置(直轴)的磁路磁阻小,而在两磁极中间位置(交轴)的磁路磁阻最大。一般适用于中、低速运行。如船舶柴油发电机、水轮发电机。

4-4、同步发电机在三相对称负载下稳定运行时,电枢电流产生的旋转磁场是否与励磁绕组交链?它会在励磁绕组中感应电动势吗?

答:同步发电机电枢电流产生的磁场是与励磁绕组交链的。由于发电机稳定运行时,两个磁场的转速相同,虽然电枢磁场与励磁绕组交链,但交链的磁通不变化,所以不会在励磁绕组产生感应电动势。

4-5、同步发电机在对称负载下运行时,气隙磁场由哪些磁势建立,它们各有什么特点?

答:转子直流励磁磁动势(机械旋转磁场磁动势)和电枢磁动势(电气旋转磁场磁动势),两个磁动势在气隙中叠加,形成新的气隙磁动势(合成磁动势)。

励磁磁动势是由直流励磁电流产生的,与转子没有任何相对运动,其磁通路径与磁极的轴线重合,主要是铁磁材料构成,磁路的磁阻相对较小。

电枢磁动势是由发电机负载后电枢绕组的交流电流产生的,虽然稳定运行时与转子也没有相对运动,但一般磁通路径不能保证与磁极的轴线重合,即存在一定的夹角。而且随着负载性质的不同,这个夹角也会发生变化。因此,分析电枢磁动势的作用时,不能简单地以其磁路参数进行分析,而应该将其分解成直轴和交轴两个方向上的磁通分量,然后再分别进行分析。

4-6、什么是同步发电机电枢反应?电枢反应的效应由什么决定?

答:同步发电机负载时,三相电枢绕组流过三相对称电流,产生电枢旋转磁场,使气隙合成磁场的大小和位置发生变化。电枢绕组产生的磁场对气隙磁场的影响称为电枢反应。有了电枢反应,同步发电机气隙中的磁场就由转子磁场和电枢磁场共同产生。电枢反应的性质(交磁反应、直轴增磁反应或直轴去磁反应)与这两个磁场在空间的相对位置有关,也就是与负载电动势和电枢电流间的夹角(内功角)有关,其实质是与负载的性质有关。

4-7、功角θ在时间上及空间上各表示什么含义?功角θ改变时,有功功率如何改变?无功功率会不会变化?为什么?

答:在时间上,功角是空载电势与电压之间的夹角;在空间上,功角是指主磁极轴线与气隙合成磁场轴线之间的夹角。

当电网电压U、频率f恒定(即,参数X d, X q为常数),励磁电流产生的空载电动势E0不变时,由同步电机的功角特性可知,在稳定运行区内,功角越大,输出的有功功率也将越大;功角减小,则输出的有功功率减小。有功功率与功角的章县成正比。

由于同步发电机输出的有功功率还可用公式P=3UIcos?表示,而若改变有功输出时保持励磁电流不变,则发电机的端电压不变,P改变则Icos?,Isin?和无功功率Q=3UIsin?也将同时改变。也就是说,功角θ改变时有功功率将会改变,同时无功功率也将改变。

4-8、怎样使同步发电机从发电状态过渡到电动状态?其功角、电流、电磁转矩如何变化?

答:当同步电机作为发电机运行时,电枢绕组流过的电流有功分量与转子励磁绕组之间将产生电磁转矩T,其大小可由功率与转矩的关系得到:T=P M/Ω=mE0Usinθ/(ΩX S)。若逐渐减小的原动机提供的机械转矩,则功角θ减小,发电机所产生的电磁转矩也减少。当θ减小到0时,原动机提供的机械转矩正好克服发电机维持转动所必须克服的摩擦转矩,发电机处

于空载运行状态,输出电流的有功分量为0。若在此时将原动机与发电机脱开,在摩擦转矩的作用下功角θ将变成负值,同步电机输出的有功功率变成负值,即不但不输出有功功率,反而从电网输入有功电功率。也就是说同步电机从发电机变成了电动机,此时同步电机工作在电动机空载状态。工作在电动机状态的同步电机,从电网输入有功电功率,则电枢电流有功分量的方向变反。产生的电磁转矩的方向也变反。若在轴上带上机械负载,则同步电机可以拖动机械负载转动,成为同步电动机正常运行。

综上所述,要使同步发电机从发电状态过渡到电动状态,可以将其轴上的驱动转矩变成负载阻转矩,同步电机就能够自动从发电机状态过渡到电动机状态。处于电动机状态运行的同步电机,与处于发电机状态时相比较,功角变成负值,电流的有功分量方向和产生的电磁转矩方向也都变反。

4-9、增加或减少同步电动机的励磁电流时,电动机内部磁场产生什么效应?

答:增加(或减少)同步电动机的励磁电流时,电动机内部的磁通增加(或减少),感应的电动势增大(或减小),为了使电动机电枢绕组感应的电动势与电源电压相平衡,电枢绕组的电流相位将发生变化,因此可以改变电动机从电网吸收电流的性质和大小。电动机电枢绕组的电流相位将发生变化后,将使电枢反应的去磁(或增磁)作用增加,从而使气隙合成的总磁通维持基本不变的状态。

也就是说,增加或减少同步电动机的励磁电流时,电动机内部磁场通过电枢反应,产生使磁势平衡的效应,从而达到磁势的新的平衡。

4-10、具有异步起动能力的同步电动机正常运行时,是否存在异步转矩,为什么?

答:具有异步起动能力的同步电动机之所以能够产生异步起动转矩是因为在其转子磁极上安装有象鼠笼异步电动机转子相似的短路绕组。在同步电动机转速还未达到同步转速时,电枢绕组产生的旋转磁场与转子磁极存在相对移动,因此能够感应电动势、感生电流、产生电磁转矩。而正常运行时,由于转子与电枢旋转磁场同步(没有相对移动),也就不会感应电动势、不会产生感生电流,因此也就不存在异步转矩了。

5-1、直流电机有哪些主要部件?各部件分别起什么作用?

答:直流电机的基本组成为定子和转子两部分。定子主要由主磁极、换向极、机座、端盖和电刷装置等组成,转子则由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。

定子上的主磁极是用来产生直流电机主磁场的;换向极则用于改善换向,减少因

电磁原因而引起的电刷火花;机座和端盖是直流电机的固定支撑和防护部件,同时机座还是磁路的一部分。电刷装置是定子上的一个主要部件,其主要作用是将直流电机电枢绕组与外部电路连接起来。

转子的电枢铁心与主磁极铁心、机座等组成直流电机的磁路,且用于嵌放电枢绕组;电枢绕组的作用是用以感应电动势和通过电流,它是实现机电能量转换的重要部件;换向器是直流电机的一个典型部件,与电刷装置配合起“机械整流器”

的作用,可将电枢绕组中的交流电量(感应电动势、电流)变换为电刷两端的直流电量(电压、电流),或者将电刷两端的直流电量变换为电枢绕组中的交流电量。转子的转轴是支撑整个转子的部件,风扇则起通风散热的作用。

5-2、直流电机中感应电势与哪些因素有关?感应电势的性质与电机的运行方式有何关系?其方向如何判断?

答:由公式E

a =C

e

Φn可知,对已制成的直流电机,电枢电动势正比于每个极面下

的磁通量Φ及电机的转速n。如果每个极面下的磁通量一定,则E

a

∝n,故转速

的快慢会影响电枢两端电动势大小;如果转速一定,则E

a ∝Φ∝I

f

。也就是说,

调节励磁电流I

f ,可改变每个主磁极产生的磁通Φ,从而可调节电枢电动势E

a

大小。

直流电机感应电势的性质有“正电势”和反电势之分。所谓“正电势”,就是电源的电动势,是表现将其它能量转换为电能具体的物理量。而反电势则是阻碍电流通过、与电源电压相平衡的电动势。感应电势的性质与电机的运行方式直接相关:对于直流发电机,轴上输入的机械能转换成电能后,在电枢绕组中就感应出电动势,当与负载连接,就可向外部电路提供电能,因此直流发电机电枢绕组的电动势是“正电势”,是电源的电动势。对于直流电动机,转子转动后也将在电枢绕组中感应电动势,它是消耗电能用于将电能转换成机械能的,它具有阻碍电流通过的特征,与电枢电流方向相反,因此直流电动机电枢绕组的电动势是反电势,是与电源电压相平衡的电动势。

要判断直流电机感应电势的性质,可以根据感应电势与电枢电流的方向进行判断:直流发电机,感应电势与电枢电流方向相同;直流电动机,感应电势与电枢电流方向相反。

5-3、直流电机中电磁转矩与哪些因素有关?电磁转矩的性质与电机的运行方式有何关系?

答:从电磁转矩公式T=C

T ΦI

a

可知,直流电机中电磁转矩与励磁I

f

和电枢电流I

a

有关。当电机励磁I

f

不变,则每个主磁极产生的磁通Φ也不变,电磁转矩T与电

枢电流I

a 成正比;若电枢电流I

a

不变,则电磁转矩T与励磁I

f

或磁通Φ有关。

励磁I

f

越大,产生的主磁通Φ越大,电磁转矩T也越大。

直流电机中电磁转矩的性质可分为驱动转矩和制动转矩两种。如果电机作为电动机运行,直流电动机将电源提供的电能转换为机械能,因此电磁转矩是驱动性质的驱动转矩;如果电机作为发电机运行,直流发电机将机械能转换成电能,电磁转矩要与原动机提供的机械转矩相平衡,起阻碍电机转子转动的作用,因此其电磁转矩为阻碍性质的制动转矩。

5-4、直流电机的电磁功率是指什么?如何说明在直流电动机中由电能转换为机械

能?

答:直流电机是将直流电能和机械能相互转换的电气装置,其电磁功率就是指通过气隙进行转换的功率。从电能的角度看电磁功率为电枢绕组感应的电动势与电

枢电流通过的电流的乘积,即为E

a I

a

;从机械能的角度看电磁功率为电磁转与转

子的角速度的乘积,即为TΩ。

当直流电动机接上直流电源后,将有电枢电流流过转子的电枢绕组,根据电动力定律电枢电流在定子主磁极产生主磁场的作用下将产生电磁转矩T,使转子转动,通过转轴向机械负载输出机械功率。转子转动后根据电磁感应定律电枢两端将感

应电动势,从整个电路看,电枢通过电流I

a 后,直流电动机感应的电动势E

a

使电

源提供的电压产生压降,因此,直流电动机用来进行机电转换的电磁功率为E

a I

a 。

而从机械角度看,转子受到电磁转矩T的驱动,产生角速度Ω,因此,直流电动机通过机电转换得到的电磁功率为TΩ,通过转轴的传送,就可向机械负载输出机械功率了。当然,电枢绕组通电后,也将消耗部分铜损耗;转子转动后,也将产生一定的机械损耗。因此可以这么说,电源向直流电动机提供直流电功率UI

a

,扣除电枢绕组等产生的损耗外,剩下的电功率转换成机械功率,即电磁功率:

E a I

a

=TΩ,转换成的机械功率还要克服转子、转轴等消耗的摩擦损耗,然后才从轴

上输出机械功率P

2=T

2

Ω/这就是直流电动机中由电能(电功率)转换为机械能(机

械功率)的过程。

5-6、试述发电机的空载特性曲线,它与磁极的磁化有何区别?又有何联系?

答:直流电机磁路的磁化曲线是指电机主磁通与励磁磁动势的关系曲线Φ

0=f(F

f

),

电机的空载特性曲线是指电机在保持额定转速不变,空载电压与励磁电流的关系

曲线U

0=f(I

f

)。由于U

=E=C

e

Φ

n∝Φ

,F

f

=2N

f

I

N

∝I

f

,因此,空载特性曲线的实质

就是磁路的磁化曲线。即,两者的形状相似,只要选择合适的坐标量纲,两条曲线可以完全重合。它们的区别主要表现在具体所表示的含义上,磁化曲线的是电机磁路的磁性能,空载特性曲线则主要表示直流电机端电压调节的性能等。

5-7、何谓自励起压?直流发电机自励起压的条件是什么?

答:自励起压是指,自励发电机在没有外加励磁电源的情况下,原动机的拖动电枢转子转动,电枢绕组自动建立起电压。直流发电机自励起压的条件是:①发电机要有剩磁;②励磁电流磁场与剩磁场方向相同(或者说,电枢绕组与励磁绕组接线正确);③励磁电路的电阻要小于建压临界电阻(或者说,励磁电路的电阻足够小)。

5-8、直流电机在各种不同励磁方式下,外部电流I、电枢电流I

a 以及励磁电流I

f

三者之间的关系如何?

答:直流电机的励磁方式一般有四种:他励、并励、串励和复励,如右图所示。其中,复励还可根据串励绕组的位置不同分为短复励和长复励。

他励:I=I

a ,I

f

由独立电源提供,与外部电流I、电枢电流I

a

没有任何关系;

并励:对于直流电动机,I=I

a +I

f

,外部电流I是电枢电流I

a

与励磁电流I

f

之和。

对于直流发电机,I=I

a -I

f

,外部电流I是电枢电流I

a

与励磁电流I

f

之差;

串励:I=I

f =I

a

;外部电流I、电枢电流I

a

以及励磁电流I

f

完全相等;

短复励:对于直流电动机,I

s =I=I

a

+I

f

,串励电流I

s

等于外部电流I是电枢电流I

a

与并励电流I

f 之和。对于直流发电机,I

s

=I=I

a

-I

f

,串励电流I

s

等于外部电流I是

电枢电流I

a 与并励电流I

f

之差;

长复励:对于直流电动机,I

s =I

a

=I-I

f

,串励电流I

s

等于电枢电流I

a

是外部电流I

与并励电流I

f 之差。对于直流发电机,I

s

=I=I

a

-I

f

,串励电流I

s

等于电枢电流I

a

是外部电流I与并磁电流I

f

之和。

5-9、船用直流发电机的励磁方式一般采用何种方式?

答:船用直流发电机的励磁方式常采用复励方式,即可采用短复励接线,也可采用长复励接线。作为船舶主电源的直流发电机一般为平复励发电机。作为交流船上使用变流机组的直流发电机,一般要求具有软的或陡降的外特性,则应该采用差复励直流发电机(如起货机、舵机等使用的变流机组及船用直流电焊发电机)。

6-1、转子不动时,异步测速发电机为何没有电压输出?转动时,为何输出电压值与转速成正比,但频率却与转速无关?

答:当异步测速发电机的转子不动时,励磁绕组在其轴线方向上产生的脉振磁通与输出绕组的轴线方向垂直,因而不能在输出绕组中感应电势,也就无电压输出。转动时测速发电机(杯形)转子切割励磁绕组产生的脉振磁通,将在转子导体中感应电势、产生电流;此电流所产生的转子磁通与输出绕组轴线方向基本一致,输出绕组与转子这部分导体的关系就如变压器原副绕组的关系一样,因而输出绕

组将有电压输出。

由于切割励磁磁通的转子导体感应电势的大小与励磁磁通和转子转速成正比,励磁磁通是脉振磁通(幅值不变,频率为励磁电源频率),所以异步测速发电机感应的电势为交变电势,电势的大小正比于转速,交变电势的频率为励磁电源的频率,与转速无关。

6-2、改变交流伺服电动机转向的方法有哪些?

答:要改变交流伺服电动机的转动方向,可单独改变它的励磁绕组的接线(即,将其两根引线脱开对调一下再接上);或可单独改变它的控制绕组的接线(即,将其两根引线脱开对调一下再接上)。也可不改变接线,仅通过控制装置,单使控制电压相位变反来实现。

6-3、当直流伺服电动机电枢电压,励磁电压不变时,如将负载转矩减少,此时电动机的电枢电流,电磁转矩、转速将怎样变化?

答:①根据如右图所示的直流伺服电动机机械特性曲线可知,电动机电枢电压不变时,负载转矩减小,转速将升高。②根据直流电机感应电势公式E=CeΦn可知,转速升高则感应电势增大,再根据直流电机电枢电路电压平衡方程式Ia=(U-E)/Ra,电压不变感应电势升高,则电枢电流将减小Ia。③根据电磁转矩公式T=C

T

ΦIa可知,电枢电流减小,电磁转矩也减小。因此,当直流伺服电动机电枢电压,励磁电压不变时,如将负载转矩减少,此时电动机的电枢电流将减小、转速将升高、电磁转矩也将减小。一直到电磁转矩与负载转矩平衡,直流伺服电动机转速停止升高,电流停止减小,直流伺服电动机稳定运行。

【简单回答】:当直流伺服电动机的励磁电压U

1和控制电压(电枢电压)U

2

不变

时,如将负载转矩减小,则电枢电流I

2

和电磁转矩T都将随之减小,转速n将随

之增大。这是因为负载转矩T

2减小,T>T

2

,转速n将增大,电枢电势E随之增大,

而电压不变,I

2

减小,T也减小。

6-4、什么是步进电动机的步距角?什么是单三拍、六拍和双三拍?

答:步进电动机每次通电工作时,其转子都将相应转动一个角度,这一过程称为一步。工作时每一步,步进电动机转子转过的角度称为步进电动机的步距角。步进电动机从一相绕组通电换接到另一相绕组通电称为“一拍”,每次只有一个绕组通电用“单拍”以示区别于每次有两个绕组通电的则称为“双拍”。所谓“单三拍”通电方式是指:步进电动机每次只有一个绕组通电,且完成一个轮流通电的周期需要三拍的工作方式。

6-5、交流测速发电机的转子静止时有无电压输出?转动时为何输出电压与转速成

正比,但频率却与转速无关?

答:当交流测速发电机的转子静止时,励磁绕组在其轴线方向上产生的脉振磁通与输出绕组的轴线垂直,因而不能在输出绕组中感应电势,也就无电压输出。转动时测速发电机(杯形)转子切割励磁绕组产生的脉振磁通,将在转子导体中感应电势、产生电流;此电流所产生的转子磁通与输出绕组基本一致,输出绕组与转子这部分导体的关系就如变压器原副绕组的关系一样,因而输出绕组将有电压输出。由于切割励磁的转子导体感应的电势大小与励磁磁通和转子转速成正比,励磁磁通是脉振磁通(幅值不变,频率为励磁电源频率),所以感应的电势为交变电势,大小正比于转速,交变频率为励磁电源频率。再者,输出绕组的输出电压与此感应电势(按变压器原理)成正比。于是,结论为:输出电压幅值与转速成正比,电压的频率为励磁电源频率与转速无关。

【注】:此题与6-1的回答基本一样,因为此题所问的问题也基本一样——交流测速发电机主要采用异步测速发电机,而其它类型书上又没讲,因此只能以异步测速发电机来回答。

6-6、如何控制步进电动机输出的角位移(或线位移量)与转速(或线速度)?步进电动机有哪些可贵的特点?

答:步进电动机是一种利用电磁铁的作用原理将电脉冲转换为线位移或角位移的电机。按照一定的规律,给步进电动机定子多相磁极绕组轮流通入电脉冲,就能控制其转子的位置变化,即使其转子按照一定的规律转动或产生一定的角位移。轮流通电的顺序决定转子转向,轮流通电的频率决定转子的转速。

步进电动机的可贵特点主要有:结构简单、维护方便、精确度高、起动灵敏、停车准确,转速与电压、负载、温度等因素无关,可通过改变脉冲频率进行无级调速,调速范围很宽等。

6-7、将无刷直流电动机与永磁式同步电动机及直流电动机作比较,它们之间有哪些相同和不相同点?

答:无刷直流电动机与永磁式同步电动机比较,主要相同点是:①它们的结构上,转子都是采用永磁材料制成的磁极,定子都是多相电枢绕组;②它们的工作原理都是利用定、转子磁极产生的相互吸力使转子转动的;③它们的转向都是可以改变的。主要不同点是:①无刷直流电动机定子电枢绕组通入的是经过控制的脉冲电流,而永磁式同步电动机定子电枢绕组通入的则是多相对称交流电流;②无刷直流电动机具有直接起动的能力,而永磁式同步电动机则无直接起动的能力;③无刷直流电动机的转速由其结构(定子的相数和齿数等)决定,一般较难进行速度调节,而改变通入同步电动机电枢绕组电流的频率,就可方便地对其进行速度调节。

无刷直流电动机与直流电动机作比较,主要相同点是:①它们的电枢电源都是直流电源;②它们的电枢绕组流过的电流都是交流电流;③它们都可以达到很高的

转速(与普通工频交流电动机比较)。主要不同点是:①无刷直流电动机的电枢通常在定子,而普通直流电动机通常在转子;②无刷直流电动机采用位置传感器控制电枢绕组的换向,而普通直流电动机则通过换向器与电刷配合进行换向;③无刷直流电动机的容量通常较小(毫瓦级到千瓦级),而普通直流电动机的容量可以很大(毫瓦级到几十上百兆瓦)。

6-8、无刷电机中的位置传感器起什么作用?

答:转子位置传感器是一种无机械接触的检测装置,其作用是检测转子磁场相对于定子绕组的位置。进而根据检测到的位置信号控制电子换向电路的导通或者截止,以此代替有刷电机的电刷和换向器。

7-1、电力拖动系统运行的稳定性是指什么?而拖动系统稳定运行的条件又是什么?

答:对于一个电力拖动系统,当T=T

L

时,拖动系统处于稳定运行状态。当系统由于受到外界干扰时,系统转速发生变化而离开原来平衡状态;一旦干扰消失,系统能够自动回复到原来的工作点上,这样一种性质称为电力拖动系统的稳定性。稳定性的判别:系统在电动机机械特性曲线和负载特性曲线的交点能够保持恒速

运行(即T=T

L );如果在交点所对应的转速之上有T<T

L

,而在交点所对应的转速

之下T>T

L

,那么系统就具有恢复稳定工作的能力,满足稳定运行的条件。用数学

式表达为:T=T

L ,且在T=T

L

处,满足dT/d n<dT L/d n。简单地说,稳定性的判别为:

①电机和负载机械特性曲线有交点,②在交点附近有dT/d n<dT L/d n或△T/△n<△T

L

/△n。

7-2、为了缩短起动过程,在电动机方面应采取哪些办法?常见船舶上的起货电动机转子为什么要制成又细又长的?

答:从运动方程看,为了缩短起动过程,可以增大电动机起动的电磁转矩或减小负载转矩,还可以减小拖动系统的飞轮矩GD2。不论是交流异步电动机或直流电动机,起动转矩与励磁磁通及电机电流成正比。因此,为了缩短起动过程,在电动机方面应采取的办法主要有:①保证直流电机的励磁磁通为最大或额定值;②直流电机电枢电流为最大限制值(一般为额定电流的2~2.5倍);③交流异步电机采用特殊(高转差率)电动机或采用绕线式异步电动机转子回路串电阻起动;④此外,要求起动迅速的电机,其转子可制成细长型,以减小电机本身的飞轮矩,从而使整个电力拖动系统的飞轮矩得到减小,缩短起动加速的时间。

船舶上起货机转子之所以制成又细又长主要是为了减小电机本身的飞轮矩,缩短起动加速的时间。

7-3、直流电动机采用电阻分级起动时,切换电阻时的电流要稍大于额定电流,为

什么?为了使起动平稳,是否分级越多越好?

答:简单地说,直流电动机采用电阻分级起动时,切换电阻时的电流要稍大于额定电流是为了缩短起动过程。因为电动机起动过程是一个转速增加的过渡过程,这个过程之所以能够加速是由于电动机产生的电磁转矩T大于负载转矩T

L

,即△T

=T-T

L >0。若起动过程中,T

L

不变,随着转速的增加,电动机电枢绕组感应的电动

势增大,电枢电流I

a 减小,电磁转矩T=C

T

ΦI

a

也减小,若不适时增大I

a

,起动过

程将延长。因此,采用电阻分级起动时,切换电阻时的电流要稍大于额定电流,尤其是在带额定负载起动时更应该如此,否则起动过程将会很长。

若单从起动平稳的角度看,理论上说为了使采用电阻分级起动的直流电动机起动平稳,电阻分级越多起动就越平稳。但是,增加电阻分级数,不仅增加起动设备的复杂程度,是该起动方法的优点变成不明显。而且电阻分级数的增加,每段电阻值变小,对电阻值的要求将提高,切换条件的精度也提高,这不但增加起动设备的成本,且容易由于精度误差,使切换时电枢电流超过所限制的最大电流,引起另外的不平稳因素,更会降低电动机的使用寿命。因此,实际直流电动机串电阻起动通常可分为二级起动和三级起动两种。即,并非分级越多越好。

7-4、在空载和满载起动时,电动机的起动电流及起动转矩是否一样?对于同一交流异步电动机接成Y形(电源电压为380V)和接成Δ形(电源电压为220V),起动时的起动电流及起动转矩是否一样?

答:由电动机电流和电磁转矩公式看,电动机的起动电流及起动转矩与负载大小无关。因此,在空载和满载起动时,电动机的起动电流及起动转矩是一样的。

对于同一交流异步电动机接成Y形(电源电压为380V)和接成Δ形(电源电压为220V),起动时,定子每相绕组的端电压都是220V,流过定子每相绕组的电流是一样的,电机产生的起动转矩也是一样的。但通常起动电流的定义是:电动机起动时电源向电动机提供的线电流。因此,接成Y形(电源电压为380V)时间电流较小,只有接成Δ形(电源电压为220V)的1/√3倍。

7-5、试比较异步电动机变转差率、变极和变频调速的各自优缺点。

答:①异步电动机变转差率调速通常包含降压、定子回路串阻抗、绕线式转子串电阻等多种方法。因此变转差率调速的优点主要是:这些方法一般都较简单,都属于恒转矩调速,而且降压调速还可实现无级调速。它们共同的缺点主要是:调速范围小,机械特性变软,转速的稳定性较差,过载能力下降,调速电阻耗能大等。

②异步电动机变极调速的优点主要是:调速控制简便,调速时机械特性硬度基本不变,可以选择不同的电机适应恒功率负载或恒转矩负载的需要。异步电动机变极调速的缺点主要是:不能实现平滑的无级调速,只有2~4个可选择的转速,变极电机制造工艺较复杂,成本相对较高。

③随着电力电子技术的发展和基于坐标变换的矢量控制理论的成熟,异步电动机

变频调速已经成为一种比较理想的调速方式。变频调速的主要优点是:可以实现平滑的无级调速,调速范围大,机械特性硬,可满足恒功率负载或恒转矩等各种负载调速的需要。主要缺点是:难于实现真正意义上的回馈制动,将制动能量送回电网,变频器容易受无线电干扰,容易造成逆变颠覆,过载能力相对较弱,高性能变频器价格相对较高等。

7-6、有一台鼠笼式三相异步电动机,铭牌上标明:额定电压380V,Y形连接,出厂时绕组用Y形连接,今拟用Y-Δ换接降压起动,是否可以?为什么?

答:若使用电压为380V的交流电源,则不能采用Y-Δ换接降压起动。如果该电机使用电压为220V的三相交流电源,则可以采用Y-Δ换接降压起动。

因为,该电机一相绕组可以承受的额定电压为220V,在电源电压为三相380V时,接成Y连接,其绕组已经承受220V的额定电压。若电源电压为380V而该电机接成Δ连接,绕组所承受的电压就是380V,已经大大超过其额定电压,该电机将因为过电压而烧毁。因此,电源电压为380V时,该电机不能采用Y-Δ换接降压起动。

而若使用电压为220V的三相交流电源,接成Y连接时,其绕组所承受的电压约为127V左右,接成Δ连接,绕组所承受的电压为220V,不超过其额定电压。因此,电源电压为200V时,该电机可以采用Y-Δ换接降压起动。

7-7、电源反接制动和倒拉反接制动的区别是什么?鼠笼式异步电动机能否实现倒拉反接制动?

答:电源反接制动和倒拉反接制动的主要区别有:①电源反接制动是一个过渡过程,制动后若不及时断电,电机将反向起动。而倒拉反接制动则是一个稳定的工作过程,只有通过控制改变电机的机械特性,或将电源断开才能结束倒拉反接制动;②电源反接制动时负载转矩方向与电机转子的转动方向相反,而与电磁转矩方向一般是相同的。而倒拉反接制动时负载转矩方向与电机转子的转动方向相同,而与电磁转矩方向相反。

鼠笼式异步电动机是不能实现倒拉反接制动的。因为,要实现拉反接制动的条件有两个:①带足够大的位能性负载,②电机转子回路串足够大的电阻使电机的机械特性变得足够软,在位能性负载的拉动下才能进入倒拉反接制动。而鼠笼式异步电动机的转子回路是一个独自形成闭合回路的电路,不能串接任何电阻或阻抗。且由于鼠笼式异步电动机转子回路电阻通常较小,以满足其正常时工作在电动状态。因此,鼠笼式异步电动机是不能实现倒拉反接制动的。

7-8、异步电动机带一位能性负载运行在电动状态,突然将其中两相电源反接,会出现什么情况,电动机最终稳定运行在何种状态?试予分析。

以电动状态运行在如右图所示的正向机械特设:该异步电动机带一位能性负载T

L

性的a点。若突然将电机的两相电源反接,此时电机气隙旋转磁场的转向立即变反,电机立即工作在反向机械特性。由于电机转子因惯性仍保持着原来的转向不变,于是工作点就从a点切换到b点。电机产生的电磁转矩T方向亦变反,成为制动转矩。再加上负载转矩为能性负载转矩,其方向是阻止转子转动的方向。因此转子转速下降,迅速从b点下降到c点,转子转速为0,这个过程为电源反接

制动过程。

电源反接制动过程结束时,电机的电磁转矩不为0,也不等于负载转矩。因此,转子仍不能保持不动。在电磁转矩(为反向驱动转矩)和负载转矩的共同作用下,转子开始反转,进入反向起动过程,由c点反向加速到反向理想空载转速-n

,反

向起动过程结束。

到-n

时,电机产生的电磁转矩为0,转子在负载转矩的作用下进一步反向加速,0

开始进入反向回馈制动状态。进入反向回馈制动状态后,电机产生的电磁转矩由负变成正,但此时转子处于反转状态。因此,电磁转矩为制动转矩,开始与负载转矩平衡,直到d点,电磁转矩与制动转矩相等,电机转子稳定运行在反向回馈制动状态,将负载的位能变成电能回馈给电源。

7-9、一台直流他励直流电动机带一位能性负载运行在倒拉反接制动状态,此时突将电枢电源反接,并切除制动电阻,试问拖动系统将会发生什么情况?电动机最终将稳定运行在何种状态?画出机械特性曲线。

以倒拉反接制动状态运行在如右图所设:直流他励直流电动机带一位能性负载T

L

示的倒拉反接制动机械特性的a点。若突将电枢电源反接(此时,制动电阻未切

除,相当于反向起动电阻),工作点就从a点切换到反向串电阻起动特性的b点。此时,电枢电流方向变反,电机产生的电磁转矩方向也变,变成反向驱动转矩。在电磁转矩和位能性负载转矩的共同作用下,电机反向加速至c点。

若此时切除制动电阻(相当于反向起动电阻),工作点就从c点换到反向固有机械特性的d点,此时,反向起动的电磁转矩增大,电机进一步反向加速至-n

,反向起动过程结束。

到-n

时,电机产生的电磁转矩为0,转子在负载转矩的作用下进一步反向加速,开始进入反向回馈制动状态。进入反向回馈制动状态后,电机产生的电磁转矩由负变成正,但此时转子处于反转状态。因此,电磁转矩为制动转矩,开始与负载转矩平衡,直到e点,电磁转矩与制动转矩相等,电机转子稳定运行在反向回馈制动状态,将负载的位能变成电能回馈给电源。整个过程的机械特性曲线如图所示。

7-10、对恒转矩及恒功率的变极调速,分别应配以何种负载特性比较合理?为什么?

答:对恒转矩变极调速应配以恒转矩负载特性比较合理,对恒功率的变极调速应配以恒功率负载特性比较合理。

因为,对于恒转矩变极调速,调速前后电机产生的最大电磁转矩不变,配以恒转矩负载特性,既可以防止低速时负载转矩超过电机的额定转矩造成过载,又可避免高速时负载转矩大大小于额定电磁转矩,造成不必要的功率浪费。

而对于恒功率的变极调速,调速前后电机所允许输出的功率不变,配以恒功率负载特性,既可以防止高速时输出的负载功率超过电机所允许输出的功率,又可避免低速时负载转矩小于电机的额定转矩很多,输出的功率大大小于电机的额定功率,造成不必要的功率浪费。

7-11、异步电动机变频调速时,为什么希望在调速过程中保持磁通不变?在过载能力不变的前提下,恒转矩或的各自的条件是什么?

答:异步电动机在额定频率之下变频调速时,为了使电动机的最大转矩T

m

不变,维持在恒转矩的调速方式,就必须在调速过程中保持磁通不变。

所谓过载能力不变,是指电机不过载所能带的负载转矩与电机的最大转矩之比保持不变。在过载能力不变的前提下,要维持恒转矩变频调速的条件是:在降低频

率的同时电源电压也按比例下调,其比例关系为U

1/f

1

=常数。而在额定频率之上

进行升频调速时,若要保持主磁通Φ基本不变,U

1应随f

1

而上升。由于电源电压

的上升将受制于电机的绝缘强度等诸多因素影响,故一般保持U

1

不变。此时,随

着f

1

的升高,Φ将减弱,电动机的电磁转矩也将减小,属于恒功率的调速方式。

因此,要维持恒功率变频调速的条件是:在升频调速时,应该保持U

1

不变。此时,电机所能够产生的不过载的电磁转矩与最大转矩同时减小,电机的过载能力可以认为基本不变。

8-1、交直流电磁机构的根本差异是什么?何谓恒磁链电器,何谓恒磁势电器?答:交直流电磁机构的差异主要体现在两个方面:铁心磁路和线圈上。

一、在铁心磁路方面:⑴直流电磁机构①稳定时,既不产生涡流损耗,也不产生磁滞损耗;②因此其铁心可用整块软钢制成;③属于恒磁势型电磁铁:——因为电源电压、导线电阻不变。⑵交流电磁机构①工作时磁路磁通为交变磁通,将产生包含涡流损耗和磁滞损耗的铁损耗;②因此其铁心应该采用硅钢制成,减少铁耗;③属于恒磁通型电磁铁:电源U不变时,E基本不变(线圈感应E用来平衡电源U)。

二、在线圈方面:⑴直流电磁机构的线圈①.导线细,匝数多,线圈电阻大,保证电流不过大;②.线圈做成细长形,紧紧靠着铁心,增加散热。⑵交流电磁机构的线圈①.导线粗,匝数少,线圈电阻小、电抗大;②.励磁电流(产生磁通的电流)在衔铁吸合前后变化很大:衔铁吸合前电流是吸合后电流好几倍甚至十几倍。

因为,吸合前气隙大、磁阻大,要得到相同磁通,必须使励磁电流大(才能满足磁通基本不变要求)。

所谓恒磁链电器,又称为恒磁通电器,是指电器工作时磁路的磁通链不因为磁路状态的改变而有明显改变的电器,如交流电磁铁、交流接触器、交流继电器等。所谓恒磁势电器,是指电器工作时其线圈通过的电流不因为磁路状态的改变而改变的电器,如直流电磁铁、直流接触器、直流继电器等。

8-2、交流接触器运行中噪声很大是什么原因?如何消除?

答:交流接触器运行中噪声很大的原因主要有:①铁心中的短路环断裂,②反力弹簧拉力过大,③线圈电压太低等。

①对于短路环断裂造成的噪声,消除方法是将短路环重新焊接装好。②对于反力弹簧拉力过大造成的噪声,消除方法是正确调整反力量弹簧的作用力。③对于线圈电压太低造成的噪声,消除方法是将线圈电压调节到额定电压即可。

8-3、接触器(继电器)的返回系数如何定义的?如何整定其动作值和释放值?答:接触器(继电器)的返回系数等于接触器(继电器)的释放值和动作值之比。

对于交流接触器(继电器),由于其电磁机构属于恒磁通型的,磁路气隙大小不影响释放值和动作值,因此调节动作值和释放值主要通过调节反力弹簧和触头弹簧进行。反力量弹簧的拉力增大,交流接触器(继电器)的释放值和动作值都增大,反之亦然;反力弹簧拉力不变时,触头弹簧弹力增大,则动作值不变,而释放值增大,反之亦然。

相关主题
文本预览
相关文档 最新文档