当前位置:文档之家› 物质的磁性

物质的磁性

物质的磁性
物质的磁性

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁学现象与物质的磁性

磁学现象与物质的磁性 人们很早就发现磁性材料具有特殊的功能特性。公元前3世纪,《吕氏春秋·精通篇》中就出现“石,铁之母也。以有磁石,故能引其子;石之不慈者,亦不能引也”的记载,叙述了磁性材料可以吸引特定的物质,如铁等。在战国末期韩非所著的《有度篇》中已出现“故先王以立司南以端前夕”的记载;而在东汉王充的《论衡·是应篇》中出现了“司南之勺,投之于地,其柢指南”的记载,叙述了磁性材料具有南北极,可以指示南北方向的特性。北宋沈括所著的《梦溪笔谈》中已有制作指南针的详尽描述,明朝《萍洲可谈》中出现船舶在苏门答腊海中航行时应用指南针的详细记载,叙述了磁性材料的应用。在欧洲,人们在小亚细亚的Magnesia 地区发现了磁铁矿,因而人们把磁石叫做Magnet 。 人们虽然很早就发现了磁性的存在,但对磁性现象本质的认识却经历了相当长的时间。1820年,奥斯特发现了电流的磁效应,1831年法拉第发现了电磁感应定律以及楞次发现的楞次定律,人们才逐渐揭开了磁性的奥秘。随着原子结构的被揭露,尤其是量子力学的成就,人们对目前磁性的物理本质才有了一个大体满意的解释。 一、磁及磁现象的根源是电荷的运动 1.1 一些基本的磁现象 当电流通过一条导线,生成一个方向由右手定则指示的磁场。如果大拇指指示正向电流I 的方向,四指就指示磁场B 的方向。 如果一条载流的长导线被卷成圆筒形,环绕圆筒线圈可观察到一个磁场;磁场的形状具有环环相叠的圆柱对称性,它的方向由右手定则规定。此时,四指指示电流方向,拇指给出线圈内部的磁场方向。外部的磁场具有圆环对称性。而地球磁场源自地球熔融铁核的流动。这种流动才使图中罗盘针的黑端指示出地理北极的方向。 假定一根棒状磁体按图1-3从一个线圈内部向外移开,在线圈绕组的两端可检测到一个电压脉冲。电压源自线圈内磁力线的变化。感生电压遵从Lenz 定律—如果线圈内的磁力线发生变化,由此在线圈内感生的电压是这样的.由它产生的电流决定的磁场与初始的变化方向相反。图1-3标出了电压,由它的电流生成的磁场由线圈指向外(其方向同棒状磁体运动产生的变化相反)。电压的方向也由右手定则规定。磁力线的变化感生电压,决定了发电机和变压器的运转,以及抗磁性的材料行为。图1-1一条载流导线的磁场 图1-2圆筒线圈的磁场

(完整word版)5.4铁磁性物质的磁化

5.4 铁磁性物质的磁化 一、选择题: 1、由铁磁性物质的磁化曲线可知,铁磁性物质的磁导率最大出现在磁化曲线的( ) A.起始段 B.直线段 C.饱和段 D.接近饱和段 2、如图1所示( ) A.(1)材料导磁性能强 B.(2)材料导磁性能强 C.两种材料的导磁性能一样 D.不能确定 3、如图2所示,退磁曲线为图中的() A.ab B.bc C.cd D: de 图1 图2 4、半导体收音机的铁氧体磁棒是 ( ) A.硬磁性材料 B.软磁性材料 C.矩磁性材料 D.非铁磁性材料 5、下列说法正确的是() A.电磁铁的铁芯是由软磁材料制成的 B.铁磁材料磁化曲线饱和点的磁导率最大; C.铁磁材料的磁滞回线越宽,说明它在反复磁化过程中的磁滞损耗和涡流损耗大; D.通入线圈中的电流越大,产生的磁场越强 6、电磁铁的铁心在交变电流作用下反复磁化,其内部的磁畴反复翻转,这种由翻转所产生的损耗叫( ) A.铜损 B.涡流损耗 C.磁滞损耗 D.漏磁损耗 7、录音磁头所用铁心材料和录音磁带所用磁性材料分别是( ) A.硬磁材料,软磁材料 B.硬磁材料,矩磁材料 C.软磁材料,矩磁材料 D.软磁材料,硬磁材料 8、适用制造永久磁铁的材料是( ) A.软磁性材料 B.硬磁性材料 C.矩磁性材料 D.顺磁性材料 9、正常工作时,电动机、变压器的铁芯一般工作在磁化曲线的 ( ) A.起始段 B.直线段 C.过渡段 D.饱和段 10、为减小剩磁,电磁线圈的铁心应采用( )。 A.硬磁性材料 B.非磁性材料 C.软磁性材料 D.矩磁性材料 11、铁磁性物质的磁滞损耗与磁滞回线面积的关系是( ) A.磁滞回线包围的面积越大,磁滞损耗也越大 B.磁滞回线包围的面积越小,磁滞损耗越大 C.磁滞回线包围的面积大小与磁滞损耗无关 D.以上答案均不正确 12、如果线圈的匝数和流过它的电流不变,只改变线圈中的媒介质,则线圈内 ( ) A.H不变,B变化 B.H变化,B不变

正极材料磁性物质检验方法

磁性物质检测方法 ===============================================================检测原理: 根据磁体能够吸引铁、钴、镍等铁磁性物质的原理,利用磁场强度为6000高斯的磁 子,搅拌吸附物料中的磁性物质,以HCl(1:1)溶解后,用ICP对磁性物质含量进行 痕量分析。 样品前处理: 1、器具的去磁和防磁 因常规物料中磁性物质含量属ppb级,若制样过程中稍有不慎,即会严重影响检测 数据的准确性。所以在进行样品前处理前,必须对所使用器具可能存在的磁性物质 或者可能引入磁性物质的环节进行去磁和防磁处理,比如:烧杯、磁子、容量瓶等 就需先用HCl(1:1)去除其可能存在的磁性物质,而在搅拌、加热等环节则要注意 防止外来磁性物质的引入。 2、样品前处理步骤 1)称取100±1g待测物料于洁净的烧杯内(500ml),加入去离子水至刻度500ml; 2)用悬挂着洁净磁子的电动搅拌器对待测物料进行磁性物质的搅拌吸附20min; 3)取下磁子放入200ml洁净烧杯内,去离子水无水压清洗,40Hz超声波清洗; 4)加入50ml HCl(1:1),低温加热溶解磁子上所吸附的磁性物质; 5)将溶液冷却、定容至100ml洁净的容量瓶内,随样做空白,待测。 Secondary ℃,Power of ,Auxiliary 50 r/min,Test 3、分析谱线的选择 根据每个元素可同时选择多条谱线的特点,每个元素均选择3条灵敏度较高的谱 线,以5%硝酸为空白,各待测元素混合标准溶液绘制工作曲线,测试已知浓度的 标准样品溶液。考察各元素谱线的形状、线性和相互间的干扰情况,最后保留谱 线相对强度高、信背比高和相互间无干扰的谱线。所选谱线见表2 表2 各元素的分析线

物质顺磁性和抗磁性的产生原因

顺磁性和抗磁性的原因 磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质(参考文献1 )。 从上面的介绍看出,任何物质都会显示磁性,并且物质从顺磁性到反磁性、磁性从强到弱是逐渐变化的,没有一个明显的界限。物质的磁性到底是怎么产生的,本文就此观点提出我自己的看法。 一、现在的理论给人们带来的疑惑 1、顺磁性:现在人们认为,电子磁矩由电子的轨道磁矩和自旋磁矩组成。在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。每个电子自旋磁矩的近似值等于一个波尔磁子。是原子磁矩的单位。因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。(参考文献2 ) 我认为上面这段论述是不合理的,我们都知道,原子是由原子核和核外电子组成,原子核又是由质子和中子组成,原子核的体积约为原子体积的几千万亿分之一,(半径约为原子的十万分之一).打个比方,原子相当于足球场那么大,而原子核则只有一只蚂蚁那么大。(参考文献3)。电子的质量约为质子质量的1/1836(参考文献4 )。中子能够通过β衰变过程变成质子、电子和反中微子,(参考文献 5 )。从这些论述可想而知,电子的体积会有多大,电子的体积不会超过质子和中子体积的千分子一。即从电子的角度来看原子,原子就象是一个非常巨大的宇宙一样。由于电子的体积很小很小,即使电子自旋产生的磁场较强,它影响的范围必然很小很小,不可能影响到原子以外,因此电子自旋产生的磁场在宏观

磁性材料基本知识

磁性材料基本知识 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料.由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材 料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定.主要用于高频电感.磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等. 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种. 磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109 其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2). 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成.在粉芯中价格最低.饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高. 铁粉芯是磁性材料四氧化三铁的通俗说法,主要应用于电器回路中解决电磁兼容性(EMC)问题.实际应用时,根据不同波段下对滤波要求不同会添加各种不同的其他物质(一般为企业机密). 电磁兼容是指电器回路中由于各种不同原因产生的杂波,这些杂波不仅对电器回路的正常运转有妨害,而且其辐射对人体有一定害处.所以各国(尤其是欧盟)对此有各种规定,即电磁兼容性(EMC). 电线上面的杂波主要通过磁环来解决其电磁兼容性问题.当一定波段的杂波通过磁环时,磁环的电磁特性导致这一波段的电流被转化为磁力以及部分热量从而被消耗掉.来达到降低杂波的目的. 磁环的材料目前比较多的是铁粉芯(价格低廉,应用广泛),高级的还有稀土材料等. 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同.根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质. 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性.实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因. 我们把顺磁性物质和抗磁性物质称为弱磁性物质部铁磁性物质称为强磁性物质.通常所说的磁性材料是指强磁性物质.磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料.磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料.一般来讲软磁性材料剩磁较小.硬磁性材料剩磁较大. 磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体.铁氧体是以氧化铁为主要成分的磁性氧化物.软磁性材料的剩磁弱,而且容易去磁.适用于需要反复磁化的场合.可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等.常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等.硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中.常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体.Saturation (CoEv) 饱和 当磁化力(H)增加时,如果磁性材料中的磁通密度(B)没有相应地随之增加,这时称作饱和.饱和与磁芯的磁性有关.每种材料都只能储存一定数量的磁通密度.超出这个磁通密度,磁芯的导磁率将急遽下降,结果导致电感量下降.

相关主题
文本预览
相关文档 最新文档