当前位置:文档之家› 碳化硅陶瓷工艺流程

碳化硅陶瓷工艺流程

碳化硅陶瓷工艺流程
碳化硅陶瓷工艺流程

碳化硅陶瓷工艺流程碳化硅

(SiC )陶瓷,具有抗氧化性强,

耐磨性能好,硬度高,热稳定性

好,高温强度大,热膨胀系数小,

热导率大以及抗热震和耐化学腐蚀

等优良特性。因此,已经在石油、

化工、机械、航天、核能等领域大

显身手,日益受到人们的重视。例

如,SiC陶瓷可用作各类轴承、滚

珠、喷嘴、密封件、切削工具、燃

汽涡轮机叶片、涡轮增压器转子、

反射屏和火箭燃烧室内衬等等。

SiC陶瓷的优异性能与其独特结构密切相关。SiC 是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被HCl、HN03、

H2SO4和HF等酸溶液以及NaOH 等碱溶液侵蚀。

在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。

SiC具有a和B两种晶型。3- SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;

a— SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600 C时,SiC以3—SiC形式存在。当高于1600 C时,3—SiC缓慢转变成a—SiC的各种多型体。4H —SiC在2000 C左右容易生成;15R和6H多型体均需在2100 C以上的高温才易生成;对于6H —SiC,即使温度超过2200 C,也是非常稳定的。SiC 中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。

现就SiC陶瓷的生产工艺简述如下:

一、SiC粉末的合成:

SiC在地球上几乎不存在,仅在陨石中有所发

现,因此,工业上应用的SiC粉末都为人工合成。

目前,合成SiC粉末的主要方法有:

1、Acheson 法:

这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500 C左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe 等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。

2、化合法:

在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的3- SiC粉末。

3、热分解法:

使聚碳硅烷或二氯甲基硅等有机硅聚合物在1200?1500 C的温度范围内发生分解反应,由此制得亚微米级的3-SiC粉末。

4、气相反相法:

使SiCl4和SiH4等含硅的气体以及CH4、

C3H8、C7H8和(C14等含碳的气体或使

CH3SiCI3、(CH3) 2 SiCI2 和Si (CH3) 4 等同时含有硅和碳的气体在高温下发生反应,由此制备纳米级的3—SiC超细粉。

二、碳化硅陶瓷的烧结

1、无压烧结

1974年美国GE公司通过在高纯度3-SiC 细粉中同时加入少量的B和C,采用无压烧结工艺,于2020 C成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。美国GE公司研究者认为:晶界能与表面能之比小于1. 732是致密

化的热力学条件,当同时添加B和C后,B固溶到SiC中,使晶界能降低,C把SiC粒子表面的SiO2还原除去,提高表面能,因此B和C的添加为SiC 的致密化创造了热力学方面的有利条件。然而,日本研究人员却认为SiC的致密并不存在热力学方面的限制。还有学者认为,SiC的致密化机理可能是液相烧结,他们发现:在同时添加B和C的3-SiC

烧结体中,有富B的液相存在于晶界处。关于无压烧结机理,目前尚无定论。

以a—SiC为原料,同时添加B和C,也同样可实现SiC的致密烧结。

研究表明:单独使用B和C作添加剂,无助于SiC陶瓷充分致密。只有同时添加B和C时, 才能实现SiC陶瓷的高密度化。为了SiC的致密烧结,SiC粉料的比表面积应在10m2 /g以上,且氧含量尽可能低。B的添加量在0. 5% 左右,C的添加量取决于SiC原料中氧含量高低,通常C的添加量与SiC粉料中的氧含量成正比。

最近,有研究者在亚微米SiC粉料中加入AI2O3和Y2O3,在1850 C?2000 C温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。

2、热压烧结

50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。

有研究者以AI2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B 或B 与C,AI2O3 和C、AI2O3 和Y2O3、Be、B4C与C作添加剂,采用热压烧结,也都获得了致密SiC 陶瓷。

研究表明:烧结体的显微结构以及力学、热学等性能会因添加剂的种类不同而异。女口:当采用B或B的化合物为添加剂,热压SiC的晶粒尺寸较小,

但强度高。当选用Be作添加剂,热压SiC陶瓷具有较高的导热系数。

3、热等静压烧结:

近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研

究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900 C便获得高密度SiC 烧结体。更进一步,通过该工艺,在2000 C和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。

研究表明:当SiC粉末的粒径小于0. 6ym 时,即使不引入任何添加剂,通过热等静压烧结,在1950 C即可使其致密化。如选用比表面积为24m2 /g的SiC超细粉,采用热等静压烧结工艺,在1850 C便可获得高致密度的无添加剂SiC 陶瓷。

另外,A12O3是热等静压烧结SiC陶瓷的有效添加剂。而C的添加对SiC陶瓷的热等静压烧结致密

化不起作用,过量的C甚至会抑制SiC 陶瓷的烧结。

4、反应烧结:

SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将a—SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si 反应,生成3- SiC,并与a—SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8 %的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中a —SiC和C的含量,a—SiC 的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。

实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC

陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900 C时,几乎所有SiC 陶瓷强度均有所提高;当温度超过1400 C时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC 陶瓷,其耐高温性能主要受添加剂种类的影响。

总之,SiC陶瓷的性能因烧结方法不同而不同。一般说来,无压烧结SiC陶瓷的综合性能优于反应烧结的SiC陶瓷,但次于热压烧结和热等静压烧结的SiC 陶瓷。

氧化铝的用途

陶瓷原料主要来自岩石,而岩石大体都是由硅和铝构成的。陶瓷也是用这类岩石作原料,经过人工加热使之坚固,很类似火成岩的生成。因此从化学上来说,陶瓷的成分与岩石的成分没有什么大的区别。如果是硅和铝所构成的陶瓷,其主要原料有以下几种:

1、石英一一化学成分是纯粹的二氧化硅(SiO2),又名硅石。这种矿物即使碎成细粉也无粘性,

可用来弥补陶瓷原料过粘的缺点。在780C以上时便不稳定而变成鳞石英,在1730C时开始熔

融。

2、长石一一是以二氧化硅及氧化铝为主,又夹杂钠、钾、钙等的化合物。因其所含分量多寡不同,又有许多种类。一般有将含长石较多的岩石叫作长石的,也有以它的产地来命名的。现在

把长石中具有代表性的几种和它们的成分列于表1。其中前三种是纯粹的理论成分,后一类则含

有岩石中所有的不纯物质。

钠长石与钙长石以各种比例互相熔解,变成多种多样的长石。这些总称为“斜长石”,它的性质依其中所含钠长石与钙长石的比例而定。还有一种和正长石(钾长石)为同样成分而形状稍有变异的,至今也多误传为正长石,其实这种应该叫做“微斜长石”。

3、瓷土(又名“高岭土”)一一瓷土(H4AI2Si2O9 )是陶瓷的主要原料。它是以产于世界第一

窑厂的中国景德镇附近的高岭而得名的。后来由“高岭”的中国音演变为“Kaolin ”,而成为

国际性的名词。纯粹的瓷土是一种白色或灰白色,有丝绢般光泽的软质矿物。

瓷土是由云母和长石变质,其中的钠、钾、钙、铁等流失,加上水变化而成的,这种作用叫作“瓷土化”或“高岭土化”。至于瓷土化究竟因何而起,在学术界中虽然还没有定论,但大略可以认为是长石类由于温泉或含有碳酸气的水以及沼地植物腐化时所生的气体起作用变质而成的。一般瓷土多产于温泉附近或石灰层周围,可能就是这个原因。瓷土的熔点约在1780C左右, 实际上因为多少含有不纯物质,所以它的熔点略为降低。

纯粹的瓷土(高岭土)存量不多,而且所谓纯粹的瓷土,也没有黏土那样强的粘度。一般所说的瓷土如果放在显微镜下面来观察,大部分带有白色丝绢状的光泽,银光闪闪,是非常小的结晶,这就是所谓纯粹的瓷土。此外,还含有未变质的长石、石英、铁矿及其他作为瓷土来源的岩石的碎片。

纯粹瓷土的成分是:SiO2 46.51%,AI2O3 39.54%,H20 13.95%,熔度为1780C。

陶瓷中最高级的是瓷器。作瓷器用的岩石究竟以哪样最好?由于瓷器必须是白色。因而就不得不极力避免含有使陶瓷着色的铁分。含铁少而以氧化硅及氧化铝为主要成分的岩石有:花岗岩、花岗斑岩、石英斑岩、石英粗面岩以及由这类岩石分崩而成的水成岩等。

这里所说的花岗石乃至石英粗面岩(即在火成岩中也算是含有氧化硅及氧化铝特别多而铁分子少的),都是以石英、长石为主,并含有若干云母及富于铁分(氧化铁)的黑绿或黑褐色的矿物。假若仔细观察这些岩石,便可看到许多像玻璃一般透明的颗粒和像瓷器一样鲜艳的白色或淡红色的颗粒。前者是石英、后者是长石。这四种岩石的化学成分虽然相同,但因为长石与石英等颗粒的大小不同,因而形成了不同的岩石。花岗岩全体是由比较大的颗粒(直径1~7毫米)

构成的。石英粗面岩是在看不见颗粒的致密素地中有石英及长石的小粒存在。花岗斑岩及石英斑岩则介乎此二者之间,是在致密的素地内含有大粒的石英。这类岩石构造上的差异,主要在于由熔融的岩浆到冷固的时间长短,其中花岗岩最长,石英粗面岩最短,而花岗斑岩与石英斑岩则是在介乎两者间的时间内冷固的。陶瓷是以岩石作原料,而所以未能具有岩石般的颗粒,其主要原因是,陶瓷原料不像岩石那样在高温下完全熔化,同时所需要的冷固时间也较短,这是天然岩石与人造岩石即陶瓷间的最大区别。有时与石英粗面岩同样成分之物,以熔融状态流到地面上而骤然冷固,这样形成不含有像上述岩石那种用肉眼可见的石英、长石等颗粒,而形成全体一样的玻璃,即是所谓黑曜石和重晶石。由此可见岩石与陶瓷的本质相同,只有天工与人工的差别罢了。

在花岗岩中含有二氧化硅特多的是半花岗岩和伟晶花岗岩。前者的长石与石英等的颗粒细小,后者则由特大的长石及石英的颗粒形成。其中有的在某部分集中了同样物质,而变成纯粹的石英脉,或纯粹的长石脉,也有的转变为半花岗岩(有些地方就用原来的半花岗岩作为陶瓷原料)

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

陶瓷生产工艺设计

一陶瓷生产工艺流程 二原料 菱镁矿,煤矸石,工业氧化铝,氧化钙,二氧化硅,氧化镁。三坯料的制备 1原料粉碎 块状的固体物料在机械力的作下而粉碎,这种使原料的处理操作,即为原料粉碎。(1)粗碎 粗碎装置常采用颚式破碎机来进行,可以将大块原料破碎至40-50毫米的碎块,

这种破碎机是无机材料工厂广泛应用的醋碎和中碎机械。是依靠活动颚板做周期性的往复运动,把进入两颚板间的物料压碎,颚式破碎机具有结构简单,管理和维修方便,工作安全可靠,使用范围广等优点。它的缺点是工作间歇式,非生产性的功率消耗大,工作时产生较大的惯性力,使零件承受较大的负荷,不适合破碎片状及软状粘性物质。破碎比较大的破碎机的生产能力计算方法如下: G=0.06upkbsd/tanq 式中G破碎机生产能力,Kg/h u物料的松动系数,0.6-0.7 P物料的密度 K每分钟牙板摆动次数,次/MIN b进料口长度,单位米 S牙板之开程单位米 Q钳角D破碎后最大物料的直单位毫米 (2)中碎 碾轮机是常用的中碎装置。物料是碾盘与碾轮之间相对滑动与碾轮的重力作用下被碾磨与压碎的,碾轮越重尺寸越大,则粉碎力越强。陶瓷厂用于制备坯釉料的轮碾机常用石质碾轮和碾盘。一般轮子直径为物料块直径的14-40倍,硬质物料取上限,软质物料物料下限。 轮碾机碾碎的物料颗粒组成比较合理,从微米颗粒到毫米级粒径,粒径分布范围广,具有较合理的颗粒范围,常用于碾碎物料。 (3)细碎 球磨机是陶瓷厂的细碎设备。在细磨坯料和釉料中,其起着研磨和混合的作用。陶瓷厂多数用间歇式湿法研磨坯料和釉料,这是由于湿式球磨时水对原料的颗粒表面的裂缝有劈尖作用,其研磨效率比干式球磨高,制备的可塑泥和泥浆的质量比矸干磨得好。泥浆除铁比粉除铁磁阻小效率高,而且无粉尘飞扬。 (4)筛分 筛分是利用具有一定尺寸的孔径或缝隙的筛面进行固体颗粒的分级。当粉粒经过筛面后,被分级成筛上料和筛下料两部分。筛分有干筛和湿筛。干筛的筛分效率主要取决于物料温度。物料相对筛网的运动形式以及物料层厚度。当物料湿度和粘性较高时,容易黏附在筛面上,使筛孔堵塞,影响筛分效率。当料层较薄而筛面与物料之间相对运动越剧烈时,筛分效率就越高,湿筛和干筛的筛分效果主要却决于料将的稠度和黏度。 陶瓷厂常用的筛分机有摇动筛,回转筛以及振筛。 (5)除铁 (6)A磁选条件 坯料和釉料中混有铁质将使制品外观受到影响,如降低白度,产生斑点。因此,原料处理与坯料制备中,除铁是一个很重要的工序。 从物理学中,作用在单位质量颗粒上磁力为 F=RHdH/dh

第三代半导体面-SiC(碳化硅)器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限

陶瓷制做工艺流程

陶瓷制做工艺流程 制模 雕型(厡形阶段) 木擳土(深灰色):是一种水性土,质地较细,可做不规则的雕模 石膏(白色):质地较硬,适合作比较工整的雕模 油土(土黄色):不需保湿,常用来做poly的雕模或是厚度较薄易龟裂的浮雕。 此阶段须注意: 原型厚薄均匀,比例合理才能避免日后有开裂的问题 浮雕之深浅、角度需适中便于分片,如有利角将造成卡模。 转角要圆,避免利角造成开裂。 原型会比图稿尺寸大或高,由于每一种土因烧成温度不同都有其收缩比的关系。 陶土分类 烧成温度越高收缩比越高吸水率越低,与硬度也成正比。 分片(样品模) 利用石膏将原形翻制成模具。 此阶段须注意 为避免模线问题,分片数愈少越好,分片时也须注意每片之间隙不可过大。 若曾上过钾肥皂(是一种隔离剂)需清洗干净,以避免日后发生针孔、气泡瑕疵。包case-意指大货生产时,为复制子模所需而翻制的母模(阳模,材质为超硬石膏) 利用母模可以再重复分片,即可产出后续许多子模。 此阶段须注意: 一个母模的寿命约3年,约可制造70-80个子模。 一个子模约可生产60~80个产品。(视纹路之复杂程度而定)

由于不断的重复生产使得石膏的吸水率越来越低,故一日中,灌制泥胚的时间一件比一件长。 为避免模线粗大,包case时须注意,模具必须密合以避免泥浆由未密合之模线渗出造成模线太粗。 敲模即将模具分开。 成型-分为以下数种方式: 1、手灌浆 利用石膏模吸水特性,将接触石膏模壁面的泥浆水分吸干形成泥胚。 多用于雕型比较立体或不规则的器型 此阶段注意事项 第一次灌浆约静置25分钟,即可将泥浆倒出。 第二次灌浆之后静置时间需陆续增长,此因石膏吸水特性会因使用率的频繁而陆续降低,所以时间需再加长。一个子模一天大约可灌12个就要休息。 13英寸以上的产品壁厚约为6~7mm。一般大小的璧厚约留4mm。 灌浆时须注意模具的密合度,以避免膜线或变形的问题。 2、手工成型 分为手拉胚及手工雕塑,多用于较高级或线条较多的产品。 3、高压注浆 利用高压灌注机将泥浆由上往下冲入模具中,所需时间较短,故产量高(与手灌浆比较)。 只能用于上下开模的产品(深度不能太深)。例如:肥皂盘、餐盘。 垃圾桶、漱口杯、或其它深底的产品不适用此种方式生产。(深度不可太深) 此阶段须注意: 表面凹陷:由于脱胚时泥浆未干形成表面凹陷。 注浆缝合线-两浆汇流时的线。 4、滚压 利用不绣钢制模具,上模旋转移动将泥块滚制成型。 多用于浅口对称器型、盘子、浅口碗等。 此阶段注意事项 避免模具滚压时形成之波浪纹(泥纹)。 由于模具费用较高所以多为大量生产时才会开模。 5、冲压 利用冲压不绣钢模具机器高速冲击泥块成型。 多用于对称对象等基本器型,产量高(与手灌浆比较)。 此阶段注意事项 由于模具费用较高所以多为大量生产时才会开模。 变形:脱胚未干,或取出方式疏忽导致变形。

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

各种陶瓷工艺流程

各种陶瓷工艺流程 一:仿古砖 仿古砖的工艺流程 ,、原料,由于仿古砖使用的原料与以前有很大的不同,除了基础粉料外,还增加了许多干粒料及特殊原料的应用,对原料加工和混合技术提出了更高的要求。 ,、成型,为了使仿古砖达到自然流畅的装饰效果,各种新型布料技术和双压机技术都得到了应用,如多管布料、二次布料、多色干粉布料等,这些都是世界生产仿古砖的最先进技术,它不仅使产品保留了自然的状态,还使仿古砖以&ld 另一类材料”的面孔出现,布料技术的发展使部分瓷砖不再需要采用印花工序,产品更具天然石材效果。 ,、施釉和印花,施釉和印花是仿古砖生产的重要工序,生产中主要工艺控制点基本集中在施釉线上,很多仿古砖产品通过印花技术使表面的花色得到改善,提高其品味。前几年,仿古砖主要通过云彩、磨釉产生花色不重复的效果,现在则趋向于用胶辊印花、干粉印花等手段来实现仿古、仿天然的图案。目前国内生产普遍采用的印花技术是辊筒印花包括丝网辊筒和橡胶辊筒,在施釉线上,主要技术包括水*式喷釉、云彩喷釉、磨釉、打点、挂沙、胶辊印花、干粉印花等。为了增强仿古砖的釉面防污、耐磨性能,通常还会在凹凸的仿石磨面上喷上一层耐磨的透明釉。通过这些新技术在生产中的应用,使瓷砖的表面花纹随机变化,花色和品种多样,为取代天然材料的技术研究开辟了新的途径。 ,、烧成,烧成是陶瓷生产的心脏,为了使仿古砖的产品吸水率控制在,(,,以下,达到完全玻化的状态,烧成温度已提高到,,,,?以上。此外,为了使瓷砖达到

特殊的装饰效果,除了一次烧成之外,二次烧、三次烧技术也在仿古砖生产中得到了应用。 1 ,、后期加工,对于传统的彩釉砖及水晶砖来说,产品经过烧成之后就可进入分选包装工序了,而在仿古砖的生产中,随着对砖面装饰技术的要求越来越高,在瓷砖烧成工序之后有些还增加了后续加工工序,如釉面抛光采用柔抛、半抛、全抛的工艺,通过抛釉使砖面产生特殊的美学效果。另外抛坯技术也被用于仿古砖的生产中,它主要是对素烧后的砖坯进行磨平,然后再进行二次烧成。经这样处理的瓷砖不再需要经过施釉工序,砖坯在经过窑炉高温烧成后表面呈现类似亚光釉的光泽,具有施釉的效果,防污能力也提高了,而且大大降低了生产成本。另外,对瓷砖的表面采用特殊的腐蚀、喷砂等工艺进行后期加工处理,还可使仿古砖产生意想不到的装饰效果。 仿古砖通常具有以下几个特点: (,)采用亚光釉(半无光釉)作为面釉 (,)产品不磨边 (,)砖面采用凹凸模具。 仿古砖主要在表面装饰上下功夫,应用多种装饰材料,各种色釉料和干粒,通过多种装饰机械综合施釉,喷撒干粒。现在用于装饰陶瓷仿古砖的釉料很多,如金属有光、亚光、闪光釉、窑变釉(反应釉)、碎纹釉,用来装饰各种仿石图案(仿大理石、仿砂岩、仿花岗岩等)瓷砖,各种仿木纹图案瓷砖(仿榉木、仿桃木、仿橡木、仿栎木、仿红木等),还有各种仿布纹,仿丝绸、仿壁纸、仿麻织品、仿编织物图案的瓷砖等。 2

第三代半导体材料碳化硅

第三代半导体材料碳化硅 一、第三代半导体发展简述 半导体产业的基石是芯片。制作芯片的核心材料按照历史进程分为三代:第一代半导体材料(主要为目前广泛使用的高纯度硅)、第二代化合物半导体材料(砷化镓、磷化铟)、第三代化合物半导体材料(碳化硅、氮化镓)。 第三代半导体材料也称为禁带半导体材料,是指禁带宽度在2.3eV(电子伏特)及以上的半导体材料(硅的禁带宽度为1.12eV),其中较为典型的和成熟的包括碳化硅(SiC)、氮化镓(GaN)等,其余包括氧化锌(ZnO)、金刚石、氮化铝(AlN)等的研究尚处于起步阶段。 第三代半导体材料在禁带宽度、热导率、介电常数、电子漂移速度方面的特性使其适合制作高频、高功率、高温、抗辐射、高密度集成电路;其在禁带宽度方面的特性使其适合制作发光器件或光探测器等。 5G基站射频器件对高频材料的需求,以及功率器件正向着大功率化、高频化、集成化方向发展的趋势凸显出了第三代半导体材料的重要性及广阔前景。而该领域基本由美日企业主导,我国相对薄弱,研发仍主要集中于军工领域。 国家战略新兴产业政策中多次提到以碳化硅、氮化镓为代表的第三代半导体器件,随着国内多家企业开始重视该领

域,积极布局相关项目,我国的第三代半导体材料及器件有望实现较快发展。 二、第三代半导体---碳化硅概述 碳化硅是第三代化合物半导体材料的,具有优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率。 半导体芯片分为集成电路和分立器件,但不论是集成电路还是分立器件,基本结构都可以划分为“衬底—外延—器件”结构。碳化硅在半导体中存在的主要形式是作为衬底材料。 图:碳化硅晶片产业链

三代半导体之碳化硅

半导体也分代?三代半导体之碳化硅。 三代半导体是什么??? 随着半导体逐渐进入人们的视野 时至今日半导体材料家族也在逐渐扩大 现在的半导体迭代也已经到了第三代 第三代半导体以碳化硅以及氮化镓为代表 可应用在更高阶的高压功率元件 以及高频通讯元件领域:例如高温、高频、抗辐射、大功率器件等等~

第三代半导体的优势在哪里呢? —比导通电阻是硅器件的近千分之一(在相同的电压/电流等级),可以大大降低器件的导通损耗; —开关频率是硅器件的20倍,可以大大减小电路中储能元件的体积,从而成倍地减小设备体积,减少贵重金属等材料的消耗; —理论上可以在600 ℃以上的高温环境下工作,并有抗辐射的优势,可以大大提高系统的可靠性,在能源转换领域具有巨大的技术优势和应用价值。 第三代半导体器件如今的应用领域非常广泛 智能电网、电动汽车、轨道交通、新能源并网、开关电源、工业电机以及家用电器等领域得到应用,并展现出良好的发展前景,可以说全球正在逐渐进入第三代半导体时代。

而就第三代半导体来说:碳化硅是目前发展最成熟的半导体材料,氮化镓紧随其后,金刚石、氮化铝和氧化镓等也成为国际前沿研究热点。以下将通过一个系列3篇分别介绍当前的发展状况。 既然提到了成熟的碳化硅 那么我们就来聊一聊这个碳化硅是什么 碳化硅又名碳硅石、金刚砂,是一种无机物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。在C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。

建筑陶瓷生产工艺流程

建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土

陶艺制作流程完整版

陶艺制作流程 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

陶艺制作流程 陶艺,就是陶瓷艺术,也就是用硅酸盐材料制成的手工艺品(硅酸盐即可以是泥土,也可以是高岭土)。陶艺作品的价值,不在于其造价,而在于其制作的技巧,技巧是陶艺创作的生命,陶艺作品的技巧是其被载入史册的根源。作为一门历史悠久、内涵丰富的艺术创作,陶艺创作具备一套完整的工艺流程: 由上图可以看出,陶艺制作过程可以分为原料制作(釉料和泥料的制作)、成型、施釉和烧制四个个阶段。以下将对这些阶段进行详细说明: 一、原料制作 1、釉料制作 釉料→球磨细碎(球磨机)→除铁(除铁器)→过筛(振动筛)→成品釉 2、泥料制作 泥料→球磨细碎(球磨机)→搅拌(搅拌机)→除铁(除铁器)→过筛(振动筛)→抽浆(泥浆泵)→榨泥(压滤机)→真空练泥(练泥机、搅练机) 二、成型 1、拉坯成型法 适用于制作圆形、弧型等浑圆的造型,比如盘子、碗、罐子等等,它的特点是作品挺拔、规整,器物的表面会留下一道道旋转的纹路。 ① 釉下:泥料→泥饼(手工)→搓泥(手工)→拉坯(拉坯机又名陶艺机)→干燥(自然风干留10%水份)→修坯(陶艺工具)→干燥(烘干箱)→釉下装饰(在泥坯上直接进行绘制,如青花)→上釉(施釉机)→风干 ② 釉上:泥料→泥饼(手工)→搓泥(手工)→拉坯(拉坯机又名陶艺机)→干燥(自然风干留10%水份)→修坯(陶艺工具)→干燥(烘干箱)→上釉(施釉机)→风干 2、泥板成型法 利用陶土碾成、拍成或切割成板状,来镶控制作器物的方法,叫做泥板成型法。这种方法在陶艺制作中运用广泛,变化丰富。传统的紫砂器就是用泥板成型来制作的。泥板成型的器物可随陶土的湿度加以变化。比较湿软泥板可以扭曲、卷和等方法自由变化,随意造型;稍干的泥板可以镇粘制作成比较挺直的器物。泥板的厚度随器物制作大小而定,但应注意泥板的厚度要均匀。泥板成型法需要使用泥板成型机。 3、泥条盘制法 陶艺成型技法中最为方便、造型表现力最强的技法之一。可以制作出其他任何成型方法所能做出的作品,如圆形、方形、异形乃至雕塑等等。用泥条盘制法制作陶艺,一方面是泥条可以自由地弯曲与变化,方便制作一些比较复杂的、不太规整的、较随意的陶塑,再者就是它能够保留泥条在盘筑时留下来的手工痕迹和一道道盘旋的纹理,当然也可以修整得不留痕迹。泥条盘制法需要使用泥条成型机和手工转盘 4、徒手捏制法 可以最直接地表达作者的手法和构想,需要使用手工转盘 5、手工雕塑成型

陶瓷制作工艺流程

陶瓷制作工艺流程 陶瓷制作工艺流程 一件精美的的瓷器,我们在欣赏之余,在赞叹它的巧夺天工的同时,应该知道,从蛮顽不化的瓷土矿石到灵光四射的手中之物,粗略统计,必须经过近四十道工序,而且每道工序都应通力合作,环环紧扣,方能大功告成。 除了探矿、采矿部分,单就矿石进厂到产品出厂,大体可分成八大工序,即:坯料制备、制模、成型、干燥、施釉、装烧、装饰、包装。 一、坯料制备德化的陶瓷坯料主要成分是石英、长石、高岭土。按其制品的成型方法可分为可塑法坯料和注浆法坯料。 1、可塑法成型是陶瓷生产常见的一种成型方法,常用于生产碗、盘、杯、碟等圆形、敞口的物件。 (1)选料:进厂矿料、石英、长石、硬质粘土,软质粘土,必须经过挑选弃除劣质材料及夹层杂质。 (2)洗涤:水洗杂土。(软质粘土除外) (3)粉碎:用水礁、机礁或破碎机、轮碾机将矿石加工成粗颗粒。(软质粘土可免) (4)过筛:筛出超大颗料,继续粉碎。 (5)除铁:用干式磁选机吸除铁杂或来自原矿及粉碎过程中机器磨耗而混入的铁屑,以提高成瓷的白度、透光度,减少斑点缺陷。 (6)配料:根据配方要求,将各种粉料称出所需重量,混合装入球磨机料筒中。 (7)湿球磨:在装好粉料的球磨机料筒中,加入清洁水(水、料重量比是6?4)靠球磨筒中的卵石的撞击和磨擦,将泥料颗料继续磨细、球磨时间约48小时。 (8)过筛:球磨石后的料浆再次过筛以达到细度要求。

(9)除铁:用湿式磁选机除去铁杂质,这是坯料制备工艺中最重要的除铁环节,要反复多次。 (10)压滤:将除铁质后的泥浆分装入压滤袋中,用压榨机挤压出多余水分。 (11)真空练泥:经过压滤的所得的泥饼,组织是不均匀的,而且含有很多空气。组织不均匀的泥饼如果直接用于生产,就会造成坯体在此干燥、烧成时的收缩不均匀而产生变形和裂纹,而过多的空气则是造成气泡、分层的直接原因。 泥料经过真空练泥,可以排除泥饼的残留空气,提高泥料的致密度和可塑性,并使泥料均匀,改善成型性能,提高干燥强度和成瓷机械强度。 采用可塑法成型所需的泥料至此制备完毕,将共存放入库以备成型取用。 2、注浆法成型我县使用也很广泛,它适合于口小,腹大、内深的产品。如壶、瓶之类,以及其他非圆形工艺陈设瓷。闻名中外的德化瓷塑即是用这种方法成型的。 注浆成型的坯料要求具有良好的流动性,悬浮性、稳定性、渗透性。 注浆泥料的制备流程基本上和可塑泥料制备流程相似,一般是将球磨后的泥浆经过压滤脱水成泥饼,然后将泥饼碎成小块与电解质(水玻璃)以及水在搅拌池中搅拌成泥浆,并存放1-3昼夜以增加其粘度和强度。 二、制模 石膏模型是陶瓷制作中的重要辅助工具。可塑法和注浆法成型,都广泛采用它作为模型。它具有复制品棱角线条清晰的特点,制作过程如下: 1、种模的制作 制作者根据自己的构思或别人的图样、实物,用石膏车制或用可塑泥料塑出第一件原始作品,它的尺寸应该考虑到干燥收缩和烧成收缩,而按总收缩率予以放大。这就是种模。 2、翻制母模

新型半导体材料SiC

新型半导体材料SiC 结构及特性 使用 Si 器件的传统集成电路大都只能工作在 250℃以下,不能满足高温、高功率及高频等要求。SiC 具有独特的物理性质和电学性质,是实现高温、高频、抗辐射相结合器件的理想材料。从结构上来说,主要有两类:闪锌矿结构,简称3C &β-SiC(3C-SiC:ABC’ABC…);六角型或菱形结构,简称α-SiC(主要包括6H-SiC:ABCACB’ABCACB…; 4H-SiC: ABAC’ABAC…)。 * A,B,C为Si-C四面体密堆积3种不同的位置 SiC 单位晶体结构几种常见 SiC 晶体形态的对垒模型相比Si及GaAs,SiC材料有绝缘破坏电场大、带隙大,导热率高、电子饱和速度快及迁移率高等特性参数,决定SiC功率元器件具有易降低导体电阻,高温下工作稳定及速度快等优势。然而目前SiC主要面临的挑战是出现电磁干扰(EMI) 问题及成本较高问题 特性参数

生产关键技术 SiC晶体生长 Sic具有高的化学和物理稳定性,使其高温单晶生长和化学处理非常困难。早期PVT法生长单晶:SiC源加热到2000℃以上,籽晶与源之间形成一定的温度梯度,使SiC原子通过气相运输在籽晶上生成单晶。主要受气相饱和度控制,生长速度和饱和度成正比。 PVT法生长的单晶几乎都是4H、6H-SiC,而立方的SiC中载流子迁移率较高,更适合于研制电子器件,但至今尚无商用的3C-SiC。另外,SiC体单晶在高温下(2000℃)生长,参杂难以控制,特别是微管道缺陷无法消除,所以SiC体单晶非常昂贵。 PVT 法晶体生长室示意图 外延外延生长技术主要有四种:化学汽相淀积(CVD)、液相外延生长(LPE) 、汽相外延生长(VPE) 、分子束外延法(MBE) 化学机械抛光由于SiC有很高的机械强度和极好的耐化学腐蚀的特性,相比于传统的 半导体材料(硅和砷化镓)它很难进行抛光。用胶体氧化硅对 SiC 进行化学机械抛光是目前比较常见的一种方法,抛光剂是二氧化硅颗粒的悬浮液,二氧化硅颗粒的粒度只有几十纳米。 氧化SiC是化合物半导体中唯一能够由热氧化形成SiO2的材料。采用与 Si 工艺类似的干氧、湿氧方法进行 SiC 的氧化,氧化温度 1100~1150℃之间,但氧化速率较慢,一般仅为几个nm/min。氧化速率与表面晶向有关,碳面氧化速率是硅面的 5~10 倍;另外,氧化速率还依赖于衬底参杂浓度,随参杂浓度的增加而增加。 刻蚀由于SiC材料的高稳定性,无法对它进行普通的湿法腐蚀。所以,只能采用干法拋光前拋光后 20h 拋光后 50h 拋光后 70h

氧化铝陶瓷生产工艺流程简介

氧化铝陶瓷生产工艺流程简介 信息来源:全球铝业网 https://www.doczj.com/doc/74117889.html,/news_list_87.html 一、特点与技术指标 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。 1. 硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2. 耐磨性能极好 经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3. 重量轻 氧化铝陶瓷密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。性能符合Q/OKVL001-2003技术标准,耐磨陶瓷主要技术指标氧化铝含量≥95% 、密度≥3.5 g/cm3 、洛氏硬度≥80 HRA 、抗压强度≥850 Mpa 、断裂韧性KΙ C ≥4.8MPa·m1/2 、抗弯强度≥290MPa 、导热系数 20W/m.K 、热膨胀系数: 7.2×10-6m/m.K。 其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 二、粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150-200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂,如硬脂酸及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 三、成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍:

8陶瓷工艺流程

陶瓷工艺流程 一、淘泥高岭土是烧制瓷器的最佳原料,千百年来,多少精品陶瓷都是从这些不起眼的瓷土演变而来,制瓷的第一道工序:淘泥,就是把瓷土淘成可用的瓷泥。 二、摞泥淘好的瓷泥并不能立即使用,要将其分割开陶瓷艺术品来,摞成柱状,以便于储存和拉坯用。 三、拉坯将摞好的瓷泥放入大转盘内,通过旋转转盘,用手和拉坯工具,将瓷泥拉成瓷坯。 四、印坯拉好的瓷坯只是一个雏形,还需要根据要做的形状选取不同的印模将瓷坯印成各种不同的形状。 五、修坯刚印好的毛坯厚薄不均,需要通过修坯这一工序将印好的坯修刮整齐和匀称,修坯又分为湿修和干修。 六、捺水捺水是一道必不可少的工序,即用清水洗去坯上的尘土,为接下来的画坯、上釉等工序做好准备工作。 七、画坯在坯上作画是陶瓷艺术的一大特色,画坯有好多种,有写意的、有贴好画纸勾画的,无论怎样画坯都是陶瓷工序的点睛之笔。 八、上釉画好的瓷坯,粗糙而又呆涩,上好釉后则全然不同,光滑而又明亮:不同的上釉手法,又有全然不同的效果,常用的上釉方法有浸釉、淋釉、荡釉、喷釉、刷釉等。 九、烧窑千年窑火,延绵不息,经过数十道工序精雕细琢的瓷坯,在窑内经受千度高温的烧炼,就像一只丑小鸭行将达化一只美天鹅。现在的窑有气窑、电窑、等。 十、成瓷经过几天的烧炼,窑内的瓷坯已变成了件件精美的瓷器,从打开的窑门中迫不及待地脱颖而出。十一、成瓷缺陷的修补,一件完美的瓷器有时烧出来会有一点瑕疵,用JS916-2(劲素成)进行修补,可以让成瓷更完美。 陶瓷与文化 陶瓷的文化性的特殊之处,不仅在于它反映广泛的社会生活、大自然、文化、习俗、哲学、观念,而且在于它所反映的方式。它是一种立体的民族文化载体,或者说是一种静止的民族文化舞蹈。这是由陶瓷的特性决定的。一件件作品,无论题材如何,风格如何,都像一个个音符,在跳动着,在弹

氧化铝陶瓷生产工艺流程简介

氧化铝陶瓷生产工艺流程简介 一、特点与技术指标 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al 2O含量在99.9 %以上的陶瓷材料,由于其烧结温度高达1650-1990 C,透射波长为1?6 卩m 一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作 钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按 AI2Q含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时AbQ含量在80%或75%者也划为普通氧化铝陶瓷系列。 1. 硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90硬度仅次于金 刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2. 耐磨性能极好 经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3. 重量轻 氧化铝陶瓷密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。性能符合Q/0KVL001-2003技术标准,耐磨陶瓷主要技术指标氧化铝含量> 95%、密度 > 3.5 g/cm3、洛氏硬度 > 80 HRA、抗压强度 > 850 Mpa、断裂韧性K I C >4.8MPa?m1/2、抗弯强度 > 290MPa、导热系数20W/m.K、热膨胀系数: 7.2 x 10-6m/m.K。 其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85 瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 二、粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度

陶瓷生产过程特点

一、陶瓷生产过程的特点 陶瓷产品的生产过程是指从投入原料开始,一直到把陶瓷产品生产出来为止的全过程。它是劳动者利用一定的劳动工具,按照一定的方法和步骤,直接或间接地作用于劳动对象,使之成为具有使用价值的陶瓷产品的过程。在陶瓷生产过程的一些工序中,如陶瓷坯料的陈腐、坯件的自然干燥过程等。还需要借助自然力的作用。使劳动对象发生物理的或化学的变化,这时,生产过程就是劳动过程和自然过程的结合。 一般来说,陶瓷生产过程包括坯料制造、坯体成型、瓷器烧结等三个基本阶段。同时陶瓷生产过程的组成可按生产各阶段的不同作用分为生产技术准备过程、基本生产过程、辅助生产过程和生产服务过程。 作为社会化大生产的陶瓷生产过程,和其他一些行业的生产过程相比较,具有以下几个特点:1.陶瓷生产过程是一种流程式的生产过程,连续性较低。陶瓷原料由工厂的一端投入生产,顺序经过连续加工,最后成为成品,整个工艺过程较复杂,工序之间连续化程度较低。隧道窑虽然是连续生产,但其速度尚不能与成型工艺的流水作业线相配合,需要做存坯、装坯和装窑等一系列烧成准备工作。工艺陈设瓷的生产更是带有浓厚的手工作坊式色彩,缺少工业化生产的规模与条件。因此进行工艺革新,实现连续化生产,对于提高陶瓷工业劳动生产率,创造更大的经济效益具有重要作用。 2.陶瓷生产过程的机械化、自动化程度较低。陶瓷工业是我国的传统工业,又是劳动密集型产业。长期的习惯观念认为,技术不是这个行业的主要因素,因而忽略了对其的技术改造,再加上国家资金有限,陶瓷工业技术装备长期处于落后状况,机械化和自动化程度相当低,大部分机械设备只相当于先进制瓷国家五六十年代的水平,有的甚至处于二三十年代水平;彩绘、检验、包装等工序还依靠手工操作。 3.陶瓷生产周期较长。陶瓷产品的生产周期,是指从原材料投入生产开始,经过各道工序加工直到成品出产为止,所经过的全部日历时间。包括基本作业时间、多余时间和无效时间。陶瓷生产的周期较长,从矿山采掘、原料处理、产品成型、锻烧到销售,工序多,过程长,但在陶瓷生产周期中,真正利用的基本作业时间所占的比重是不大的,一般在30%一40%左右,时间的利用率较低。因此,减少或消除作业中的多余和无效时间,增加基本作业时问的比重,这是陶瓷企业亟需解决的问题,有待于在企业保证产品质量的前提下,开发新技术,提高企业管理水平,去缩短陶瓷产品的生产周期。 4.陶瓷生产过程中辅助材料如石膏模型、匣钵等消耗量大。石膏模型是采用可塑法或泥浆法成型坯件的重要辅助材料,其强度较低,耐热性差,使用寿命较短,所以在陶瓷企业中消耗量很大。由于废石膏的利用尚未得到满意解决,给厂区环境带来了影响。匣钵是陶瓷制品在烧成工艺中作为承烧物的耐火材料制品,匣钵的使用次数一般在10—15次,匣钵质量的低劣往往造成制品变形、落渣、火刺等一系列缺陷.因此,如何提高石膏模和匣钵的质量,延长它们的使用寿命,以及解决废石膏模和匣钵的利用问题,是值得陶瓷企业认真研究的重要课题之。 5.陶瓷生产需要消耗大量的能源。陶瓷生产过程中,坯体瓷化、釉层玻化需在1000℃左右高温条件下进行,日用陶瓷和电工陶瓷的烧成更需要在1300℃以上,加上各种机械和电器也需要消耗能源而获得动力.因此,陶瓷生产过程中需要消耗大量的能源。据统计,陶瓷工业生产成本中,燃料要占30%以上,在我国,用于燃料的平均成本费用更高达40%。居各项成本的首位。 6.运输是陶瓷企业生产过程的重要环节。陶瓷生产过程使用的原料品种繁多,生产出的半成品、成品及产生的余料、废料等,具有数量多运输量大的特点。此外,在陶瓷生产操作过程中,运输也占有相当重要的份量.如:球磨机的装料、榨泥机的卸料、坯泥及半成品的运输、制件的成型上釉等等。这就要求陶瓷企业一方面在厂址选择、空间布置、厂内运输线路的安排等方面力求合理,尽量减少运输量,另一方面力求实现陶瓷企业运输操作的机械化、自动化,减轻工人的劳动强度。

陶瓷生产工艺技术概况

陶瓷生产工艺技术概况 第一节陶瓷生产及原料概况 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 陶瓷制品的品种繁多,它们之间的化学成分、矿物组成、物理性质、以及制造方法,常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。整理汇编如下: 一、根据陶瓷原料杂质的含量、和结构紧密程度把陶瓷制品分为陶质、瓷质和炻质三类 1、陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 2、炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 3、瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住。 二、陶瓷可简单分为硬质瓷,软质瓷、特种瓷三大类 1、硬质瓷(hard porcetain) 具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。我国所产的瓷器以硬质瓷为主。硬质瓷器,坯体组成熔剂量少,烧成温度高,在1360℃以上色白质坚,呈半透明状,有好的强度,高的化学稳定性和热稳定性,又是电气的 不良传导体,如电瓷、高级餐具瓷,化学用瓷,普通日用瓷等均属此类,也可叫长石釉瓷。 2、软质瓷(soft porcelain)与硬质瓷不同点是坯体内含的熔剂较多,烧成温度稍低,在1300℃以下,因此它的化学稳定性、机械强度、介电强度均低,一般工业瓷中不用软质瓷,其特点是半透明度高,多制美术瓷、卫生用瓷、瓷砖及各种装饰瓷等。这两类瓷器由于生产中的难度

相关主题
文本预览
相关文档 最新文档