当前位置:文档之家› 幕墙设计基础─风载荷与地震作用计算

幕墙设计基础─风载荷与地震作用计算

幕墙设计基础─风载荷与地震作用计算
幕墙设计基础─风载荷与地震作用计算

幕墙设计基础─风载荷与地震作用计算

风荷载计算公式: W k=βgz×μz×μs×W0[公式(1)]根据《建筑结构荷载规范》GB50009- (2006年修订版)

其中: W k---作用在幕墙上的风荷载标准值(kN/m2)

βgz---瞬时风压的阵风系数,按《建筑结构荷载规范》GB50009-2001中表7.5.1取定;

μz --- 风压高度变化系数,按《建筑结构荷载规范》GB50009-2001中表7.2.1取定;

μs --- 风荷载体型系数,按《建筑结构荷载规范》GB50009-2001中第7.3.3条取定;

W0 --- 基本风压(kN/m2),按全国基本风压图。

体型系数μs

通常情况下墙角取2.0;墙面取1.2

可见墙角区要比大面区风荷载大约67%。

屋面局部部位(周边和屋面坡度大于10度的屋脊部位)取-2.2;

檐口、雨蓬、遮阳板等突出部位取-2.0.

地震作用计算公式:q EAk=βE×αmax×GAK [公式(2)]

其中: q EAk--- 水平地震作用标准值;

βE--- 动力放大系数,按5.0 取定;

αmax--- 水平地震影响系数最大值,按相应设防烈度取定(见表1);

GAK--- 幕墙构件平面面积的重力荷载标准值(kN/m2)。

表1:水平地震影响系数最大值αmax

荷载效应组合

1、承载力验算:抗震设计的玻璃幕墙,应考虑重力荷载、风荷载和地震作用效应。

2、挠度验算

在风荷载或永久荷载作用下,幕墙构件的挠度应符合挠度限值要求,且计算挠度时,取荷载作用的标准值,即取荷载分项系数为1.0。

例一立柱上的风荷载计算

在深圳拟建一幕墙项目,高20米,场地类别为B类,幕墙水平分格为1500mm,求出作用于该幕墙立柱的线性风荷载。

解:对B类地区,查荷载规范可得,深圳基本风压为0.75 kN/m2(50年一遇),20米高处风压高度变化系数取:m z=1.248 ;阵风系数取:s gz =1.687则:

墙角区风压为:墙面区风压为:

W k=βgz×μz×μs×W0 Wk=βgz×μz×μs×W0

=1.687x1.248x2x0.75 =1.687x1.248x1.2x0.75

=3.158 kN/m2 =1.89 kN/m2

作用于立柱上的风荷载的线荷载为

(墙角区):(墙面区):

q=W k x B q=W k x B

=3.158 x 1.5 =1.89 x 1.5

=4.737 kN/m =2.835 kN/m

风荷载总体体型系数

风荷载总体体型系数心得 《建筑结构荷载规范》第8.1.1条讲到垂直于建筑物表面的风荷载标准值应该 按照下列规定确定。 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是 负值,其实就是相当一个吸力。 对于总的体型系数,是这样求解的。首先是在 根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑 物边长尺寸如图所示,则总的体型系数如下: 5.028.022 6.0++?+?+?=b a b b a a u s 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑 物表面上部分按照风向最大投影面分为3段,a ,b ,a 。再依据规范,+0.6,+0.8, +0.6按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5其实也 是按照边长加权求得。只是因为参考系数都是0.5所以综合加权值也是0.5. 但 是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这 里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风 面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。 不过还有另外一种情况就是当出现“-”时是要做减法的。 一开始列出的六种 建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式, 这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度L 相关。 再比如 右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即就是 图示的箭线,仍旧是上部和下部。所以计算式如下:

一、荷载与地震作用

附件:“PKPM上部结构设计软件常见问题释疑”研讨班授课大纲 一、荷载与地震作用 1、现浇板、悬挑板、组合楼板、斜板等在确定面荷载时有哪些注意事项?05与08版在处理上 有何不同?荷载方向如何确定,可否输入负值? 2、08版新增梁上的荷载类型“无截面设计”是何意,如何正确应用? 3、哪些节点上可以加节点荷载?对于一根梁上任加一点后,在此节点上加节点荷载05与08版 软件在处理上有何不同? 4、楼面梁是如何进行活荷载折减的,程序的处理与规范有何不同? 5、对于“柱、墙及基础活荷载折减”程序的处理05版及08版有哪些不同,结果如何查询? 6、活荷载的输入对人防荷载的计算有何影响?08版有何改动? 7、PK、SATWE进行活荷载不利布置计算时有何不同?应注意哪些相关参数? 8、何为“互斥活荷载”?怎样通过此功能来实现规范中的相应条款? 9、05及08版程序是如何进行“普通风荷载”计算的,其中与风荷载计算相关的参数该如何确定, 受风面面积及荷载作用点如何确定?“普通风荷载”计算后荷载如何分配,它作用的效应程序做了怎样的处理? 10、05版特殊风荷载是如何计算的,有哪些不足?08版特殊风荷载是如何计算的,如何灵活应 用? 11、广义层方式建立的模型是否均可以直接用软件自动计算的风荷载? 12、05、08版吊车荷载输入方法有哪些异同? 13、对于排架柱计算长度系数的计算不同模块有何不同,该如何选用? 14、近期多层人防的计算程序做了哪些重大调整?不同版本为何结果会相差如此悬殊? 15、局部有人防荷载时如何处理? 16、如何确定地下室外墙平面外的受力?如何计算地下室外墙平面外的配筋?不同版本输出结果 有何不同?程序对于地下室外墙能否正确识别? 17、如何实现人防构件的弹塑性设计? 18、何时需要考虑“双向地震”及“偶然偏心”?如果两项同时选择程序如何处理? 19、如何正确确定与地震力计算相关的一些参数?如:计算振型个数、周期折减系数。 20、如何理解“水平力与整体坐标夹角”与“斜交抗侧力构件方向附加地震数,相应角度”? 21、“按中震(或大震)不屈服做结构设计”如何应用? 22、0。2Q0调整,不同时期版本,程度处理有何不同,原来有哪些局限?如何解决? 23、08版地下室信息中“土层水平抗力系数的比例系数”是何意,该如何取值? 二、构件设计 1、对于层间的支撑在计算时05、08版软件的处理有何不同? 2、越层支撑在与梁墙相交时05、08版在处理上有何不同? 3、08版对于柱被层间支撑打断后是如何进行内力及配筋计算的? 4、如何人为指定支撑是否参与导荷,它的导荷原则是如何定的? 5、08版支撑的计算长度系数如何确定? 6、支撑对于楼层指标的贡献05与08版在计算上有何异同? 7、刚性梁有哪些具体应用? 8、如何用两种方法输入连梁模型?两种方式输入的连梁在计算上有哪些不同? 9、如何合理填取与连梁计算相关的参数信息,如连梁刚度折减系数、墙梁转框架梁控制跨高比? 10、程序是如何实现“《抗震规范》(2008局部修订版)第3.6.6.1条” 的? 11、在输入楼梯构件时应注意的事项有哪些? 12、按主梁或次梁不同的方式输入时,在导荷、计算、施工图处理上有何不同?

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

关于风荷载体型系数取用-2

关于门式刚架单层房屋体型系数的选用,目前国内主要有两种,一种是按照《门式刚架轻型房屋钢结构技术规程》CECS102:2002,一种是按照《建筑结构荷载规范》GB50009-2001(2006年版)。如何选用这两种规范的体型系数和在结构设计软件PKPM中的具体应用成了结构设计人员必须解决的问题,本文就两种规范体型系数的区别和各自的适用范围通过算例进行验证,并提出笔者的看法。 在《建筑结构荷载规范》(以下简称GB50009)中,7.1.1条明确指出,计算主要承重结构和围护结构时,分别采用7.1.1-1式和7.1.1-2式,体型系数分别采用主体结构体型系数和围护结构的局部风压体型系数。主体结构体型系数根据7.3.1条取用,而围护结构局部风压体型系数按照7.3.3条规定,考虑边角区的影响和有效受风面积的修正。在《门式刚架轻型房屋钢结构技术规程》(以下简称CECS102)中,主体结构和围护结构均采用相同的公式附录A.0.1式。刚架和围护结构等的体型系数按照表A.0.2中的相应数据。其中区分端区、中间区、边角区等,同样也有有效受风面积的修正。 GB50009已在我国沿用了50多年,积累了丰富的实际工程经验,它是面对所有结构形式的建筑房屋,因此具有通用性,也是工程设计和软件应用的主要参考依据。CECS102是参考美国金属房屋制造商协会MBMA的相关试验数据和资料编制的,主要针对门式刚架低矮房屋,已为世界多个国家采用。CSCE102有其相对较强的针对性,也就有其特定的适用范围,关于风荷载计算适用范围在CECS102附录A.0.2中已有明确表述,对于门式刚架轻型房屋,当其屋面坡度不大于10度、屋面平均高度不大于18m、房屋高宽比不大于1、檐口高度不小于房屋的最小水平尺寸时,风荷载体型系数可以按照CECS102附录A的规定进行取用。此时的风荷载计算结果是比较接近相关的试验数据的,用于工程设计是没有问题的。而试验分析同时也表明,当柱脚铰接且刚架的L/H大于2.3和柱脚刚接且L/H大于3.0时,按《荷规》风荷载体型系数计算所得控制截面的弯矩已经偏离试验数据较多,再按此风荷载体型系数取用已经严重不安全。因此,在工程设计中对于房屋高宽比不大于1的,应该严格按照CECS102的体型系数进行取用。 下面通过算例比较《荷载规范》和《门规》的风荷载体型系数的计算结果,对于主体结构,封闭式房屋中间区的体型系数: 算例一,跨度L=24m,高度H=8m,L/H=3.0, 50年一遇基本风压W0= 0.50KN/m2,地面粗糙度B类,恒载0.30KN/m2,活载0.50KN/m2。 1、按GB50009取用风荷载体型系数: 左风左柱弯矩图:

美国UBC规范之地震荷载介绍对比

美国UBC 规范之地震荷载介绍对比-中国水泥技术网 2009-12-4 作者: 徐松波,徐永伦:合肥水泥研究设计院 美国UBC 规范之地震荷载介绍对比 徐松波,徐永伦 (合肥水泥研究设计院, 安徽 合 肥 230051) 摘 要:为满足海外项目工程投标、设计的需要, 对在国外工程招标书中抗震设计要求条款经常引用的美标UBC1997规范作一介绍。并给出与国标GB50011规定近似的对比,以方便判断 使用。 关键词:地震;UBC ;分区 1 引言 近年来,各种类型的涉外工程日趋增多,其中EPC 项目更是占主要。对于设计、施工而言,海外建设项目一般都必须满足所在国的建设法规的最低要求。其中的建构筑物抗震设计要求,美国标准UBC 在海外的应用具有普遍性。因此,美国《统一建筑规范》(UBC1997)的相关要求必须要了解。 本文即通过收集、整理相关的资料,供业内认识参考使用。 2 UBC1997概述 1) 目标:防止结构重要破坏、人员死亡,而不是限制损伤或保持功能; 2) 设计要求:当风荷载效应大于地震效应时仍需遵照抗震的构造要求和有关限制。UBC 也有类似国标的分类标准,将建构筑物分为重要设施、危险设施和特殊使用、一般使用几类; 3) 地震分区:按设计基本地震加速度值从大到小分为:1、2A 、2B 、3和4; 4) 侧向力计算方法:(a)简化静力法——用于一般用途≤3层并采用轻型框架或者≤2层其余结构。(b)静力法——用于分区1的结构和分区2的一般用途结构及其他。(c)动力法——用于高度≥73.2m 的结构及其他。 3 地震作用动力分析法 1) 美标UBC1997和国标GB50011规范都是基于50年超越概率为10%的地面运动来确定设防烈度,亦即是按475年的重现期确定的地震基本烈度; 2) 仅考虑规则的多层工业民用建构筑物, 并采用两国规范各自建议给出的等效地震作用静

风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= () s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。 由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。 则米高度处的风压高度变化系数通过线性插值为: 对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ () 式中: g ——峰值因子,可取 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;

R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s = 脉动风荷载的背景分量因子可按下列规定确定: 式中: 1()z φ——结构第1阶振型系数 H ——结构总高度 (m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ; x ρ——脉动风荷载水平方向相关系数; z ρ——脉动风荷载竖向方向相关系数; k 、1α—— 脉动风荷载的空间相关系数可按下列规定确定: (1)竖直方向的相关系数可按下式计算: 式中: H ——结构总高度 (m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ; (2) 水平方向相关系数可按下式计算: 式中:

第二部分 风荷载计算

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振 系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 (3)计算各楼层标高处的风荷载z q 。攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????=

第3章高层建筑结构的荷载和地震作用(精)

第3章 高层建筑结构的荷载和地震作用 [例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030?,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为六 个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结 构底部(一层)的剪力和筏形基础底面的弯矩。 解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=?== 222210m s kN 62.19.145.0T w ?=?= (2)风荷载体型系数:对于矩形平面,由附录1可求得 80.01=s μ 57040120030480L H 03 04802s .....-=??? ? ? ?+-=??? ??+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =?,i H 为第i 层标高;H 为建筑总高度。则由式(3.2.8)可求得风振系数为: H H 478050211H H 11i z i z ??+=?+=+=μμξνμ?νξβ.. z z z (4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为: ()z z z z ....)z (q βμβμ6624=40×570+80×450= 按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。 表3.2.4 风荷载作用下各区段合力的计算 (a ) (b ) (c ) 图3.2.4 高层结构外形尺寸及计算简图

地震载荷分析谱

图1-3 大角焊缝几何参数示意图(单位:mm) 参数 (4)地震载荷 地震载荷参数 根据7麦卡利设计地震烈度的要求,选取1976年唐山大地震时的天津波作为本课题的地震输入。该地震记录的相关参数见表1-5。 表1-5 天津波参数表 地点天津医院 时间1976.07.28.03:42 台站处的烈度7度 数据类型加速度记录 相邻数据点间的时间间隔(s) 0.01 持续时间(s) 19.20 地震仪的有效频宽(Hz) 0.30--35.00 南北向峰值(m/s2) 1.45 南北向峰值出现时刻(s) 7.64 南北向最大动力放大系数 1.83 南北向最大动力放大系数对应的周期(s) 0.90 东西向峰值(m/s2) 1.04 东西向峰值出现时刻(s) 7.58 东西向最大动力放大系数 1.649 东西向最大动力放大系数对应的周期(s) 1.00 竖直向峰值(m/s2) 0.73 竖直向峰值出现时刻(s) 9.03

该地震记录的时程曲线如图1-4至图1-6。 图1-4 天津波南北向加速度分量时程曲线 图1-5 天津波东西向加速度分量时程曲线

图1-6 天津波竖直向加速度分量时程曲线 由于在附加质量法中,无法考虑竖直向加速度的影响,且由于该天津波竖直向加速度分量较小,因此在计算中不考虑竖直向加速度。 在使用该地震记录时,剪掉前6秒振幅很小的部分,只取其后面13.2秒。并且根据《建筑抗震设计规范GB50011-2001》中表5.1.2-2的规定(如图1-7):7度时程分析所用地震加速度时程曲线的最大值为55cm/s2,将原加速度幅值压缩为原来的0.38倍。 图1-7 《建筑抗震设计规范GB50011-2001》表5.1.2-2 修剪及压缩后的地震加速度时程曲线如图1-8及图1-9。这两条时程曲线才是数值分析时真正使用的地震输入。

雪风和地震荷载计算方法

雪、风和地震荷载的计算方法 1 雪荷载 1.1 文献[2]中国《建筑结构荷载规范GB 50009-2001》 文献[2]我国《建筑结构荷载规范GB 50009-2001》第6.1.1条规定,屋面水平投影面上的雪荷载标准值,应按下式计算: s k=μr s o(1-1) 式中:s k为雪荷载标准值,[kN/m2];μ r为屋面积雪分布系数;s o为基本雪压,[kN/m2]。 规范第6.1.2条规定,基本雪压应按该规范附录D.4中附表D.4给出的50年一遇的雪压采用。高于1989年同名规范30年一遇的标准。第6.1.3是对规范没有给出基本雪压的地点取值方法的规定。第6.1.4条是对山区基本雪压的规定。屋面积雪分布系数μ r根据屋面形状按表6.2.1确定。 1.2 文献[7]美国《建筑及其它结构最小设计荷载》1994年版 文献[7]美国《建筑及其它结构最小设计荷载》1994年版7.3规定,斜度小于1/12的平屋面的雪荷载按下式计算: p f=αC e C t I p g (1-2) 式中:p f为雪荷载,[lb/ft2];α系数,美国本土为0.7,阿拉斯加为0.6;C e为暴露系数;C t为热力系数;I为重要性系数,根据表1及表20,一般公用发电厂I=1.0;p g为地面雪荷载。据规范解释对7.2的说明,地面雪荷载系基于雪荷载超过的年概率为2%(即平均重现期50年)的数值。 1.3 文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》 从上可见,文献[7]考虑的系数更多。 为了考虑与文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》一致,采用文献[2]的标准。因矩形烟风道为平顶,根据后者的表6.2.1第1项取μ r =1.0。 Page 1 of 8

风荷载计算解析

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素 有关。 按下式计算:垂直作用于建筑物表面单位面积上的风荷载标准值式中: Wo 1.基本风压值按当地空旷平坦地面上10米高度处10分钟平均的风速观测数 据,经概率统计得出50年一遇的按公式确定。但不得小 于0.3kN/m2。值确定的风速V0(m/s) 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μz

地面粗糙类别 D B C A

高度(m) 1.17 1.00 0.74 0.62 5 1.38 1.00 10 0.74 0.62 1.52 1.14 15 0.74 0.62 计算公式 0.24 =1.379(z/10)A类地区1.63 1.25 0.84 0.62 20 0.32 = (z/10)B类地区1.80 30 1.42 1.00 0.62 )0.44 =0.616(z/1040 C1.92 1.56 1.13 0.73 类地区0.6 =0.318(z/10)1.25 2.03 1.67 50 0.84 D类地区0.93 1.35 2.12 60 1.77 1.02 2.20 70 1.86 1.45 1.11 1.95 1.54 2.27 80 1.19 1.62 2.02902.34 1.27 100 2.40 2.091.70 1.61 2.03 2.382.64 150 1.92 200 2.612.30 2.83 2.19 2.802.99 2502.54 2.45 3.12 3002.972.75 2.68 3502.94 3.123.12 2.91 3.123.12 4003.12 3.12 3.123.12 3.12 450 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 确定各个表面的风载体型2-4.2表P57计算主体结构的风荷载效应时风荷载体型系数可按书中 或由风洞试验确定。几种常用结构形式的风载体型系数如下图 注:“+”代表压力;“-”代表拉力。 zβ 4.风振系数z反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度风振系数β 基本风压。《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。其z可按下式计算:

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

第3章高层建筑结构的荷载和地震作用.

第3章高层建筑结构的荷载和地震作用 [例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m,室外地面至檐口的高度为120m,平面尺寸为30m?40m,地下室采用筏形基础,埋置深度为12m,如图3.2.4(a)、(b)所示。已知基本风压为 w0=0.45kNm,建筑场地位于大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN。为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。 2 解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: T1=0.05n=0.05?38=1.90s w0T12=0.45?1.92=1.62kN?s2m2 (2)风荷载体型系数:对于矩形平面,由附录1可求得 μs1=0.80 H?120??? ?=- 0.48+0.03??=-0.57 L40???? (3)风振系数:由条件可知地面粗糙度类别为B类,由表3.2.2可查得脉动增大系数ξ=1.502。脉动影响系数ν根据H/B和建筑总高度H由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得ν=0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z与房屋高度H的比值,即?z=Hi/H,Hi为第i层标高;H为建筑总高度。则由式(3.2.8)可求得风振系数为: ξ ν ?zξνHi1.502?0.478Hi βz=1+=1+?=1+? μzμzHμzH (4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为: q(z)=0.45×(0.8+0.57)×40μzβz=24.66μzβz μs2=- 0.48+0.03 按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。 表3.2.4 风荷载作用下各区段合力的计算

风荷载特点

高层建筑横向承载力 摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。这一特点使得高层建筑物在人口稠密的大城市迅速发展。但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。关键词:风载荷高层建筑物影响 在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。 建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。高层建筑不应采用严重不规则的结构体系,应符合下列要求:1、应具有必要的承载能力、刚度和变形能力;

2、应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力; 3、对可能出现的薄弱部位,应采取有效措施予以加强。 高层建筑的结构体系尚宜符合要求:结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位。风荷载是结构的重要设计荷载,特别对于高耸结构(如烟囱、塔架、桅杆等)、高层建筑、大跨度桥梁、冷却塔、屋盖等,有时甚至起到决定性的作用,因而抗风设计是工程结构中的重要课题。 近二十年来,国内外建造了超高层建筑和大跨度结构。对这些限高层建筑结构风荷载和风震响应的计算分析,确保高层建筑物的质量是十分必要的。 参考文献: [1]黄本才,结构抗风分析原理及应用[M],天津:同济大学出版社,2001,1-7 [2]张向庭.工程抗风设计计算手册[M],北京:中国建筑工业出版社,1998 [3]GB50009)2001建筑结构荷载规范[S],2001,北京:中国建筑工业出版社,2002

美国UBC规范之地震荷载介绍对比[1]

美国UBC规范之地震荷载介绍对比 徐松波,徐永伦 (合肥水泥研究设计院,安徽合肥230051) 摘要:为满足海外项目工程投标、设计的需要, 对在国外工程招标书中抗震设计要求条款经常引用的美标UBC1997规范作一介绍。并给出与国标GB50011规定近似的对比,以方便判断使用。 关键词:地震;UBC;分区 1 引言 近年来,各种类型的涉外工程日趋增多,其中EPC项目更是占主要。对于设计、施工而言,海外建设项目一般都必须满足所在国的建设法规的最低要求。其中的建构筑物抗震设计要求,美国标准UBC在海外的应用具有普遍性。因此,美国《统一建筑规范》(UBC1997)的相关要求必须要了解。 本文即通过收集、整理相关的资料,供业内认识参考使用。 2 UBC1997概述 1) 目标:防止结构重要破坏、人员死亡,而不是限制损伤或保持功能; 2) 设计要求:当风荷载效应大于地震效应时仍需遵照抗震的构造要求和有关限制。UBC 也有类似国标的分类标准,将建构筑物分为重要设施、危险设施和特殊使用、一般使用几类; 3) 地震分区:按设计基本地震加速度值从大到小分为:1、2A、2B、3和4; 4) 侧向力计算方法: (a)简化静力法——用于一般用途≤3层并采用轻型框架或者≤2层其余结构。 (b)静力法——用于分区1的结构和分区2的一般用途结构及其他。 (c)动力法——用于高度≥73.2m的结构及其他。 3 地震作用动力分析法 1) 美标UBC1997和国标GB50011规范都是基于50年超越概率为10%的地面运动来确定设防烈度,亦即是按475年的重现期确定的地震基本烈度; 2) 仅考虑规则的多层工业民用建构筑物,并采用两国规范各自建议给出的等效地震作用静 力计算法; 3) 等效剪切波速都采用多层土与匀质土在剪切波速传播时间上等效的方法计算; 4) 仅考虑常见结构自振周期范围0.1~3.0s。由于长周期结构对短周期型加速度地面运动的反应相对不大,按加速度反应谱计算的地震作用随自振周期增加明显降低,且大多数长周期结构如高层建筑等按规范的要求应进行模态分析或时间历程响应分析,故此处不考虑比较;

风荷载计算算例

3.6.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= (8.1.1-1) s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B 类。 由表8.2.1高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为1.93和2.00。 则90.6米高度处的风压高度变化系数通过线性插值为: 90.690(2.00 1.93) 1.93 1.934210090z u -=-+=-

对于高度大于30m 且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s 的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ (8.4.3) 式中: g ——峰值因子,可取2.5 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取0.12、0.14、0.23和0.39; R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: R = (8.4.4-1) 115x x => (8.4.4-2) 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取1.28、1.0、0.54和0.26; 1ζ——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s =

5.6荷载效应和地震作用组合的效应

〈〈高层建筑混凝土结构技术规程》 5. 6荷载效应和地震作用组合的效应 5. 6荷载效应和地震作用组合的效应 5.6.1 持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S =Y G&k +Y L Q Y Q&k w Y w S wk ( 5.6.1 ) 式中:S――荷载组合的效应设计值;Y G永久荷载分项系数;Y Q――楼面活荷载分项系数; Y w――风荷载的分项系数;Y L――考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使 用年限为100年时取1.1 ;S3k 永久荷载效应标准值;S Qk 楼面活荷载效应标准值; S-――风荷载效应标准值;》Q、》w――分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取0.7和0.0 ;当可变荷载效应起控制作用时应分别取 1.0和0.6或0.7和1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取0.7的场合应取为0.9。 5.6.2 持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数Y G当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控 制的组合应取1.35 ;当其效应对结构有利时,应取 1.0 ; 2楼面活荷载的分项系数Y Q:—般情况下应取1.4 ; 3风荷载的分项系数Y w应取1.4。 2位移计算时,本规程公式(5.6.1 )中个分项系数均应取1.0。 5.6.3 地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=Y °&E + Y Eh Shk + Y Ev Svk +书w Y Sk (5.6.3 ) 式中:S――荷载和地震作用组合的效应设计值;S GE――重力荷载代表值的效应; S Ehk――水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk ――竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; Y G――重力荷载分项系数;Y w――风荷载分项系数;Y Eh――水平地震作用分项系数;Y E ------------- 竖向地震作用分项系数; 屮w――风荷载组合值系数,应取0.2。 5.6.4 地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时, 表5.6.4 中Y G不应大于1.0。 2 "―"表示组合中不考虑该项荷载或作用效应。 5.6.5 非抗震设计时,应按本规程第5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1条 和5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定 进行调整。

建筑物的地震荷载及抗震设计(翻译)

建筑物的地震荷载及抗震设计 1 、摘要 抗震设计的首要目标是为了防止建筑物倒塌,从而在地震时减少死亡的危险和对人以及靠近这些建筑物的伤害。由于破坏性地震是罕见的,按照经济的原则,建筑物的损坏是可以预期并避免可以接受的破坏。 因为它们的动态影响地面运动,建筑物的惯性产生地震势力。动态性的影响,使地震作用明显不同于其它建筑荷载。设计师的设计方向是结构影响是设计的根本,必须避免地震作用是‘一个非常强风’这个陷阱,从而地震的诱发作用可以由设计中能得到缓解。 设计师的设计观念必须考虑建筑物是一个有时会产生不安和不确定的东西。虽然这对任何新的挑战都是可以理解的一个共同的特点,但通常会找错对象。有效的抗震设计方法经常这样在不偏离效果设计的方案中容易被简化。事实上,与很少被地震产生的土地的运动有关的高度不确定证明那时往往用复杂的分析技术也没有高水平的复杂设计。一个好的地震工程设计,是一个地方的设计师以建筑物的影响作用作为控制建设的指标。要达到这个目标,选择最好的对策模式,选择区非弹性变形可能会导致建筑物倒塌,这些都是可以接受的和压制发展的不良反应模式。 2 、抗震设计-概念性审查 现代抗震设计在1920年和1930年的起源。当时的抗震设计,通常涉及到的应用10 %的建设体重作为对结构的一个侧向力,统一适用了高度的建设。事实上,到了1960年,强地面运动accelerographs的说法才变得更为普遍。这些文书记录地面运动所产生的地震。当和强震动记录仪一起使用时,它可以安装在不同的层次建筑物本身,当他们受到真正的地震地面运动,才成为可能衡量和理解的运动对建筑物的影响。 用实际地震动记录作为输入到最近研发无弹性整合时程分析软件包,那么,许多先前代码没有足够的实力来抵御设计水平地震体验过重大损失的建筑物的 设计变得明显。然而,观测表明,使用中的建筑物情况表明,这种缺乏实力当他们受到了严重的地震袭击甚至严重损害时,并不一定会导致建筑物破坏。提供了

相关主题
文本预览
相关文档 最新文档