当前位置:文档之家› 专题7 泰勒公式及其应用

专题7 泰勒公式及其应用

专题7  泰勒公式及其应用
专题7  泰勒公式及其应用

泰勒公式的应用精选

泰勒公式及其应用 摘要

文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()! 1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()! 1()(++-+n n x x n f ξ ξ在x 和0x 之间的一个数,该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 ! 2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项

泰勒公式word版

第三节 泰勒公式 教学目的:使学生了解泰勒公式,并会求简单函数的泰勒展开式。 教学重点:函数的泰勒展开式 教学过程: 多项式是函数中最简单的一种,用多项式近似表达函数是近似计算中的一个重要内容,在§2、8中,我们已见过:x n x x e x x x x 1 1)1(,1,sin 1+ ≈++≈≈ 等近似计算公式,就是多项式表示函数的一个特殊情形,下面我们将推广到一个更广泛的、更高精度的近似公式。 设)(x f 在0x 的某一开区间内具有直到)1(+n 阶导数,试求一个多项式 n n n x x a x x a x x a a x P )()()()(0202010-++-+-+= (1) 来近似表达)(x f ,并且)(x P n 和)(x f 在0x 点有相同的函数值和直到n 阶导数的各阶 导数,即:)()(,),()(),()(),()(0)(0) (000000x f x P x f x P x f x P x f x P n n n n n n =''="'='= 。 下面确定)(0x P n 的系数n a a a ,,10,通过求导,不难得到 ) (!),(321),(21),(1),(0) (03020100x f n a x f a x f a x f a x f a n n =?'''=???''=??'=?= ? n n n x x n x f x x x f x x x f x f x P )(! )()(!2)())(()()(00)(200000-++-''+-'+= (2) 这个)(x P n 即为所求。 Taylor 中值定理:如果函数)(x f 在0x 的某区间),(b a 内具有直到)1(+n 阶的导数,则当),(b a x ∈时,)(x f 可表示为)(0x x -的一个多项式)(x P n 和一个余项)(x R n 之和: ) ()(! )()(!2)())(()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的 关键词:泰勒公式的验证数学开题报告范文中国开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。 3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极

限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8 学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:2010年12月— 2011 年4 月 3.第一阶段:初期(2010年12月1日- 2011年3月15 日) 第二阶段:中期(2011年3月16 日- 2011年4月15日)第三阶段:结题(2011年4月16日- 2011年4月30日)

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

泰勒公式及其应用

目录 摘要 (1) 英文摘要 (2) 第一章绪论 (3) 第二章泰勒公式 (5) 1.1泰勒公式的意义 (5) 1.2泰勒公式余项的类型 (5) 1.3泰勒公式 (6) 第三章泰勒公式的实际应用 (7) 2.1利用泰勒公式求极限 (7) 2.2利用泰勒公式进行近似计算 (8) 2.3在不等式证明中的应用 (9) 2.4泰勒公式在外推上的应用 (10) 2.5求曲线的渐近线方程 (11) 2.6泰勒公式在函数凹凸性及拐点判断中的应用 (13) 2.7在广义积分敛散性中的应用 (14) 2.8泰勒公式在关于界的估计 (15) 2.9泰勒公式展开的唯一性问题 (15) 结束语 (16) 致谢 (17) 参考文献 (18)

第一章 绪论 近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式 ()20000000()()()()()()()(),1!2!! n n n f x f x f x T x f x x x x x x x n '''=+-+-++- 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即 ()200000000()()()()()()()()(()).2!! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证

泰勒公式

第三节 泰勒公式 对于一些比较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达. 多项式函数是最为简单的一类函数,它只要对自变量进行有限次的加、减、乘三种算术运算,就能求出其函数值,因此,多项式经常被用于近似地表达函数,这种近似表达在数学上常称为逼近. 英国数学家泰勒(Taylor. Brook, 1685-1731)在这方面作出了不朽的贡献. 其研究结果表明: 具有直到1+n 阶导数的函数在一个点的邻域内的值可以用函数在该点的函数值及各阶导数值组成的n 次多项式近似表达. 本节我们将介绍泰勒公式及其简单应用. 内容分布图示 ★ 引言 ★ 多项式逼近 ★ 泰勒中值定理 ★ 例1 ★ 例2 ★ 例3 ★ 常用函数的麦克劳林公式 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 ★ 返回 内容要点: 一、问题:设函数)(x f 在含有0x 的开区间(a , b )内具有直到1+n 阶导数, 问是否存在一个n 次多项式函数 n n n x x a x x a x x a a x p )()()()(0202010-++-+-+= (3.1) 使得 )()(x P x f n ≈, (3.2) 且误差)()()(x p x f x R n n -=是比n x x )(0-高阶的无穷小,并给出误差估计的具体表达式. 二、泰勒中值公式 200000)(! 2)())(()()(x x x f x x x f x f x f -''+-'+=)()(!)(00)(x R x x n x f n n n +-++ (3.6) 拉格朗日型余项 10)1()()! 1()()(++-+=n n n x x n f x R ξ (3.7) 皮亚诺形式余项 ].)[()(0n n x x o x R -= (3.9) 带有皮亚诺型余项的麦克劳林公式 )(! )0(!2)0()0()0()()(2n n n x o x n f x f x f f x f +++''+'+= (3.12) 从公式(3.11)或 (3.12)可得近似公式

开题报告浅谈泰勒公式及其应用

附件 7 论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告 论文(设计)题目 浅谈泰勒公式及其应用 系(院) 数学系 专业班级 数学与应用数学 B1002 学科 理学 学生 姓名 马尚红 指导教师 姓名 马园媛 学号 1025809043 职称 讲师 一、选题的根据 ( 1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主 要参考文献等。 2、撰写要求: 宋体、小四号 。) 1. 选题的来源及意义 泰勒公式是数学分析中非常重要的内容, 是一个用函数在某点的信息描述其附近 取值的公式。如果函数足够光滑的话, 在已知函数在某一点的各阶导数值的情况之下, 泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中值。 泰勒公式还给出了这个多项式和实际的函数值之间的偏差。 泰勒公式的初 衷是用多项 式来近似表示函数在某点周围的情况。比如说,指数函数 e x 在x 0的 附近可以用以 2 3 n 下多项式来近似地表示: e x 1 x x x x 称为指数函数在 0处的 n 阶泰勒 2! 3! n! 展开公式。这个公式只对 0附近的 x 有用, x 离 0越远,这个公式就越不准确。实际 函数值和多项式的偏差称为泰勒公式的余项。对于一般的函数,泰勒公式的系数的选 择依赖于函数在一点的各阶导数值,这个想法的原由可以由微分的定义开始。微分是 函数在一点附近的最佳线性近似: f a h f a f ' a h o h ,其中 o h 是比 h 高 阶 的无穷小。 也就是说 f a h f a f ' a h,或 f x f a f ' a x a .注意到 f x 和 f ' a x a 在a 处的零阶导数和 一阶导数都相同。对足够光滑的函数,如果一个 多 项式在 a 处的前 n 次导数值都与函数在 a 处的前 n 次导数值重合,那么这个多项 式应 该能很好地近似描述函数在 a 附近的情况。对于多元函数,也有类似的泰勒公式。设 a,r 是欧几里得空间 RN 中的开球, f 是定义在 a,r 的闭包上的实值函数,并在 每一点都存在所有的 n 1次偏导数。这时的泰勒公式为:对所有, f x 1 f a x a x x a ,其中的 是多重指标 0 ! x n 1 泰勒公式也是大学数学中的一个重要知识, 由此本文将总结几种泰勒公式的证明 及其应用。其泰勒公式在近似计算,求极限,判断函数凸凹性等方面的应用,除此之 外,它还可应用于行列式,证明不等式,判断无穷级数、无穷积分的收敛性,求函数 导数的中值估计、求曲面的渐进线方程,高阶求导等等。 2. 国内外研究状况 其中的余项也满足不等式:对所有 n 1的 满足 x

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

洛必达法则泰勒公式

第三章微分中值定理与导数的应用 第二讲洛必达法则泰勒公式 目的1.使学生掌握用洛必达法则求各种类型未定式极限的方法: 2.理解泰勒中值泄理的涵: 3.了解汽沏&c。畀血("力,(1 +汙等函数的麦克劳林公式; 4.学会泰勒中值定理的一些简单应用. 重点1.运用洛必达法则求各种类型未泄式极限的方法: 2.使学生理解泰勒中值定理的涵. 难点使学生深刻理解泰勒中值左理的精髓. 一、洛必达法则 在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无 穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷 大之比的极限称为未定式,并分别简记为0和8 ? 由于在讨论上述未圮式的极限时,不能应用商的极限运算法则,这或多或少地都会给未立式极限的讨论带来一是的困难?今天在这里我们应用导数的理论推出一种既简便又重要的未定 式极限的汁算方法,并着重讨论当2CI时,0型未左式极限的计算,关于这种情形有以下立理. 定理1设 (1)当时,函数了⑴及列对都若于零; ⑵在点金的某去心邻域,/⑴及^⑴都存在,且那⑴吐°;

也就是说,当zR⑴存在时,2。去⑴也存在,且等于M 也是无穷大.这种在一左条件下,通过分子分母分别求导,再求极限来 确圧未左式极限的方法称为洛必达(L‘ Hospita 1)法则. 下而我们给出定理1的严格证明: 分析由于上述泄理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值立理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理. 于是由条件⑴和⑵知,/⑴及应⑴在点虫的某一邻域是连续的.设兀是这邻域一点,则在以兀及 山为端点的区间上,函数/〔X)和F&)满足柯西中值龙理的条件,因此在兀和a之间至少存在一点密,使得等式 儿)川)-畑「心) 应G)吩)-吒)应?(站兀与么之间) 成立. 对上式两端求兀To时的极限,注意到XTQ时匸则 穷大时, 证因为求极限 与了⑷及用⑷的取值无关, 所以可以假左 lim 又因为极限 F'G)存在(或为无穷大),所以 故沱理1成立. lim 注若z m 0 ,, 戸倉)仍为6型未左式,且此时了抵)和用,⑴能满足泄理1中/⑴和用⑴ 5F〔X) 所要满足的条件,则可以继续使用洛必达法则先确立从而确总

泰勒公式及其应用

目录 摘要 (1) 英文摘要 (2) 第一章绪论 (3) 第二章泰勒公式 (5) 1.1泰勒公式的意义 (5) 1.2泰勒公式余项的类型 (5) 1.3泰勒公式 (6) 第三章泰勒公式的实际应用 (7) 2.1利用泰勒公式求极限 (7) 2.2利用泰勒公式进行近似计算 (8) 2.3在不等式证明中的应用 (9) 2.4泰勒公式在外推上的应用 (10) 2.5求曲线的渐近线方程 (11) 2.6泰勒公式在函数凹凸性及拐点判断中的应用 (13) 2.7在广义积分敛散性中的应用 (14) 2.8泰勒公式在关于界的估计 (15) 2.9泰勒公式展开的唯一性问题 (15) 结束语 (16) 致谢 (17) 参考文献 (18)

泰勒公式及其应用 (河南城建学院数理系河南平顶山 467044) 摘要 泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具, 它的用途很广泛.本文详细介绍泰勒公式及其应用在数学领域上的几个应用作论述.文章除了对泰勒公式在常用的近似计算、求极限、不等式的证明、外推和求曲线的渐近线方程上作解求证明外,特别地,泰勒公式还对函数凹凸性及拐点判断、广义积分敛散性中的应用、界的估计和展开的唯一性问题这4个领域的应用做详细的介绍. 关键词泰勒公式佩亚诺余项拉格朗日余项

Abstract Taylor’s formula is the mathematical analysis of the important part, it has become a research function theory method and estimat-ed error limit of the indispensable tools such as a concentrated exp -ression of the calculus, “approximation” of the essence, which is the value of the Calculus theorem is also of high order derivative function of an important tool for state, its use is very wide. This paper introduces the Taylor formula and its applications in mathema -tics for discussion on several applications. In addition to Taylor’s article in the commonly used approximation formula, find the limit, Inequality, extrapolation, demand curve equation and determine the asymptotic line on the Convergence of Solutions of applications as shown, in particular, the Taylor formula also Convexity and the in flection point of the function to judge, Generalized Integral Converg -ence application, industry estimates and launched the only problem the application of these four areas a detailed introduction. Keywords:Taylor formula,Peano remainder,Lagrange Remainder

第四节-泰勒级数与幂级数

第四节 泰勒级数与幂级数 教学目的:理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;了解幂级数在其收敛区间的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间的和函数,并会由此求出某些常数项级数的和;了解函数展开为泰勒级数的充分必要条件、掌握,sin ,cos x e x x ,ln(1)x +和(1)x α +的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 教学重点 :幂级数的收敛半径、收敛区间及收敛域;,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式。 教学难点:幂级数的收敛域及和函数。 教学时数:4 教学容: 一、函数项级数的概念 1.函数项级数的定义 定义:设函数()(1,2,3 )n u x n =都在D 上有定义,则称表达式 1 2 1 ()()()n n u x u x u x ∞ ==++ ∑ 为定义在D 上的一个函数项级数,() n u x 称为通项,1 ()()n k k S x u x ∞ ==∑称为部分和函数. 2.收敛域 定义:设 1()n n u x ∞ =∑是定义在D 上的一个函数项级数,0 x D ∈,若数项级数01 ()n n u x ∞ =∑收敛, 则称0x 是 1 ()n n u x ∞ =∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域. 3.和函数 定义:设函数项级数 1 ()n n u x ∞ =∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得 1 ()()n n S x u x ∞ ==∑成立.定义域为I 的函数()S x 称为级数1 ()n n u x ∞ =∑的和函数. 二、幂级数 1.幂级数的定义

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

(完整版)泰勒公式及其应用(数学考研)

第2章 预备知识 前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的. 给定一个函数)(x f 在点0x 处可微,则有: )()()()(000x x x f x f x x f ?+?'+=?+ο 这样当1<

泰勒公式及其应用

泰勒公式及其应用 [摘 要] 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题, 即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值. [关键词] 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 1 引言 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识 定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有 '''200000()() ()()()()1!2! f x f x f x f x x x x x =+-+-+ ()000() ()(())! n n n f x x x o x x n +-+- (1) 这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式. 当0x =0时,(1)式变成)(! )0(!2)0(!1)0()0()()(2'''n n n x o x n f x f x f f x f +++++= ,称此式 为(带有佩亚诺余项的)麦克劳林公式.

定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则 ''()' 2 0000000()()()()()()()...()()2!! n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里 ()n R x 为拉格朗日余项(1)10() ()()(1)! n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒 公式. 当0x =0时,(2)式变成''()' 2(0)(0)()(0)(0)...()2!! n n n f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式: 12)! 1(!!21+++++++=n x n x x n e n x x x e θ . )()! 12()1(!5!3sin 221 253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)! n n n x x x x x o x n =-+-++-+ . )(1 )1(32)1ln(11 32++++-+-+-=+n n n x o n x x x x x . )(111 2n n x o x x x x +++++=- +-+ +=+2 ! 2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用 学生姓名: 学号: 专业:数学与应用数学 班级: 指导教师: 完成日期:2012年 5月20日

泰勒公式及其应用 内容摘要 本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用. 通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础. 关键词:泰勒公式 Lagrange余项 Peano余项应用

The Taylor Formula and The Application Of Taylor Formula Abstract This paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula. By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference. Key Words:Taylor formula Lagrange residual term Peano residual term application

相关主题
文本预览
相关文档 最新文档