当前位置:文档之家› 中药对运动大鼠抗疲劳能力及脑自由基的影响

中药对运动大鼠抗疲劳能力及脑自由基的影响

中药对运动大鼠抗疲劳能力及脑自由基的影响
中药对运动大鼠抗疲劳能力及脑自由基的影响

曲阜师范大学

硕士学位论文

中药对运动大鼠抗疲劳能力及脑自由基的影响

姓名:刘素珍

申请学位级别:硕士

专业:运动人体科学

指导教师:郭成吉

20080401

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

动物跑台运动

跑台运动促进幼龄大鼠学习能力 娄淑杰**,*,刘瑾彦**,杨若愚,陈佩杰 上海体育学院运动人体科学系,运动分子生物学研究中心,上海 200438 摘要:为了探讨跑台运动对幼龄大鼠学习能力的影响,实验采用5周龄Sprague-Dawley大鼠,随机分为安静对照组和跑台运动组,其中跑台运动组大鼠以低强度进行为期一周的跑台运动;然后使用Morris水迷宫,对两组大鼠的定位航行和空间探索能力进行分析。在定位航行实验中,运动组大鼠寻找到平台的潜伏期明显短于对照组(P<0.05); 并且随着训练次数的增加,运动组大鼠的游泳速度明显高于对照组(P<0.01);另外,运动轨迹的弯曲度表明运动组大鼠还表现出了较强的寻找平台的动机以及对平台位置较为准确的空间定位能力。在空间探索实验中,两组大鼠的游泳速度并没有明显差异,从大鼠在各象限内穿越平台相应位置的次数来看,运动组大鼠在D象限穿越的次数高于对照组,但无统计学差异(P>0.05)。上述结果提示,低强度的跑台运动在短时间内便可以明显提高幼龄大鼠的学习能力。 学习是神经系统接受外界环境信息的刺激而获得新行为、新习惯的过程,记忆则是指获得的信息或经验在脑内储存、加工和提取的过程。对人而言,学习记忆能力是影响认知水平的重要因素。因此,有关脑的学习记忆过程及其机制一直都是神经科学研究的重点。但无论是在形态学方面还是行为学方面,报道的结果大都是以损伤或药物干预作为处理所获得 [1-3]。运动对于人体健康的促进作用是众人皆知的,如可促进和维持骨骼、肌肉、心血管系统的功能等。最近几年,把运动作为一种手段研究其对脑功能的影响也日益受到人们的关注。就学习记忆功能而言,研究报道已有很多,但结果不尽相同。如van Praag 等人研究了跑转笼运动对成年小鼠海马区神经再生以及学习和记忆功能的影响,其中的行为检测结果显示,经过转轮运动训练的成年小鼠比未经运动训练的小鼠表现出较强的学习能力 [4]。另外,Kramer等的人体实验也表明,一些先前从不运动的老年人通过步行运动,其思维能力如计划、安排和工作记忆力都相应有所改善[5]。而在Rhodes 等人的研究中,运动训练后的小鼠并没有表现出较强的空间学习记忆能力[6]。这些研究的共同之处,是研究对象均为已发育成熟的成年动物或人。而且,关于衰退期学习记忆障碍的研究报道居多[7,8],对于发育早期学习记忆能力的探讨则未见报道。有关神经系统可塑性和神经发育的研究认为,幼年期的神经发育,部分决定了成年期大脑的结构和功能,大脑在某个特殊时期接受信息的种类和数量,影响着神经元之间突触连接的密度和效率 [9]。鉴于此,本文针对运动对生命早期脑学习记忆功能的影响开展了研究,以探讨运动这一正常的生理活动在脑发育中的作用,为探讨生命早期的运动对日后成年乃至老年时期脑健康的影响提供实验依据。 1 材料与方法 1.1 实验对象健康雄性5周龄Sprague-Dawley大鼠30只,购于上海第二军医大学动物中心,平均体重为(110.05±7.91) g。将其随机分为安静对照组和跑台运动组,每组15只。分笼饲养,每笼 5只,自由饮食,光照时间7:00~19:00,饲养环境温度(20±2)°C,相对湿度45%~55%。

两种运动方式对生长期大鼠骨密度的影响

生命早期获得大量的骨质是预防生命后期骨质疏松性骨折的关键因素.青春期开始后性激素是增加骨质的最重要的因素[1].尽管基因影响骨质,其他因素如营养、运动对骨质的获得存在积极或消极的作用[2,3,4,5].身体活动增加儿童和青少年骨质比成人多已得到确认.跑步和力量训练对年轻人和动物模型的骨质的影响已经得到广泛的证实[6,7,8].但是,为了更好的理解不同运动训练对骨质的影响,需要比较不同运动计划最大化预防骨质疏松[9,10,11].大鼠是研究运动对骨组织影响的最佳模型. 研究目的是比较3周(每周3天)抗阻训练和跑台运动(每天1小时,每周3天)对生长期大鼠股骨骨密度的影响.运动开始后5个月检测大鼠股骨,证实骨质的获得.使用雄性大鼠是因为避免像雌性大鼠因激素变化影响骨结构.1方法 1.1 动物 30只雄性Wistar大鼠随机分为3组:力量训 练组(SE,n=10),跑步组(RE,n=10)和对照组(C,n=10).实验过程中,所有大鼠随意饮食.开始和处死后称取体重.腹膜内过量戊巴比妥处死大鼠.大鼠12小时光照循环,运动计划在白天进行.每天同一时间进行运动.2 实验过程 2.1跑步训练 3月龄大鼠,RE组大鼠在电动跑台上运动,每 天1小时,每周3天.跑台的起始速度为4m·min-1,逐渐增加到16m·min-1.C组大鼠放置在固定炮台上,每天10分钟.2.2 力量训练 3月龄大鼠,SE组大鼠尾部负重爬1.1米垂直 梯(坡度为80°)[12] .每天1次,每周3天.完成8组 训练,共15个月.每组训练包括6次爬梯.每组运动的负重逐渐增加.5周后,最大负重达到大鼠体重的50%.在8月龄时,运动后5个月,处死大鼠,切取右后肢切除肌肉和其他组织,股骨用于分析研究.股骨浸入水中,用体积描记法获得股骨体积[13].重复测量3次,取平均值用于计算骨密度.2.3 BMD测定 双能X线吸收仪测量BMD,配备小动物专用软件.其可靠性和精确性得到很多的研究证实[14,15,16].3 统计分析 统计学显著性评价使用ANOVA和posthocNewman-Keuls’test,P值小于0.05具有显著性.4结果 4.1 运动对体重的影响 通常,运动能诱导体重显著降低.但是,大鼠在 处死时,运动组大鼠体重与对照组相比没有显著差 两种运动方式对生长期大鼠骨密度的影响 李 靖 (巢湖学院 体育系,安徽 巢湖238000) 摘 要:研究目的是检验比较力量训练与跑步对生长期大鼠骨密度(BMD )增加的影响.10只3月龄 雄性Wistar 大鼠分为跑步组 (R E ),每天1小时,每周2天,电动跑台上以16momin -1,每周3天.10只大鼠分为力量训练组(SE ),每周3天,尾部负重,爬1.1m 垂直(倾斜角度80°)梯.两组训练保持5个月,所有大鼠在8个月时处死.10只大鼠不进行运动作为对照组.处死后收集大鼠右股骨,用双能X 线吸收仪测定股骨的骨密度.BMD 测量结果显示运动诱导BMD 显著增加, 8月龄R E 组与C 组和SE 组相比(P<0.05).SE 组和C 组的BMD 没有差异(P>0.05).总之,跑步而不是力量训练对生长期大鼠的股骨颈BMD 有积极的影响.实验结果显示运动在预防骨质疏松性骨折中可能起治疗作用. 关键词:身体活动;骨质;股骨;生长期大鼠中图分类号:G804.2 文献标识码:A 文章编号:1673-260X (2012)06-0199-03 Vol.28No.6 Jun.2012 赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )第28卷第6期(下) 2012年6月199--

超氧阴离子清除实验

·O2ˉ自由基清除实验 (1) 实验原理 黄嘌呤氧化酶 黄嘌呤+H2O+O2尿酸+H2O2+·O2ˉ 即黄嘌呤氧化酶在有氧条件下催化黄嘌呤转化为尿酸,同时产生超氧阴离子自由基(·O2ˉ)。·O2ˉ与NBT结合后呈蓝色,样品清除能力越大,与NBT结合的·O2ˉ越少,溶液的颜色越浅。 (2)试剂 Xanthine(黄嘌呤): (C5H4N4O2 ), MW=152.1, 6.084mg/100mL(0.4mmol/l) 实际配制:1.216mg/10mL,与NBT等体积混合使用 Xanthine oxidase(黄嘌呤氧化酶)贮液: 1 unit/mL , (溶解酶的溶液要高压灭菌!防止蛋白酶对酶的降解!) 0.05 unit/mL,每次取200uL稀释到4mL(PBS溶解) NBT: (Nitro blue tetrazolium chloride氯化硝基四氮唑蓝), MW=817.65, 黄色19.6236mg/100mL(0.24mmol/l) 实际配制3.925mg/10mL,与Xanthine等体积混合使用 PBS(0.01mol/L,pH=8.0): NaCl 8g, KCl 0.2g, Na2HPO4(无水) 1.44g, KH2PO4 0.24g, 800mL水,用NaOH(1M)调pH到8.0,定容到1000mL。 实际配制500mL。高压灭菌,室温保存。 PBS(0.01mol/L,pH=7.4): 配制同上 Ascorbic acid: MW=176.12 母液为1mg/mL 先两倍逐级稀释5个浓度 实际配制见记录本! HCl(1M): MW=36.5 310ul/10ml.(36% HCl密度1.18g/ml) 实际配制:800uL浓盐酸+9mL水,于塑料管中4℃保存。 NaOH(1M): MW=40 0.4g/10mL, 存于冰箱 (3) 测定方法 超氧阴离子自由基清除能力的测定参照Bae等人的方法略加改进。样品溶液1-5mg/ml 起始浓度,用于水或50%乙醇溶液。 Bae, S.W., Suh, H.J., 2007. Antioxidant activities of ve different mulberry cultivars in Korea.

强制性运动训练对脑梗塞大鼠运动功能和记忆能力的影响

强制性运动训练对脑梗塞大鼠运动功能和记忆能力的影响 发表时间:2016-12-28T11:07:11.520Z 来源:《健康世界》2016年第23期作者:唐艳[导读] 脑梗塞是一种多发于中老年人群的神经系统疾病,其发病率随年龄增长而增高。 台州恩泽医疗中心(集团)台州医院康复医学科 317000 摘要:目的:观察强制性运动训练对脑梗塞模型大鼠运动功能和记忆能力的影响。方法:共选取50只大鼠,制作成动物模型,将制模成功的50只大鼠随机分为运动组和对照组。运动组通过石膏固定健侧前肢,从而强制大鼠使用患侧肢体,每天进行半小时爬坡训练;对照组制模后未给予特殊处理。分别于造模后第二天及训练2周后,对两组大鼠进行肌力测验、平衡木行走试验及水迷宫试验。结果显示两组大 鼠训练前无显著差异,训练2周后,与对照组比较,肌力测验、平衡木行走试验及水迷宫试验均有改善 (P<0.05)。结论:强制性运动训练可改善脑梗塞大鼠运动功能及记忆能力。 关键词:强制性运动;脑梗塞;运动功能;记忆能力 脑梗塞是一种多发于中老年人群的神经系统疾病,其发病率随年龄增长而增高,尤其遗留的后遗症给患者日常生活及工作均带来严重影响。大量临床研究发现[1,2],运动训练对各种神经退行性疾病均有一定疗效。本研究通过对脑梗塞模型大鼠给予强制性运动训练(con—straint—induced movement therapy,CIMT),观察该疗法对脑梗塞大鼠运动功能及记忆能力的影响,从而为临床应用CIMT治疗脑梗塞患者提供参考依据。现报道如下。 1 材料与方法 1.1实验动物 共选取健康大鼠50只,5月龄,雌雄各半,质量250~300g。 1.2脑梗塞模型制作 材料:制备插线选用进口的高碳素钓鱼线,直径为0.20-0.28mm,长度 4cm左右,在前端用细砂纸磨钝并沾上蜡,防止插漏血管,并在距离前端 18mm 处作标记,标记后的鱼线用生理盐水浸泡备用。 模型制备:实验动物以10% 的水合氯醛(0.32ml/100g )腹腔麻醉后,仰卧固定于手术台上,颈部正中切开皮肤及浅筋膜,钝性分离胸锁乳突肌与胸骨舌骨肌,暴露颈总动脉与迷走神经,在颈总动脉近心端结扎,结扎颈外动脉,电凝联系颈外动脉与颈内动脉之间的动脉,在颈内动脉穿线备用,在颈总动脉结扎的上端距离颈总动脉分叉处剪一小口,用制备好的鱼线沿颈总动脉插入颈内动脉,当到达指定长度(18mm左右)时结扎颈内动脉。在插线的过程中要注意手感,当遇到阻力时,不要用蛮劲插入,当鱼线弯曲时要更换,手法要轻柔,迅速,动物清醒后,观察大鼠的行为和神经症状。 方法:对大鼠进行神经病学分级:分级标准如下:0 分: 无神经功能缺损; 1 分: 前肢出现任何屈曲成分( 即提尾悬空实验阳性) , 不伴其他不正常; 2 分: 侧推抵抗力下降( 即侧向推力实验阳性) , 伴前肢屈曲,无转圈行为; 3 分: 同2 级行为, 伴自发性旋转( 自由活动时向瘫痪侧划圈)。选择Ⅲ级及以上模型大鼠进行试验。 1.3动物分组处理 将制模成功的大鼠随机分成对照组和运动组各25只,并将运动组大鼠右侧肢体(即健侧前肢)固定于石膏中,固定时使健侧前肢相对于胸骨呈自然屈曲状态,迫使大鼠使用对侧前肢(即患侧前肢)活动,固定时间持续2周;对照组大鼠制模后未给予特殊处理。2组大鼠均被安置在透明、含有木屑的有机玻璃笼内喂养,每笼4~5只,自然昼夜节律光照,期问自由摄食、饮水。 1.4运动功能与记忆能力检查 分别在术后第2天和第15天对大鼠进行平衡木行走试验、肌力测验及水迷宫试验。 1.4.1 平衡木行走试验(beam walking test) 平衡木长80cm,宽2.5cm,平放在距离地面高10cm处。按Feeney的记分标准,0分:穿过平衡木,不会跌倒;1分:穿过平衡木,跌倒机会少于50%;2分:穿过平衡木,跌倒机会大于50%;3分:能穿过平衡木,但受累的瘫痪侧后肢不能帮助向前移动;4分:不能穿过平衡木,但可坐在上面;5分:将大鼠放在平衡木上会掉下来。 1.4.2 肌力测验双侧前爪抓握(bilateral forepaws grasp) 用直径0.15mm铁丝绳,长46cm,置于距地面70cm高度上,其下放高3. 5cm泡沫箱。将大鼠两个前爪放在绳上,放开,记录大鼠在绳上的时间。0分:挂在绳上0~2s;1分:挂在绳上3s~4s;2分:挂在绳上5s;3分:挂在绳上5s,将后腿放在绳上。 1.4.3 水迷宫试验 水迷宫试验的圆形水池直径120cm,深45cm,盛满室温水,加入奶粉使之变浑浊。在圆池1/4象限水平面下2cm隐藏一平台。每天进行8次水迷宫训练,每次训练1个象限中的1个起点 ,让大鼠找到平台并爬上去,待其在平台上休息15 s后,再将它放在第2个预先随机确定的起点进行训练。如果120s内找不到平台由试验者用引导棒引导大鼠到平台.正式试验过程中, 超过120s仍找不到平台者记为120s.每次训练后用干毛巾将小鼠擦干以防止低体温造成的应激,记录大鼠游泳找到平台的潜伏时间。 1.5统计学分析 本研究所得数据以( ±s)表示,选用t检验,P<0.05表示差异具有统计学意义。 2 结果 两组大鼠在第2天测试结果显示数据无显著差异,训练后差异显著(P<0.05)。 2.1两组大鼠运动功能检查结果比较(见表1、表2) 对2组大鼠行为学检查结果比较后发现,两周后运动组大鼠自主活动较对照组增多,自主觅食能力明显增强,活动范围增大;运动组大鼠平衡木行走试验跌倒次数(0.0±0.0)显著少于对照组(0.2±0.45),肌力测试评分(3.0±0.00)明显高于对照组(1.8±0.84),组间差异均具有统计学意义(P<0.05)。

氧自由基与氧自由基清除剂依达拉奉

氧自由基与氧自由基清除剂依达拉奉 山东大学齐鲁医院麻醉科(250012)于金贵 一、氧自由基 (一)自由基的概念 自由基(free radical,FR)是指外层轨道上有未配对电子的原子、原子团、分子或离子的总称。因其含有未配对的电子,故化学性质非常活泼,极易与其生成部位的其他物质发生反应,而这种反应的最大特点是以连锁反应的形式进行。氧原子上有未配对电子的自由基称为氧自由基。人体吸入的分子氧,在正常状态下绝大多数(98%)都连接4个电子,它们最终与H+结合,代谢还原为H2O。但有极少数氧(1~2%)在代谢过程中被夺去或接受一个电子而形成活性氧,即氧自由基。 (二)氧自由基的生理作用 氧自由基在生理上是必需的物质,如合成ATP 和前列腺素、中性粒细胞杀灭细菌、酸性粒细胞杀灭寄生虫等过程都必须有氧自由基参与。氧自由基在体内的生成与清除保持动态平衡,且在体内存在时间甚短。由于其化学性极强,反应剧烈,过量产生会对机体造成极大危害。 (三)氧自由基的种类及其作用

1. 超氧化物阴离子:氧自由基连锁反应的启动者,使生物膜、激素和脂肪酸过氧化。 2. 羟自由基(OH∙):作用最强的自由基,可破坏氨基酸、蛋白质、核酸和糖类。 3. 过氧化氢(H2O2):过渡型氧化剂,主要使巯基氧化,可氧化不饱和脂肪酸。 4. 单线态分子氧(1O2):氧分子的激发状态,亲电子性强,在光作用下可由O2直接产生,对细胞有杀伤作用。 5. 其他含氧的自由基如脂质过氧化物(ROOH):易于分解再产生自由基,腐化脂肪,破坏DNA,可与蛋白质交联使之形成变性交聚物。 (四)机体抗氧化机制 机制一:直接提供电子,以确保氧自由基还原;机制二:增强抗氧化酶的活性,以有效地消除或抵御氧自由基的破坏作用如酶类抗氧化剂超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX);非酶类抗氧化剂如维生素E、维生素C、辅酶Q、还原型谷胱甘肽(GSH)、葡萄糖、含硫氨基酸和不饱和脂肪酸等。 SOD多存在于细胞的线粒体内,作用是将氧自由基歧化,将其一半转变成H2O,另一半转变成O2,从而清除氧自由基。CAT是血红蛋白酶类之一,作用是分解H2O2,并将其清除之。

自由基清除剂

第五章自由基清除剂 本章要点 1.自由基理论的产生机理及来源 2.自由基对机体活动的影响 3.自由基清除剂的基本概念 随着生命科学的飞速发展,英国人Harman于1956年提出了自由基学说。该学说认为,自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因,其中的观点被越来越多的实验所证明。 自由基(Free radical)是人体生命活动中各种生化反应的中间代谢产物,具有高度的化学活性,是机体有效的防御系统,若不能维持一定水平则会影响机体的生命活动。但自由基产生过多而不能及时地清除,它就会攻击机体内的生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 近年来,国内外对自由基及自由基清除剂的研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂的研究报道,自由基清除剂作为功能性食品的重要原料成分之一,通过人们日常消费的食品来调节人体内自由基的平衡,已受到食品营养学家的广泛重视。 第一节自由基理论 一、自由基的产生机理及来源 自由基又叫游离基,它是由单质或化合物的均裂(Homdytic Fission)而产生的带有未成对电子的原子或基团。它的单电子有强烈的配对倾向,倾向于以各种方式与其他原子基团结合,形成更稳定的结构,因而自由基非常活泼,成为许多反应的活性中间体。 人体内的自由基分为氧自由基和非氧自由基。氧自由基占主导地位,大约占自由基总量的95%。氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)和单线态氧(1O2)等,它们又统称为活性氧(reactive oxygen species,ROS),都是人体内最为重要的自由基。非氧自由基主要有氢自由基(H·)和有机自由基(R·)等。 (一)自由基的产生 人体细胞在正常的代谢过程中,或者受到外界条件的刺激(如高压氧、高能辐射、抗癌剂、抗菌剂、杀虫剂、麻醉剂等药物,香烟烟雾和光化学空气污染物等作用),都会刺激机体产生活性氧自由基。 人体内酶催化反应是活性氧自由基产生的重要途径。人体细胞内的黄嘌呤氧化酶、髓过氧化物酶和NADPH氧化酶等在进行酶促催化反应时,会诱导产生大量的自由基中间产物。除酶促反应外,生物体内的非酶氧化还原反应,如核黄素、氢醌、亚铁血红素和铁硫蛋白等单电子氧化反应也会产生自由基。外界环境,如电离辐射和光分解等也能刺激机体产生自由基反应,如分子中的共价键均裂后即形成自由基。 自由基反应包含3个阶段,即引发、增长和终止阶段。反应之初,引发阶段占主导地位,反应体系中的新生自由基形成许多链的开端,反应物浓度高。引发后的扩展阶段为反应的主体,若起始有几个引发自

帕金森病大鼠模型常用行为学实验研究进展

龙源期刊网 https://www.doczj.com/doc/774808171.html, 帕金森病大鼠模型常用行为学实验研究进展作者:倪锡森龙金瑶陈剑浩陈晓婧 来源:《教育周报·教育论坛》2018年第09期 【摘要】动物行为学的研究对象包括动物的沟通行为、情绪表达、社交行为、学习行为等。由于动物行为学对于动物学习和认知等方面的研究,它已经被广泛地运用于各类动物实验。本文结合相关文献,就近年来关于帕金森病动物行为学实验作一综述,为相关研究作参考。 【关键词】帕金森病;动物行為学;模型 帕金森病(Parkinson'sdisease,PD)是较为常见的中枢神经系统疾病,它是以运动减少、肌肉强直和静止性震颤为主要症状,其病理改变主要为黑质的纹状体多巴胺(dopamine,DA)能神经元退行性病变,纹状体DA递质减少,细胞内嗜酸性路易小体(Lewybody,LB)形成[1]。在探究PD的真正治病机理和更多有效药物治疗的过程中,动物实验已经成为不可或缺的一部分,而因为造模成功的大鼠行为往往与临床PD患者的特殊行为互相对应,所以实验中往往通过多种行为学方法进行PD大鼠的行为学障碍的检测,来判断造模的成功与否。本文结合相关文献,就近年来关于PD大鼠模型行为学实验方法作一综述,为相关研究作参考。 1检测大鼠协调运动能力 APO诱导旋转实验:分别在术后7d、14d、21d给予APO(0.5mg/kg,SC)诱导大鼠旋转,观察在安静宽敞的环境下大鼠的行为学变化,取30min内旋转圈数≥210转的大鼠作为成 功的PD模型组。及给药后4周后每组大鼠腹腔注射APO0.15mg/kg,注射5min待大鼠稳定向左侧转圈后计数,以旋转360度为1次,共记录30min,观察各组大鼠30min旋转总圈数,用大鼠旋转圈数差值比(K值)表示各组大鼠行为学改善程度,K值=(干预后旋转圈数-干预前旋转圈数)/干预前旋转圈数。 APO诱发的大鼠旋转实验是目前PD模型主要的评价方法,大鼠给予APO激动D2受体以后会出现向健侧旋转的现象,通过观察大鼠的旋转次数和协调能力的变化帮助评定PD模型的成功与否,旋转次数的增加和协调运动能力的降低与多巴胺能神经系统功能障碍密切相关[2]。 2检测大鼠空间记忆能力 Morris水迷宫实验:每次实验时把大鼠从其中一个区域面朝池壁放入水池中,由于大鼠的求生本能,大鼠将在水池内游泳直到找到隐藏在水面下的平台为止。每次训练时间一般为60s 或120s,找到平台后允许大鼠在平台上滞留5~10s。如果大鼠未在规定时间内找到平台,则实验者帮助其找到平台并在平台上滞留10~30s。每次训练间隔时间为30s左右,每只大鼠每

清除氧自由基

1、超氧负离子 黄嘌呤-黄嘌呤氧化酶系统产生超氧负离子产生超氧负离子 黄嘌呤、黄嘌呤氧化酶、 清除超氧自由基负离子O2- 徐艳,曲婷婷. 甘草消除氧自由基的体外研究[J]. 食品研究与开发,2006,(8). 2、1.2.2NBT 光还原反应中主要试剂的配制 1.2.2.1 测试缓冲液: 0.026 mol/LMet- 磷酸钠缓冲液具体配制方法: 首先配制0.1 mol/LpH7.8Na2HPO4- NaH2PO4缓冲液 a 称取Na2HPO4·12H2O( MW=358.14) 3.581 4 g 于100 mL 小烧杯中, 加少量蒸馏水溶解后, 移入100 mL容量瓶中, 用蒸馏水定容至刻度。 b 称取NaH2PO4·2H2O(MW=156.01)0.780 g 于50 mL小烧杯中, 加少量蒸馏水溶解后, 移入50 mL 容量瓶中, 用蒸馏水定容至刻度。 c 量取91.5 mL a 液与8.5 mL b 液混合后, 该液即为0.1 mol/LpH7.8 磷酸钠缓冲液。 d 称取L- Met( MW=149.2) 0.194 1 g 于50 mL 小烧杯中, 用少量0.1 mol/LpH7.8 磷酸钠缓冲液溶解后, 移入50 mL 容量瓶中, 用0.1 mol/LpH7.8 磷酸钠缓冲液定容至刻度。 1.2.2.2 NBT( 氯化硝基四氮唑蓝) 的配制(7.5×10-4mol/L) 称取NBT( MW=817.7) 0.061 3 g 于50 mL 小烧杯中, 用少量蒸馏水溶解后, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度。 1.2.2.3 核黄素溶液(2×10-5 mol/L) a.称取EDTA( MW=292) 0.002 92 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。 b.称取核黄素( MW=376.36) 0.073 5 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。合并 a 液和 b 液, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度( EDTA0.1 mmol,核黄素2 mmol)。贮于冰箱中, 避光保存, 用时稀释100 倍。 1.2.3 甘草提取物溶液的配制 1.2.3.1 甘草酸溶液的配制 称取甘草酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度, 即为 1 g/ mL 的甘草酸溶液。 1.2.3.2 甘草次酸溶液的配制 称取甘草次酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度,即为 1 g/mL 的甘草次酸溶液。 1.2.3.3 甘草总黄酮组溶液的配制

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

大鼠模型

将20只SD雄性大鼠随机分为对照组和实验组,以跑台 运动的方式,复制递增运动负荷至24m'min一`的4周60%一70%最大 摄氧量运动实验动物模型;提取右心室肌组织的全蛋白进行双向凝胶 电泳分离,运用ImageMasterZDPlatinum图像分析软件对2一DE胶进 行分析,选择差异表达上调5倍以上及下调至1/5以下的12个蛋白 质点作为备选目标蛋白质点,用串联飞行时间质谱蛋白质仪 (ULGRA王L一FLEx一TOF/TOF)进行质谱鉴定,以逆转录聚合酶链反 应(RT-PCR)对部分目标蛋白质的mRNA表达水平进行检测。 【】60%一70%最大摄氧量跑台运动对大鼠右心室肌蛋白质组差异表达的影响 目的:观察急性大强度跑台运动及低频电刺激后大鼠骨骼肌及血清/GⅢ表达的变化,探讨/GⅢ 与骨骼肌疲劳之间的关系!方法:?2 只雄性%Y 大鼠随机分为对照组#运动组和刺激组!运动组参照N)PQ’>P 方案进行一次大强度跑台运动,造成大鼠运动性疲劳;刺激组采用低频电刺激的方法诱发大鼠腓肠肌疲劳! U);&)>. =*’& 检测大鼠骨骼肌及血清/GⅢ的表达水平!结果:(!)与对照组相比,运动组大鼠比目鱼肌/GⅢ 的表达水平明显降低(! _I9I$),但趾长伸肌及血清/GⅢ的表达水平与对照组相比差异无统计学意义(! c I9I$)!(@)随刺激时间的延长,大鼠腓肠肌的肌张力峰&峰(LML)值逐渐降低,与刺激开始时相比,刺激!I0<. 即显著降低(! _I9I$);而疲劳指数(D4)则随刺激时间的延长逐渐增加,刺激AI0<. 时D4 高达$@9!A’左右!(?) 与对照组相比,刺激组大鼠腓肠肌/GⅢ的表达水平显著降低(! _I9I$),而比目鱼肌及趾长伸肌/GⅢ的表达 水平虽均有下降,但差异无统计学意义(! c I9I$) 大强度跑台运动及低频电刺激对大鼠骨骼肌及血清caⅢ表达的影响 大鼠跑台运动模型建立的研究进展陕西师范大学学报 目的跑台急性运动疲劳动物模型的建立及评价"方法选取清洁级雄性g-NO,> 大鼠%4 只( 5 周 龄) 作为实验对象"采用多级递增负荷跑台运动方案( 跑台坡度为&s,负荷分为三级) 建立一次性力竭跑台运动动 物模型"尾静脉取血,分别测定大鼠在安静!运动#& +-M!运动"& +-M!力竭!恢复#& +-M!恢

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

中等强度有氧运动大鼠环境应激的保护效应及其机制探讨

1研究目的 当压力增大时,人们对突发事件的处理能力降低、对环境的适应能力变差,这种应激是目前多种疾病的病因和诱因[1]。 研究发现,应激可引起一系列的脑功能障碍,如出现认知功能低下、情绪和行为异常等。此外,应激刺激还会诱发多种行为和状态的改变,如出现焦虑和抑郁状态、探究和攻击行为的改变、睡眠生物节律及活动量也有所影响等[2]。机体可通过激活神经内分泌系统的下丘脑-垂体-肾上腺皮质轴(hypothalamic-pituitaryadrenalaxis,HPA)和交感神经系统(sympatheticnervoussystem,SNS)两条信号通路对应激反应产生调控。 本实验通过观察大鼠运动训练后对外界损害性应激的各种行为学变化,并测定相关神经内分泌指标的改变,探讨中等强度有氧运动对大鼠应对外界损害性应激能力的影响及其机制,为人们通过运动锻炼增强应对突发事件及各种环境应激适应能力提供理论依据。2材料与方法2.1实验动物分组 三月龄健康雄性SD大鼠32只,体重180 ̄220g (购于西安交通大学医学院实验动物中心),大鼠适应性喂养1wk,随机分为安静对照组(A组)、运动训练组(B组)、应激组(C组)、运动训练应激组(D组),每组8只。分笼饲养,每笼5只。均以国家啮齿类标准动物饲料喂养,自由饮水,饲养环境28℃±1℃,相对湿度为50-65%。2.2运动训练方案 B和D组大鼠运动训练采用递增强度的方式进行跑台运动,运动负荷参照Bedford等人的研究进行[3]。 起始速度为11m/min,时间为20min,每周训练5天,递增速度3m/min、时间5min,运动至速度为20m/min,维持此运动速度运动60min,跑台坡度为5度,训练周期为8周。2.3应激实验方案 D组运动训练8w后与C组大鼠一同接受电击、强声、强光多种损害性应激1w[4]。将大鼠分别置于封闭的笼中,给予足底电击(电流强度1mA、电压30V,每隔1min刺激1次,每次持续10s,单位电击周期为5min);强噪声刺激(200HZ强声刺激,每隔30min刺激1次);强光刺激(500w普通灯泡夜间照射8h)。实验中应掌握同种刺激不要连续出现,使大鼠不能预料或习服刺激的发生。 收稿日期:2012—09—05 作者简介:赵振(1976—),男,陕西泾阳人,讲师,硕士,主要从事运动人体科学研究。 中等强度有氧运动大鼠环境应激的保护效应 及其机制探讨 赵 振,苏铁柱 (长治学院体育系,山西长治046011) 摘要:通过观察经中等强度有氧运动后大鼠对损害性应激的反应变化及神经内分泌改变,探讨中等 强度有氧运动对大鼠应对外界损害性应激能力的影响及其机制。 关键词:运动训练;应激;旷场行为;皮质醇;去甲肾上腺素;多巴胺;NO;NOS中图分类号:G804.2文献标识码:A文章编号:1673-2014(2012)05-0078-05 2012年10月长治学院学报 Oct.,2012第29卷第5期JournalofChangzhiUniversityVol.29,No.5 78··

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

相关主题
文本预览
相关文档 最新文档