当前位置:文档之家› 橡胶的拉伸强度及影响因素

橡胶的拉伸强度及影响因素

橡胶的拉伸强度及影响因素
橡胶的拉伸强度及影响因素

橡胶的拉伸强度及影响因素

-

各种橡胶制品特定的使有用性能和工艺要求

$ v4 o. C# e8 N9 Z* @% x; \$ D, https://www.doczj.com/doc/764640797.html,

5 C; @+ z1 R. C7 https://www.doczj.com/doc/764640797.html,各种橡胶制品都有它特定的使有用性能和工艺要求。为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。- N: u P, S5 h; N) g, j% c

4 F/ j# H2 z, X) _ a4 D; l

一、拉伸强度

( U2 J' d) Q& H- E - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!

2 j; D' u. m2 A& L: i8 |; c M2 {橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶拉伸强度是制品能够抵抗拉伸破坏的根限能力。它是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。https://www.doczj.com/doc/764640797.html,. h5 b8 L8 J

3 l% ~ E

1 f! w* J* }/ v7 w6 b* ]

拉伸强度与橡胶的结构有关,分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。拉伸强度还根温度有关,高温下拉伸强度远远低于室温下的拉伸强度。拉伸强度根交联密度有关,随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用),

9 Y7 d# u+ t& z9 Q橡胶技术网

4 h9 K W, P3 `中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。拉伸强度与填充剂的关系,

5 F1 p* H7 O) P

. G6 s2 I) E% X }$ U" e# G橡胶技术网补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。低不和橡胶随着用量的增加达到最在值可保持不变。

# n, d/ v9 R& e- T& f中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。

5 q: k' W, g L( _& L橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡

胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶拉伸强度与软化剂的关系

% \& O, v3 L1 O1 @ - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!

- l' I+ I6 a* G. N: V加入软化剂会降低拉伸强度,但少量加入,一般在开练机7份以下,密练机在5份以下会改善分散,有利于提高拉伸强度。软化剂的不同对拉伸强度降低的程度也不同。一般天然橡胶适用于植物油类。非极性橡胶用芳烃油如SBR/IR/BR. 。如IIR /EPDM 用石腊油、环烷油。NBR/CR用DBP/DOP.之类。https://www.doczj.com/doc/764640797.html,3 m0 U& a0 v: P- |% v7 `

- 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!9 Q: y4 o B. `$ N4 E

提高拉伸强度的其它放法有,用橡胶与树脂共混、橡胶化学改性、填料表面改性(如加桂烷等)

) A- D8 U% p5 K2 t2 }/ d) _. ^2 }橡胶技术网

: c p; O# g" n1 A" n" x, j2 W橡胶技术网二、撕裂强度

9 n# @: b; A" K7 Y - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!橡胶技术网* O( q+ z1 C# J! \. U1 x8 S

橡胶的撕裂是由于材料中的裂纹或裂口受力时迅速扩大开裂而导至破坏现象。撕裂强度与拉伸没有直接关系。在许多情况下撕裂与拉伸是不成正比的。一般情况下,结晶橡胶比非结晶橡胶撕裂强高。撕裂强度与温度有关。除了天然橡胶外,高温下撕裂强度均有明显地下降。碳黑、白炭黑填充的橡胶其撕裂强度有明显地提高。撕裂强度与硫化体系有关。多硫键有较高的撕裂强度。硫黄用量高撕裂强度高。但过多的硫黄用量撕裂强度会显著地降低。使用平坦性较好的促进剂有利于提高撕裂强度。https://www.doczj.com/doc/764640797.html,, k) j# n8 o# Y/ v" p) l

/ l5 u/ A( z8 J5 a @+ J撕裂强度与填充体系有关,各种补强填充如、碳黑、白炭黑、白艳华、氧化锌等,可获较高的撕裂强度。某些桂烷等偶联剂可以提高撕裂强度。通常加入软化剂会使撕裂强度下降。如石腊油会使丁苯胶的撕裂强度极为不利。而芳烃油就变化不大。如CM/NBR用酯类增塑剂比其它软化剂就影响小多了。

# o( u; o6 w. K) d: B2 R* L, f4 R% g橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶# t/ p# @5 t1 R& S; H; B

三、定伸应力与硬度

3 ~$ e# m. ^% V3 c+ l. v s) P. s - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!https://www.doczj.com/doc/764640797.html,& a3 P% @9 {" p$ [: W1 e

定伸应力与硬度是橡胶材料的刚度重要指标,是硫化胶产生一定形变所需要的力,与较大的拉伸形变有关,两者相关性较好,变化规律基本一至。橡胶分子量越大,有效交联定伸应力越大。为了得到规定的定伸应力,可对分子量较小的橡胶适当提高交联密度。凡能增加分子间作用力的结构因素。都能提高硫化胶的网洛抵抗变形能力。如CR/NBR/PU/NR等有较高的定伸应力。定伸应力与交联密度影响极大。不论是纯胶还是补强硫化胶,随着交联密度的增加,定伸应力与硬度也随之直线增加。通常是通过对硫化剂、促进剂、助硫化剂、活性剂等品种的调节来实现的。含硫的促进对提高定伸应力更有显著的效果。多硫健有利于提高定伸应力。填充剂能提高制品的定伸应力、硬度。补强性能越高、硬度越高,定伸应力就

越高。定伸应力随着硬度的增加,填充的增加越高。相反软化剂的增加,硬度降低,定伸应力下降。除了增加补强剂外还有并用烷基酚醛树脂硬度可达95度、高苯乙烯树脂。使用树脂RS、促进剂H并用体系硬度可达85度等等。

5 C4 E8 p1 W4 W+ ?$ _橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶`' a2 H8 b h* P+ f1 s

四、耐磨性中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。* g3 k( m2 v3 M+ V l

橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶6 l1 l1 |2 m4 }8 ^3 w; s0 j' Y 耐磨耗性能表征是硫化胶抵抗摩察力作用下因表面破坏而使材料损耗的能力。是与橡胶制品使用寿命密切相关的力学性能。它的形式有;

/ Q$ q/ J' U; K4 f' c中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。

" o9 M2 _" R( A8 C) h! _& d- |* ?: A/ https://www.doczj.com/doc/764640797.html, 1.磨损磨耗,在摩擦时表面上不平的尖锐的粗糙物不断地切割、乱擦。致使橡胶表面接触点被切割、扯断成微小的颗粒,从橡胶表面脱落下来、形成磨耗。磨耗强度与压力成正比与拉伸强度成反比。随着回弹性提高而下降。

* `. A( U( T4 k橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶

2 V4 \1 U( w. _, o中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。 2.疲劳磨耗,与摩擦面相接触的硫化胶表面,在反复的过程中受周期性的压缩、剪切、拉伸等变形作用,使橡胶表面产生疲劳,并逐渐在其中产生微裂纹。这些裂纹的发展造成材料表面的微观剥落。疲劳磨耗随着橡胶的弹性模量、压力提高而增加,随着拉伸强度的降低而和疲劳性能变差而加大。中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。; o' {; Q |# q6 ^5 e

- 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!9 `" ~0 U& i1 `: o/ S- t- m

3.巻曲磨耗,橡胶下光滑的表面接触时,由于磨擦力的作用,使硫化胶表面不平的地方发生变形,并被撕裂破坏,成巻的脱落表面。

: _: k% t7 p# j( @* P" n8 n" t$ K橡胶技术网

8 I& T8 G$ E! Y( [( e( u3 L* [中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。耐磨性能和硫化胶的主要力学性能有关。在设计配方时要设法平衡各种性能之间的关系。耐磨性与胶种之间关系最大,一般来讲NBR>BR>SSBR>SBR(EPDM)>NR>IR(IIR)>CR橡胶技术网9 A3 K& c O5 {" T6 E- B* m! Q

8 L8 n* |9 r' v; P' B( W |% a中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个

橡胶人最喜爱的橡胶技术信息交流平台。耐磨性与硫化体系有关,适量地提高交联徎度能提高耐磨性能。单硫健越多耐磨性越好,这就是半有效硫化体系的耐磨性最好的道理。用CZ做第一促进剂的耐磨性能要比其它促进剂好,最佳的补强剂用量会提高一定的耐磨性能。合理地使用软化剂会能最小地降低耐磨性。如天然胶、丁苯胶用芳烃油。https://www.doczj.com/doc/764640797.html,4 y$ G5 ]' Q+ w8 A+ r, f# |

0 T3 Z6 N7 F* L( ~3 V: ^有效地使用防老剂,可防止疲劳老化。提高碳黑的分散性可提高耐磨性能。

) X" p: o! x$ w7 c2 X橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶橡胶技术网: x. a) y _4 m2 v; n" K" w' A! o

使用桂烷表面处理剂改性可大大地提高耐磨性能。橡胶技术网7 R7 O, K0 j; [/ |6 O https://www.doczj.com/doc/764640797.html,0 p; ^ o( |! Z& u

采用橡塑共混来提高耐磨性能,如丁睛与聚氯乙烯并用,所制造的纺织皮结。

# S7 U; @. G. T$ _# ^7 { a中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。

/ E' N5 t# u* R- v7 r; B3 a4 \$ ?4 https://www.doczj.com/doc/764640797.html,用丁睛与三元尼龙并用,丁晴与酚醛树脂并用。

* ?6 B7 H" Y% I" Z5 W ?" ]7 h0 x& o* W - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!* J# p6 C$ }4 V) j

添加固体润滑剂和减磨性材料。如丁睛胶橡胶胶料中添加石墨、二硫化钼、氮化硅、碳纤维,可使硫化胶的磨擦系数降低,提高其耐磨性能。

6 R/ m0 O5 h% [4 N/ o橡胶技术网

* J; A6 U0 R0 y- t: https://www.doczj.com/doc/764640797.html,五,疲劳与疲劳破坏。

6 r5 l' N# {* c( c% https://www.doczj.com/doc/764640797.html,

) l" R! S' x* f: S - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!硫化胶受到交变应力作用时,材料的结构和性能发生变化的现象叫疲劳。随着疲劳过徎的进行,导至材料破坏的现象叫做疲劳破坏。橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶; f( f7 T! J& a% h

- 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!9 E& J2 F- |0 N3 [) ~2 r* K. f1 C

1. 橡胶结构的影响,玻璃化温度低的橡胶耐疲劳性能好。有极性基团的橡胶耐疲劳性能差。分子内有庞大基团或侧基的橡胶,耐疲劳性能差、结构序列规整的橡胶,容易聚向结晶,耐疲劳性差。

4 ?/ U" X% Q7 A: u

4 i# T: c6 k! s1 _2 J/ e橡胶技术网 2. 橡胶硫化体系影响,单硫健的硫化体系,疲劳性能最小,耐疲劳性能好,增加交联剂的用量会使硫化胶的疲劳性能下降。所以应尽量减少交联剂的用量。7 I( l" z; l# o

5 w

- k7 _3 ]/ N* d! b$ S7 q/ https://www.doczj.com/doc/764640797.html, 3. 填充剂的影响,补强性能越小的填充剂影响越小,填充剂用量越大影响越大,应尽量少用填充剂。

3 i

4 I, ^: o+ f橡胶技术网中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。' P- A' t7 V1 D, S, q# J- b

4. 软化体系的影响,尽可能选用软化点低的非粘稠性软化剂;软化剂的用量尽可能多一些,相反高粘度软化剂不宜多用,如松焦油的耐疲劳性差,脂类增塑剂的耐疲劳性就好。橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶# w" R* ^2 ~& ]- i5 b4 H9 h

! d, N% I5 t5 F7 K- [4 }" `% Q

六,弹性橡胶技术网7 A; S! Y! c$ R/ p

橡胶技术网* k' c/ t4 j( p

橡胶最宝贵特性是弹性。高弹性源于橡胶分子运动,完全由卷曲分子的构象变化所造成的,除去外力后能立即恢复原状,称理想的弹性体。橡胶分子之间的作用会妨碍分子链段运动,表现出粘性或粘度。所以说橡胶的特性是既有弹性又有粘性。影响弹性的因素有形变大小、作用时间、温度等。橡胶分子间的作用增大,分子链的规整性高时,易产生拉伸结晶,有利于强度提高,显示出高弹性。在通用橡胶中的天然、顺丁胶弹性最好,其次是丁睛、氯丁。丁苯与丁基较差。

/ s, @3 J, J5 _$ O0 X/ f3 ~ - 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!- 中国橡胶网,天然橡胶,橡胶价格,橡胶人才网,特种橡胶,橡胶制品,橡胶助剂,橡胶技术咨询,橡胶配方,橡胶论坛,橡胶培训,橡胶检测!' A5 J& s* b5 X1 ^( N; c

弹性与交联密度有关,随着交联密度的增加,硫化胶的弹性增加,并出现最大值,交联密继续增加弹性呈下的趣势。适当地提高流化程度对弹性有利。在高弹性配合中选用硫黄与CZ并用、与促进D并用硫化胶的回弹性较高,滞后损失小。

e/ K* E' x0 t# I! https://www.doczj.com/doc/764640797.html,* S2 |0 i. `" R2 k J/ h

弹性与填充体系有关,提高含胶率是提高弹性的最直接、最有效的办法,补强性越好的填充对弹性越不利。橡胶技术网3 C" t+ z; g0 _4 w

: @ b* i- e, E% m' i) m" ^" p弹性与软化剂的关系。软化剂与橡胶的相溶性有关,相溶性越小,弹性越差。如天然、顺丁、丁基加石腊油,优于加环烷油。丁睛加DOP优于使用环烷油、芳烃油。一般来说增塑剂会降低橡胶的弹性,应尽量少用增塑剂。

/ u5 P% E$ ?6 ]6 m. e橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术、天然橡胶、橡胶价格信息、橡胶培训学习、橡胶资料交流学习交易的平台。我们努力打造一个橡胶人最喜爱的橡胶技术信息交流平台。8 V. u; D9 Y+ m! c$ @5 b& S

七,扯断伸长率(延伸率)橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶6 _6 R0 F/ _0 Y8 X7 U

! P( Y9 Y2 s& L- ^. c; x& C' L! f扯断伸长率与拉伸强度有关,只有具有较高的拉伸强度,保证其在变形过程中不受破坏,才会有较高的伸长率。一般随着定伸应力和硬度增大则扯断伸长率下降,回弹性大、永久变形小,则扯断伸长率大。不同的橡胶,它的扯断伸长率不同,天然胶它的含胶率在80%以上时它的扯断伸长率可达1000%。在形变时易产生塑性流动的橡胶也会有较高的伸长率。如丁基橡胶。

4 V* G$ L1 i- ?0 U/ https://www.doczj.com/doc/764640797.html,

% S! ?0 p7 T3 F) P3 w$ K; i橡胶技术论坛,橡胶技术咨询,天然橡胶,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,橡胶招聘,中国橡胶扯断伸长率随着交联密度的提高而降低。制造高定伸制品,硫化程度不宜过高,可以稍欠硫或降低硫化剂用量。增加填充剂的用量会降低扯断伸长率,结构越高的补强剂,扯断伸长率越低,曾加软化剂的用量,可以获较大的扯断伸长。

橡胶技术网https://www.doczj.com/doc/764640797.html,/bbs/thread-44396-1-1.html

拉伸性能的测定

拉伸性能的测定 一.准备工作 (一)测量原始截面积So 测量试样原始截面尺寸时,应按照表选取量具。根据所测得的试样尺寸,(厚度在0.1mm 至小于3 mm 准确到±2%,其它试样准确到±1%)计算横截面积So 并至少保留4位有效数字或保留两位小数点。 量具或测量装置的分辩率 试样横截面尺寸 分辩率不大于 0.1~0.5 0.001 >0.5~2.0 0.005 >2.0~10.0 0.01 >10.0 0.05 圆形截面试样应在试样工作段的两端及中间处两个相互垂直的方向上各测1次直径,取其算术平均值,先用3处测得横截面积的最小值。横截面积So 按下式计算: 214 So d π= 矩形截面试样应在试样工作段的两端及中间处测量其宽度和厚度,选用3处测得横截面积中的最小值。横截面积So 按下式计算: So ab = 圆管纵向弧形试样在试样工作段的两端及中间处测量,选用3处测得横截面

积中的最小值。有关标准或协议无规定时,横截面积So 按下式计算: 当/b D <0.25 时 2 [1]6(2) b So ab D D a =+- 当/b D <0.17时 So ab = 计算时,管外径D 取标称值。 圆管截面试样应在管的一端两个相互垂直的方向各测1次外径,取其算术平均值。在同一管端圆周上相互垂直的方向测量4处管壁厚度,取其算术平均值。用平均外径和平均管壁厚度计算得到的横截面积作为标距内的原始横截面积。原始横截面积 So 按下式计算:()So a D a π=- (二)标记原始标距Lo 试样的原始标距所在位置一般应在平行长度居中对称的位置上。应采用不损伤试样或不影响试验结果的方法标记试样标距。例如采用打点机打的小冲点、细划线或细墨线等标记。标记应清晰,对于脆性试样,应可能采用不损伤表面的方法标记。比例试样的原始标距值,取计算结果最接近5mm 或10mm 的倍数,中间值向大的一方取值,标距的长度应精确到取值数值的±1%。 (三)选取试验机和引伸计 根据试样选取合适的夹持装置以及试验机合适的量程。一般是在量程80%左右。检定过的拉力试验机应满足1级或优于1级的准确度。引伸计标距应不小于试样标距的一半(即Le ≥1/2Lo )。 (四)确定试验速率 如仅测定上屈服强度时试验时的弹性应力速率应在标准的表4规定的范围内尽可能保持恒定的速率如仅测定下屈服强度,平行长度屈服期间应变速率应在0.00025/s ~0.0025/s 范围内尽可能保持恒定。。当不能直接调节这一应变速率,允许调节屈服即将开始前的应力速率,不超过标准的表4规定的最大速率,直至屈服阶段完成之前不再改变试验机的控制。 若仅测定抗拉强度,在弹、塑性范围内,试样工作段的应变速率可达到0.008/s 。 材料弹性模量E/(N/mm 2) 应力速率(N/mm 2)。s 1- 最小 最大 <150 000 2 20 ≥150 000 6 60

ASTMC297夹层结构平面拉伸强度标准试验方法中文版.doc

ASTM 标准:C 297/C 297M–04 夹层结构平面拉伸强度标准试验方法1 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions 本标准以固定标准号C 297/C 297M发布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标( )表明自最近版本或批准以后进行了版本修改。 本标准已经被美国国防部批准使用。 1 范围 1.1 本试验方法适用于测量组合夹层壁板的夹芯、夹芯-面板胶接或者面板的平面拉伸强度。允许的夹芯材料形式包括连续的胶接表面(如轻质木材或泡沫)和不连续的胶接表面(如蜂窝)。 1.2 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 1.3 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 2 引用标准 2.1 ASTM标准2 C 274 夹层结构术语 Terminology of Structural Sandwich Constructions D 792 置换法测量塑料的密度和比重(相对密度)的试验方法; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D 883 与塑料有关的术语; Terminology Relating to Plastics D 2584 固化增强树脂的灼烧损失试验方法; Test Method for Ignition Loss of Cured Reinforced Resins D 2734 增强塑料孔隙含量试验方法; Test Method for Void Content of Reinforced Plastics D 3039/D 3039M 聚合物基复合材料拉伸性能试验方法 Test Method for Tensile Properties of Polymer Matrix Composite Materials D 3171 复合材料的组分含量试验方法; Test Methods for Constituent Content of Composites Materials D 3878 复合材料术语; Terminology for Composite Materials D 5229/D 5229M 聚合物基复合材料的吸湿性能及平衡状态调节试验方法; 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.09直接负责。当前版本于2004年5月1日批准,2004年5月出版。最初出版于1952年批准,上一版本为:C 297–94(1999),于1999年批准。 2有关的ASTM标准请访问ASTM网站https://www.doczj.com/doc/764640797.html,,或者与ASTM客户服务@https://www.doczj.com/doc/764640797.html,联系。ASTM标准年鉴的卷标信息,参看ASTM 网站标准文件摘要页。

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

实验4 聚合物拉伸强度和断 裂伸长率的测定

实验4 聚合物拉伸强度和断裂伸长率的测定 1. 实验目的 (1)熟悉高分子材料拉伸性能测试标准条件和测试原理。 (2)掌握测定聚合物拉伸强度和断裂伸长率的测定方法。 (3)考察拉伸速度对聚合物力学性能的影响。 2. 实验原理 拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。基本公式: (2-13) (2-14) (2-15) 式中,伸长率即应变;为应力;为样品某时刻的伸长;为初始长度;为初始横截面积;为拉伸力;为拉伸模量。 聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图2-28(左)所示。在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2-28(右)所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

图2-28 五种典型聚合物拉伸应力-应变曲线1-软而弱;2-硬而脆;3-硬而强;4-软而强;5-硬而韧 本实验在不同应变速度下测定聚乙烯的应力-应变曲线。 将已知长度和横截面积的样品,夹在两个夹具之间,以恒速拉伸至断裂,测定应力随伸长的变化。分析在不同应变速度时测定的数据,可以了解材料的强度、韧性及极限性能。 有合适的样品架或可设法固定住的聚合物都可进行本实验。 均匀的样品重复性可优于±5%。但由于制各样品和实验操作中存在的一些不可避免的可变因素,使重复性比此数值要差些。 3. 实验设备和材料 (1)仪器设备 万能电子拉力机(日本岛津AG-lOKNA),游标卡尺、直尺。 万能电子拉力机测试主体结构示意图,如图2-29所示。

胶粘剂拉伸强度试验标准

胶粘剂拉伸强度试验标准在胶接接头受拉伸应力作用时,有三种不同的接头受力方式。 (1)拉伸应力和胶接面互相垂直,并且通过胶接面中心均匀地分布在整个胶接面上,这一应力均匀拉伸应力,又称正拉伸应力。 (2)拉伸应力分布在整个胶接面上,但力呈不均匀分布,此种情况称为不均匀拉伸。 (3)和不均匀拉伸相比,它的力作用线不是捅咕试样中心,而偏于试样的一端;它的受力面不是对称的,而是不对称的,这种拉伸叫不对称拉伸,人们有时将这一试验叫撕离试验或劈裂试验,以示和剥离相区别。 一.拉伸强度试验(条型和棒状) 拉伸强度试验又叫正拉强度试验或均匀扯离强度试验。 1.原理 由两根棒状被粘物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面直至破坏,以单位胶接面积所承受的最大载荷计算其拉伸强度。 2.仪器设备 拉力试验机应能保证恒定的拉伸速度,破坏负荷应在所选刻度盘容量的1 0%-90%范围内。拉力机的响应时间应短至不影响测量精度,应能测得试样断裂时的破坏载荷,其测量误差不大于1%。拉力试验机应具有加载时可和试样的轴线和加载方向保持一致的,自动对中的拉伸夹具。 固化夹具,能施加固定压力,保证正确胶接和定位。 3.试验步骤 (1)试棒和试样试棒为具有规定形状,尺寸的棒状被粘物。试样为将两个试棒通过一定工艺条件胶接而成的被测件。 除非另有规定,其试棒尺寸见表8-4。其试样尺寸的选择视待测胶黏剂的强度,拉力机的满量程,试棒本身材质的强度以及试验时环境因素而定。 表8-4 圆柱形和方形试棒尺寸 试棒直径和边长a/mm 直径/ L/mm 胶接面表面粗糙

b/mm mm 度Ra/um 10±0.1 15±0.1 25±0.1 10 12 15 5 7 9 30 45 50 0.8 0.8 0.8 用于试棒加工的金属材料有45号钢,LY12CZ铝合金,铜,H62黄铜等。非金属材料有层压塑料等。层压制品试棒,其层压平面应和试棒一个侧面平行,试棒上的销孔应和层压平面垂直。 试棒的表面处理,涂胶及试样制备工艺,应符合产品标准规定。胶接好试样,以周围略有一圈细胶梗为宜,此时不必清除,若需清除余胶,则应在固化后进行。 (2)试验在正常状态下,金属试样从试样制备完毕到测试之间,最短停放时间为16h,最长为1个月,非金属试样至少停放40h。 试样应在试验环境下停放30min以上,将它安装在拉力试验机夹具上,测试其破坏负荷,对电子拉力机试验机应使试样在(60±20)s内破坏;有时对机械式拉力机则采用10mm/min拉伸速度。 4.结果评定 试验结果以5个试样拉伸强度算术平均值表示,取3位有效数字。 同时应记下每个试样的破坏类型,如界面破坏,胶层内聚破坏,被粘物破坏和混合破坏。 5.影响因素 (1)应力分析粘接接头在受到垂直于粘接面应力作用时,应力分布比受剪切应力要均匀得多,但根据理论推测和应力分布试验证实,在拉伸接头边缘也存在应力集中。为证实这一点,有人采用一定厚度的橡胶胶接在试样中以代替胶黏剂,发现试样在拉伸时,橡胶中部有明显收缩。说明在接头受正拉伸应力作用,剪切应力则集中在试样胶黏剂-空气-被粘体的三者边界处最大,也就是说在这一点上应力最集中。如果我们胶接后两半圆柱体错位大,则试样的轴线偏离了加载方向中心线,这是经常会发生的。那么,就存在有劈应力,而使边缘应力集中急剧增加。当边界应力大到一个临界值时,胶层边缘就发生开裂,裂缝迅速地扩展到整个胶接面上。从对拉伸试样的应力分布进行分析表明,胶接试件的尺寸和模量,胶层的厚度,胶黏剂的模量都影响接头边缘的应力分布系数大小,因此也必然会影响它的强度值。和拉伸剪切试样一样,加载速度和试样温度也影响拉伸强度。 (2)试样尺寸

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

金属拉伸强度测试标准 金属拉伸强度检测

金属拉伸强度测试标准金属拉伸强度检测 拉伸强度是指材料产生最大均匀塑性变形的应力,对于金属材料来说通过做拉伸试验可确定这几个指标:抗拉强度、上屈服强度、下屈服强度、规定塑性延伸强度、规定总延伸强度、规定残余延伸强度。 抗拉强度(Rm)---相应最大力 Fm对应的应力; 上屈服强度(Reh)---试样发生屈服而力首次下降前的最大应力; 下屈服强度(Rel)---在屈服期间,不计初始瞬时效应时的最小应力; 规定塑性延伸强度(Rp)---塑性延伸率等于规定的引伸计标距 Le百分率时对应的应力; 规定总衍射强度(Rt)---总延伸率等于规定的引伸计标距 Le百分率时的应力; 规定残余延伸强度(Rr)---卸除应力后残余延伸率等于规定的原始标距 Lo 或引伸计标距 Le百分率时对应的应力。 金属拉伸强度这几个测试指标均依据GB/T 228-2010 金属材料拉伸试验方法这个标准而定。 金属拉伸强度试验则是应用最广泛的力学性能试验方法。拉伸性能指标是金属材料的研制、生产和验收最主要的测试项目之一,拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。 拉伸试验原理:金属拉伸实验是测定金属材料力学性能的一个最基本的实验,是了解材料力学性能最全面,最方便的实验。比如,测定低碳钢在轴向静载拉伸过程中的力学性能。在试验过程中,利用实验机的自动绘图装置可绘出低碳钢的拉伸图。由于试件在开始受力时,其两端的夹紧部分在试验机的夹头内有一定的滑动,故绘出的拉伸图最初一段是曲线。 拉伸试验特点:拉伸试验操作简单、方便,通过获得的应力应变曲线包含了大量信息,很容易看出材料的各项力学性能,如比例极限、弹性模量、屈服极限、强度极限等等,因此拉伸试验成为了应用最广泛的力学性能试验方法。 拉伸实验中材料在达到破坏前的变形是均匀的,能够得到单向的应力应变关系,但其缺点是难以获得大的变形量,缩小了测试范围。 洛阳中船重工第七二五研究所专业提供金属材料检测指标:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度等。

拉伸屈服强度的测定

拉伸屈服强度的测定 颁发日期: 第六章拉伸屈服强度的测定 1试验范围 本指导书适用于各种类型的热塑性塑料管材。 2试验依据 GB/T8804.2—2003 热塑性塑料管材拉伸性能测定第一部分:试验方法总则 GB/T8804.2—2003 热塑性塑料管材拉伸性能测定第2部分:硬聚氯乙烯PVC-U、氯化聚氯乙烯PVC-C、和高抗冲聚氯乙烯PVC-HI 管材(idt ISO 6259-2:1997) GB/T8804.3—2003 热塑性塑料管材拉伸性能测定第3部分:聚烯烃管材(idt ISO 6259-3:1997) 3试验原理 沿热塑性塑料管材的纵向裁切或机械加工制取规定形状和尺寸的试样。通过拉力试验机在规定的条件下测得管材的拉伸性能 4试验设备 4.1拉力试验机 4.2夹具 用于夹持试样的夹具连在试验机上,使试样的长轴与通过夹具中心线的拉力方向重合。试样应加紧,使它相对于夹具尽可能不发生位移。

拉伸屈服强度的测定 颁发日期: 夹具装置系统不得引起试样在夹具处过早断裂。 4.3负载显示器 拉力显示仪能显示被夹具固定的试样在试验的整个过程中所受拉力,它在一定速率下测定时不受惯性滞后的影响且其测定的准确度应控制在实际值得±1%范围内。 4.4引伸计 测定试样在试验过程中任一时刻的长度变化。此仪表在一定速率下测定时不受惯性滞后的影响且能测量误差范围在±1%内的形变。试验时,此仪表应安置在使试样经受最小的伤害和变形的位置,且它与试样之间不发生相对滑移。夹具应避免滑移以防影响伸长率测量的精确性。 注:推荐适用自动记录试样的长度变化或任何其他变化的仪表。 4.5测量仪器 游标卡尺 4.6裁刀 4.7制样机和铣刀 5试验试样 5.1试样要求

混凝土轴心抗压、轴心抗拉强度设计值及标准值

混凝土轴心抗压、轴心抗拉强度设计值 f c 、f t 应按表 4.1.4 采用。 2 强度 种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 f t 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 注:1 计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的边长或直径小于 300mm,则表中混凝土的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2 离心混凝土的强度设计值应按专门标准取用。 混凝土是一种脆性材料,在受拉时很小的变形就要开裂,它在断裂前没有残余变 形。 图4-12 混凝土劈裂抗拉试验示意图 1-上压板2-下压板3-垫层4-垫条混凝土的抗拉强度只有抗压强度的1/10~1/20,且随着混凝土强度等级的提高,比值降低。混凝土在工作时一般不依靠其抗拉强度。但抗拉强度对于抗开

裂性有重要意义,在结构设计中抗拉强度是确定混凝土抗裂能力的重要指标。有时也用它来间接衡量混凝土与钢筋的粘结强度等。 混凝土抗拉强度采用立方体劈裂抗拉试验来测定,称为劈裂抗拉强度f ts 。该方法的原理是在试件的两个相对表面的中线上,作用着均匀分布的压力,这样就能够在外力作用的竖向平面内产生均布拉伸应力(图4-12),混凝土劈裂抗拉强度应按下式计算: 式中f ts ——混凝土劈裂抗拉强度,MPa; P——破坏荷载,N; A ——试件劈裂面面积,mm2。 混凝土轴心抗拉强度f t 可按劈裂抗拉强度f ts 换算得到,换算系数可由试验确 定。 各强度等级的混凝土轴心抗压强度标准值f ck 、轴心抗拉强度标准值f tk 应按 表4-17采用。 表4-17混凝土强度标准值(N/mm2) 强度种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f ck 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 f tk 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11

胶黏剂拉伸剪切强度测试标准

胶黏剂拉伸剪切强度的测定方法 一实验原理 试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为MPa。 二实验装置及试样 1)试验机。使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1 %。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。 试验机应保证试样夹持器的移动速度在(5±1)mm/min内保持稳定。 2)量具。测量试样搭接面长度和宽度的量具精度不低于 0."05 mm。 3)夹具。胶接试样的夹具应能保证胶接的试样符合要求。在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法。但不能用于仲裁试验。 4)试样标准试样的搭接xx是( 12."5± 0."5)mm,金属片的厚度是( 2."0± 0."1)mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。 5)建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料。

6)常规试验,试样数量不应少于5个。仲裁试验试样数量不应少于10个。 对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度。两者中选择前者较好。 测试时金属片所受的应力不要超过其屈服强度σ S,金属片的厚度δ可按式(11-12)计算: δ=(L·τ)/σ S(11-12)式中: δ——金属片厚度; L——试样搭接xx; τ——胶粘剂拉伸剪切强度;σS——金属材料屈服强度(MPa)。 三、试样制备 1)试样可用不带槽或带槽的平板制备,也可单片制备。 2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。 3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。 4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。 5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。 四、试验条件 试样的停放时间和试验环境应符合下列要求:

ASTM D638-01 塑料拉伸强度测定

ISO 527-1Determination of Tensile Properties 11 3.Terminology 3.1De?nitions —De?nitions of terms applying to this test method appear in Terminology D 883and Annex A2. 4.Signi?cance and Use 4.1This test method is designed to produce tensile property data for the control and speci?cation of plastic materials.These data are also useful for qualitative characterization and for research and development.For many materials,there may be a speci?cation that requires the use of this test method,but with some procedural modi?cations that take precedence when adhering to the speci?cation.Therefore,it is advisable to refer to that material speci?cation before using this test method. Table 1in Classi?cation D 4000lists the ASTM materials standards that currently exist. 4.2Tensile properties may vary with specimen preparation and with speed and environment of testing.Consequently, where precise comparative results are desired,these factors must be carefully controlled. 4.2.1It is realized that a material cannot be tested without also testing the method of preparation of that material.Hence, when comparative tests of materials per se are desired,the greatest care must be exercised to ensure that all samples are prepared in exactly the same way,unless the test is to include the effects of sample preparation.Similarly,for referee pur- poses or comparisons within any given series of specimens, care must be taken to secure the maximum degree of unifor- mity in details of preparation,treatment,and handling. 4.3Tensile properties may provide useful data for plastics engineering design purposes.However,because of the high degree of sensitivity exhibited by many plastics to rate of straining and environmental conditions,data obtained by this test method cannot be considered valid for applications involv- ing load-time scales or environments widely different from those of this test method.In cases of such dissimilarity,no reliable estimation of the limit of usefulness can be made for most plastics.This sensitivity to rate of straining and environ- ment necessitates testing over a broad load-time scale (includ- ing impact and creep)and range of environmental conditions if tensile properties are to suffice for engineering design pur- poses. N OTE 5—Since the existence of a true elastic limit in plastics (as in many other organic materials and in many metals)is debatable,the propriety of applying the term “elastic modulus”in its quoted,generally accepted de?nition to describe the “stiffness”or “rigidity”of a plastic has been seriously questioned.The exact stress-strain characteristics of plastic materials are highly dependent on such factors as rate of application of stress,temperature,previous history of specimen,etc.However,stress- strain curves for plastics,determined as described in this test method, almost always show a linear region at low stresses,and a straight line drawn tangent to this portion of the curve permits calculation of an elastic modulus of the usually de?ned type.Such a constant is useful if its arbitrary nature and dependence on time,temperature,and similar factors are realized. 4.4Poisson’s Ratio —When uniaxial tensile force is applied to a solid,the solid stretches in the direction of the applied force (axially),but it also contracts in both dimensions lateral to the applied force.If the solid is homogeneous and isotropic,and the material remains elastic under the action of the applied force,the lateral strain bears a constant relationship to the axial strain.This constant,called Poisson’s ratio,is de?ned as the negative ratio of the transverse (negative)to axial strain under uniaxial stress.4.4.1Poisson’s ratio is used for the design of structures in which all dimensional changes resulting from the application of force need to be taken into account and in the application of the generalized theory of elasticity to structural analysis.N OTE 6—The accuracy of the determination of Poisson’s ratio is usually limited by the accuracy of the transverse strain measurements because the percentage errors in these measurements are usually greater than in the axial strain measurements.Since a ratio rather than an absolute quantity is measured,it is only necessary to know accurately the relative value of the calibration factors of the extensometers.Also,in general,the value of the applied loads need not be known accurately. 5.Apparatus 5.1Testing Machine —A testing machine of the constant-rate-of-crosshead-movement type and comprising essentially the following:5.1.1Fixed Member —A ?xed or essentially stationary member carrying one grip.5.1.2Movable Member —A movable member carrying a second grip.5.1.3Grips —Grips for holding the test specimen between the ?xed member and the movable member of the testing machine can be either the ?xed or self-aligning type.5.1.3.1Fixed grips are rigidly attached to the ?xed and movable members of the testing machine.When this type of grip is used extreme care should be taken to ensure that the test specimen is inserted and clamped so that the long axis of the test specimen coincides with the direction of pull through the center line of the grip assembly.5.1.3.2Self-aligning grips are attached to the ?xed and movable members of the testing machine in such a manner that they will move freely into alignment as soon as any load is applied so that the long axis of the test specimen will coincide with the direction of the applied pull through the center line of the grip assembly.The specimens should be aligned as per-fectly as possible with the direction of pull so that no rotary motion that may induce slippage will occur in the grips;there is a limit to the amount of misalignment self-aligning grips will accommodate.5.1.3.3The test specimen shall be held in such a way that slippage relative to the grips is prevented insofar as possible.Grip surfaces that are deeply scored or serrated with a pattern similar to those of a coarse single-cut ?le,serrations about 2.4mm (0.09in.)apart and about 1.6mm (0.06in.)deep,have been found satisfactory for most thermoplastics.Finer serra-tions have been found to be more satisfactory for harder plastics,such as the thermosetting materials.The serrations should be kept clean and sharp.Breaking in the grips may occur at times,even when deep serrations or abraded specimen surfaces are used;other techniques must be used in these cases. 11Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY 10036.

材料强度的标准值与设计值

材 料 强 度 的 标 准 值 与 设 计 值 一、材料强度标准值 二、材料强度设计值 一、材料强度标准值(characteristic value of material strength) (一)钢筋强度标准值 普通钢筋抗拉强度标准值表2-5。

235 335 400 400 预应力钢筋抗拉强度标准值表2-6。 钢筋种类符号 钢绞线 1×2(二股) d=8.0、10.0 d=12.0 1470、1570、1720、1860 1470、1570、1720 1×3(三股) d=8.6、10.8 d=12.9 1470、1570、1720、1860 1470、1570、1720 1×7(七股) d=9.5、11.1、12.7 d=15.2 1860 1720、1860 消除 应力 钢丝 光面 螺旋肋 d=4、5 d=6 d=7、8、9 1470、1570、1670、1770 1570、1670 1470、1570 刻痕d=5、7 1470、1570 精轧螺纹钢筋 d=40 d=18、25、32 JL 540 540、785、930 (二)混凝土强度标准值 1、混凝土轴心抗压强度标准值 轴心抗压强度(棱柱体强度)标准值与立方体抗压强度标准值之间存在着以下折算关系: 2、混凝土的轴心抗拉强度

抗拉强度标准值与立方体抗压强度标准值之间的折算关系如下: 3、混凝土的强度标准值 表2-6混凝土的强度标准值和设计值。 强度种类强度等级 强度标准值设计值 轴心抗压轴心抗拉轴心抗压轴心抗拉 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 1.27 1.54 1.78 2.01 2.20 2.40 2.51 2.65 2.74 2.85 2.93 3.00 3.05 3.10 6.9 9.2 11.5 13.8 16.1 18.4 20.5 22.4 24.4 26.5 28.5 30.5 32.4 34.6 0.88 1.06 1.23 1.39 1.52 1.65 1.74 1.83 1.89 1.96 2.02 2.07 2.10 2.14 二、材料强度设计值

相关主题
文本预览
相关文档 最新文档