当前位置:文档之家› 水源热泵热水机

水源热泵热水机

水源热泵热水机
水源热泵热水机

水源热泵热水机的应用

摘要:本文介绍了在当今燃油、燃气等不可再生能源价格不断高涨的情况下,使用水源热泵热水机是一种节能而且环保的热水设备。

关键词:水源热泵热水机节能

1、项目概况

广州市某酒店面积约1万1千平方,共有客房154间,酒店中央空调系统采用离心式冷水机组,原热水由热水炉2台供应。酒店中央空调系统全年根据营业情况都会开启使用,中央空调水系统里水的温度夏季为33℃-38℃,冬季水系统里水温为15℃-19℃。酒店里每天日用热水量约为20吨。

考虑燃油、燃气等不可再生能源的费用不断高涨,建议采用节能的热水热泵设备——PHNIX水源热泵热水机组供应热水,满足酒店热水需求。

2、废热利用

由于本酒店中央空调系统全年都处于运行状态,夏季空调运行时都产生了大量的冷凝热经过冷却塔排放到大气空气中,一方面给大气造成了热污染;另一方面又浪费了大量的冷凝热。而PHNIX水源热泵热水机组能充分利用这部分排放到大气的冷凝废热,提取其中大部分余热来制取热水,这样可以降低夏季中央空调水系统里冷却水的温度,减少冷却塔与冷却水泵的运行时间,降低了其能耗,提高了中央空调系统的总能效。

3、设计依据

1)《采暖通风与空气调节设计规范》(GB50019-2003);

2)《建筑给水排水设计规范》(GB50015-2003);

3)《给水排水制图标准》(GB/T50106-2001);

4)《建筑给排水及采暖工程施工质量验收规范》(GB50242-2002);

5)《建筑给排水设计手册》。

6)PHNIX水源热泵热水机组技术手册。

4、热泵选型

1)日用水量

根据甲方提供日用热水量约为20吨。

2)水源热泵热水机组选型

根据机组性能曲线,PWSHW-130SB热泵机组额定制热量34kw/台。

标况下(热源进水温度为5℃)1台PWSHW-130SB水源热泵热水机组产55℃热水730L/h,2台机组每天工作14个小时可产水20.4吨,可完全满足用水需求。

当热源进水温度为15℃时,1台PWSHW-130SB水源热泵热水机组产55℃热水900L/h,2台机组每天工作12个小时可产水21.6吨,可完全满足用水需求。

当热源进水温度为30℃时,1台PWSHW-130SB水源热泵热水机组产55℃热水1600L/h,此时运行1台机组每天工作13个小时可产水20.8吨,可完全满足用水需求。

故选PHNIX水源热泵热水机组PWSHW-130SB2台。

5、运行流程(见热水系统图)

供水系统:热泵机组→保温水箱→热水使用端

设定热水水温(设定在50~60℃),启动热泵机组工作,吸收酒店冷水机组的冷却水(或生活余热水)中热量,将进入机组的冷水直接加热至使用温度后贮入保温水箱,再经原加压水泵系统进入管网供用水单元使用。

循环系统:热水管末端→回水管→保温水箱→热泵机组

热水管末端装回水管,回水管设置电磁阀,当回水管网最不利点水温低于使用温度时,电磁阀打开,多余热水回至保温水箱;

当保温水箱水温低于使用温度时,循环泵工作,将水箱水抽回热泵重新加热,确保保温水箱、管网水温在55℃~65℃。

设备全自动运行,无须专人值守。

6、水源热泵热水机组说明

1)工作原理

运用逆卡诺循环原理,机组中的吸热介质(冷媒)从水(水冷机组的冷却水、冷冻水、生活余热废水等)中吸取能量,并通过热泵系统(压缩机、水换热器、膨胀阀、换热器),使冷水迅速升温至50~60℃。

2)技术参数表

设备型号PWSHW130SB

直热式运行额定制热

制热量KW34输入功率KW9.7输入电流A17.4产水量L/H730

循环式运行额定制热

制热量KW32输入功率KW10.7输入电流A19.1产水量L/H2750

电源(50Hz,相-电压)380-3-50压缩机数量1

压缩机形式全封闭涡旋式

水泵

功率W550

扬程m12噪音db(A)50

热源侧换热器

形式高效套管换热器水流量M3/H9.5

进水管接口DN50

出水管接口DN50

使用侧换热器

形式高效套管换热器自来水管接口DN25

循环水进水管接口DN25

热水出水管接口DN25

主机尺寸(长、宽、高)mm1030/728/1035

净重/毛重(Kg)Kg265/285

直热式额定测试工况:热源侧进/出水温度:5℃/-℃,自来水进水温度15℃,出水温度为55℃;

循环式额定测试工况:热源侧进/出水温度:5℃/-℃,循环进水温度45℃,出水温度为55℃;

3)热泵机组性能特征

a、性能稳定

由于水源热泵热水机组的热源侧水源温度高,大于10℃,确保

热组始终在最优工况下工作,解决了其它类型热泵在寒冷气候和高

温气候时热泵工作的不平稳、压缩机超负荷运转的两大难题。

b、超高能效、经济节能

机组与水冷螺杆、离心、活塞制冷机组配合时,采用空调冷却

水作为热源,机组产水量大,降低了空调冷却系统负荷,提高制冷

能效。

c、直热供水、循环恒温

机组采用直热式供水,循环恒温,采用最新冷媒、水流量组合控制技术,具有出水量大、高能效恒温等优点。

d、模块设计、多重保护

系统采用模块化设计,微电脑控制,机组人性化操作设计,具有自动、直热、循环等模式切换功能,防冻、高低压等保护装置。

7、运行费用经济性分析

选用设备每吨(60℃)热水费用

水源热泵热水机组7.8元/吨

空气源热泵9.8元/吨

燃油锅炉17.5元/吨

燃气锅炉15元/吨

注:按每天加热20吨20℃-60℃的生活用热水计算,电价及燃油价格由当地和时间差而有所不同。

运行时间水源热泵热水机空气源热泵热水机燃油锅炉燃气锅炉

每天运行成本(元)156196350300

每月运行成本(元)

46805880105009000

每年运行成本(元)

5616070560126000108000

十年运行成本(元)

56160070560012600001080000

可见,水源热泵热水机组运行十年的费用成本可比燃气锅炉节省了45万元。

8、结语

水源热泵热水机组在空调制冷季节(广东地区每年至少8个月以上,本项目全年制冷工况运行)均为水源热泵工况工作,热源稳定,且降低中央空调冷却系统负荷,减少冷却塔投入数量,大大提高制冷能效,节能效果非常可观。

对污水源热泵方案建议

酒店洗浴会所生活热水余热回收+井水源热源系统建议书 2016-04 **有限公司

目录 第一章水源热泵系统的特点及介绍 (2) 一、水源热泵系统的特点 (2) 二、水源热泵系统介绍 (3) 1、井水源系统 (4) 2、生活热水废水系统 (4) 第二章项目介绍及系统设计描述 (5) 一、项目概况 (5) 二、设计依据 (5) 三、冷热源估算 (6) 1、泳池废水用量 (6) 2、地下井水量 (6) 四、冷热源提供热量计算 (6) 1、冬季工况 (6) 1)生活热水废水用量 (6) 2)淋浴头及地下井水量 (7) 3)结论 (7) 2、夏季工况 (7) 1)生活热水废水用量 (7) 2)淋浴头及地下井水量 (8) 3)结论 (8) 五、冷热源系统流程图 (8) 六、机房面积估算 (8) 第三章水源热泵系统与其他系统的比较 (9) 第四章水源热泵机组介绍 (11) 第五章初投资分析 (15)

第一章水源热泵系统的特点及介绍 一、水源热泵系统的特点 由于水源热泵技术利用地表水作为各机组的冷热源,所以其具有以下优点: 1、属于可再生能源 利用技术水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供热系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 2、高效节能 水源热泵机组可利用的水体温度冬季为10-35℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。据美国环保署EPA估计,设计安装良好的水源热泵,平均来说可以节约用户30~40%的供热的运行费用。 3、运行稳定可靠 水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 4、环境效益显著 水源热泵是利用了地表水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以说,

如何使空气能热泵热水器运行更节能、省钱

如何使空气能热泵热水器运行更节能、省钱 在十几年的推广应用中,商用空气能热泵热水器应用在酒店、宾馆、学校、医院等用水量大的地方突显成效,主机的工作时间多数达到总时数50%以上,性价比合理体现。在黄河流域以南地域的不完统计,一般对用户的保证为全年平均每吨水用电在13度,与其它常规能源比有明显的优势。 实际应用中主要是大循环加热方式、定温放水加热方式、直接过水加热方式和静止加热方式四种,以上四种加热方式分别就应用效果简要分析。 大循环加热方式的特点是系统简单,施工方便、投资小,适用于集中用水的场合,一箱水用完,再放满水进行加热,是节能明显的方案。如果是连续用水随时补水就会因温差加热控制主机启动长期工作在高温段40-55度,是系统工作COP值最低的温区,没有明显的节能效果,这类用户的结论是空气能不节能,等于花高价买了电锅炉。所以大循环加热方式在连续用水的工作环境,不可采用。 定温放水实际上是把加热水箱和储热水箱分开的制水和用水分开的加热系统,加热水箱可以是内置盘管的静止加热方式,也可以是循环加热方式。当加热箱小水箱的水达到了设定的温度就向储热水箱大水箱中放水;当大水箱中满水时,小水箱继续加热作补水储备,也就是说大水箱必须有容积满足小水箱的容积,同时小水箱水达到设定温度值二个条件才可以。这种加热方式充分分挥了热泵的优势,从自来水的初始水温加热到设定水温平均能效最高。我们曾多次提到空气源热泵是泳池加热的首选,泳池水要求26度,空气源热泵在标准工况下进行恒温加热,5度左右温差恒温加热能效可达到8。所以定温放水加热方式是空气能热泵热水器系统最节能的最可靠的加热方式。这种方式系统比大循环复杂,控制上要求较高、成本稍高,但高出的初投资和节能效果上比是最合理的。 直出水机在稳定的自来水压力和较高的环境中况下直出设定温度热水的空气能热水系统,一种采用电子控制电动阀变化开启度的方法变化出水量,保证出水温度的方法;另一种是通过主机系统工作变化,采样后传送给比例阀变化开启度变化出水量保证出水温度的方法,该系统对自来水的压力,环境温度敏感。气温变化对出水量影响很大,所以要按当地最低温时产水量选择热泵机组,自来水压力不稳定的地区不宜选用。这类机型多适用于我国南方。北方地区有霜冻区域不宜选用。长时间连续工作易结霜,用水温度质量要求高,管路做回水加热恒温的不宜选用。 静止加热方式类似于目前常见的家用型热水器,但是多数为开式非承压水箱,这部分可以用于定温放水的小水箱部分作加热水箱,也可以直接对储热水箱大水箱进行加热。这种方式的出现是因为有些地区水质较差或选用地下水,造成对主机加热部分换热器的堵塞,很难清洗,采用这种开式加热方式方便清洗,甚至可以更换加热器,解决了水质差,地下水区域的空气能热水器的应用难题。 以上四种方式尽管定温放水加热方式节能适用,但是如果巧妙的进行系统管理会出现节能奇迹。 工程上为了保证供水经常采用超大容量蓄水法,就是正常用水量10吨储备15-20吨。

(完整版)直热式和循环式对比分析

直热式与循环式对比分析 机组原理: 芬尼克兹(PHNIX)热泵运用逆卡诺原理,以极少的电能,吸收 空气中大量的低温热能通过压缩机的压缩变为高温热能来加热热水,所以它能耗低、效率高、速度快、安全性好、环保性强,源源不断的供应热水。作空气源热泵工作原理图为热水系统它具有无以比拟的优点。热泵热水机组遵循能量守恒定律和热力学第2定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境下的热量去加热制取高温的热水。它的原理与空调雷同。 芬尼克兹(PHNIX)机组特点——直热式热泵热水机组与循环式热泵机组特点比较 直热式: 芬尼克兹(PHNIX)直热式热泵热水机组,自来水直接进机组,低温自来水直接吸收高温冷媒的热量,使冷媒得到充分冷却,系统高压压力降低,压缩机克服系统压力所消耗的电能比较少 ,机组运行效率高.由于直热式的进水永远是常温,压缩机的排气温度变化不大,对压缩机的冲击较小能起到保护压缩机的作用,从而延长压缩机的寿命。 循环式: 循环式热泵热水机组,该机组的补水是先补进保温水箱,然后经过循环泵进入机组加热,它的进水温度不断的再改变,压缩机的排气温度和排气压力也不停的在变,势必会对压缩机造成冲击,特别是水箱相对高温热水进行循环加热的时候,对压缩机冲击很大。因为,冷媒没有充分冷却,系统长期处于高压状态,压缩机克服系统压力所消耗的电能比较多,压缩机的寿命会缩短。 所谓循环式空气能热泵热水机,指的就是被加热的水反复多次循环才能被加热到设定的温度;直热式空气能热泵,指的是被加热的水循环一次就被加热到设定的目标温度;该技术区别于传统的需要反复多次进出空气能热泵加热才能达到设定温度的循环式空气能热泵。其特点是:1、由于被加热的水是一次性就被加热到设定的热水温度,对于用户来说用水舒适性得到可靠的保证,不会因为在用水过程中水温变化影响用水的舒适性。 芬尼克兹(PHNIX)直热式特点: 1、芬尼克兹(PHNIX)直热式热水机采用了先进的水路控制系统,使用了进出水感温头和电子流量计,通过出水温度来控制水路上的电动阀来调节水流量,从而达到自主的控制出水温度的要求。这样水温控制精确,方便调节水温。保证系统安全。

常见的热泵热水系统

常见的热泵热水系统暖通南社2019-06-14 08:01:00 热泵热水机组热水供应系统的组成: 热水制备系统(第一循环系统): 热水供应系统(第二循环系统):

热水制备系统按水箱的蓄热方式可分为两种: 单水箱系统:设一台满足日用水总量的热水箱,适用于定时集中供水的场所。 双(多)水箱系统:是在热水供应系统中设有多个水箱:一台加热水箱(小容积),几台蓄热水箱(大容积)。适用于宾馆、饭店等需要24小时提供热水的场所。 选择位置: 1.安装位置要有足够空间; 2.安装位置应尽量远离生活、工作区; 3.机组安装室外,要做好防风防雨设施; 4.机组安装时应注意风向; 5.机组安装位置要便于排水。 热泵热水系统设计要求:

1.机组安装要找平找正,固定在建筑物的高层或地面基础上,基础负荷应满足要求,基础高度不小100mm。 2.机组用地脚螺栓固定,安装时必须采取减振措施。 3.用户侧水系统管路材料可以选择:镀锌焊接钢管、无缝管、紫铜管、不锈钢管、铝塑管、PP-R管。 4.为防止震动的传播,连接机组的水管要加装橡胶软接头,使用软性护线管。 5.水系统管路应当选用优质的保温材料,保温厚度视当地环境和保温材料的保温性能而定。 6.设备、管道、阀门、仪表的安装,要符合相关安装规范,要便于检修;管道支架要符合相应材质、型号强度要求。 7.在水系统的凸出部位及最高位置应安装自动排气阀;水系统管路的最低处应设置排水(排污)阀。 8.热泵热水机组用户侧生活用水,要符合《生活饮用水卫生标准》,严禁直接使用地下水、河水、湖水等未经处理过的水源;不符合要求的水源必须安装水处理设施。 9.为防止杂质进入机组发生堵塞,机组进水管路必须安装过滤器,要便于清洗。 10.在机组的进出水管上,应分别安装直读式温度计和压力表,室外安装要采取防冻措施,在生活用水水源处加装水表,以便观察和分析系统、机组的运行情况。 11.机组安装时,在水系统进出水口合适位置分别预留系统清洗口,便于对系统定期检查和清洗。 12.为保证机组正常工作,在名义工况下水系统的水流量和流速,必须满足进出水温差不高于5℃。 13.机组安装完毕后,水系统必须进行清洗和水压试验。 开式水箱热水系统:

空气源热泵热水器的原理和发展史

空气源热泵热水器的原理和发展史 追溯其渊源,空气能热水器应该算是个舶来品。空气源热泵技术1924年就已在国外发明。然而在很长的一段时间里并没有被人类充分地认识和运用。直到20世纪60年代,世界能源危机爆发以后才受到充分的重视,所以此后世界各国纷纷加大了研发力度,进一步推广了热泵技术,使得目前热泵技术已经比较广泛地使用。20世纪70年代初期,由于"能源危机"的出现,热泵又以其回收低温废热,节约能源的特点,在产品经过改进后,更受到了人们的青睐。比如美国,热泵的产量从1971年的8.2万套/年猛增至1976年的30万套/年,1977年再次跃升为50万套/年,而此时日本后来居上,年产量更超过50万套。目前热泵市场每年都在成倍增长,发展势头相当迅猛。在欧美大多数发达国家,如澳大利亚、英国、法国、北欧及南欧的一些国家,热泵产品已经进入了大多数家庭,而在我国的毗邻国家如新加坡、马来西亚等也是热泵热水器使用比较普遍的国家。 相对来说,空气源热泵热水器在我国起步则比较晚,国内厂商关注该产品也是近几年的事情。由于前期在产品的导入时,市场培育不够,因而无论是从技术还是从产品上来看均还处在初级发展阶段。而这两年来,在各方面能源紧缺的情况下,空气源热泵热水器逐渐被广大厂商重视起来,尤其是近两年来有了比较大的增长,单就生产企业也由屈指可数的几家突飞猛进爆涨到目前的几十家甚至近百家。还有一些手工作坊或者纯粹靠贴牌组装而卖产品的则更加不在少数。而04年进入的数家空调企业更加壮大了这一队伍的规模。

总体来说,就目前而言,国外的空气源热泵热水器市场已经相当成熟,在发达国家使用的比例有的高达70%,比如在新加坡、欧美的一些国家等。就是在中国的香港和台湾地区也有将近50%的推广使用力度。只是受国内消费和经济发展规律的影响,空气源热泵热水器也是在近4年才被引进并在小范围内推广使用,而且是集中在经济发达的两个三角洲地区。据市场的统计数据来看,虽然该产品在国内上市只有短短几年时间,但是增长的速度却非常快。2002年时,它的销售额还不到1000万元,但是到2003年,它已达到了3000万元,2004年则达到8000万到1个亿。按照预算估计,2005年,热泵产值会超过三个亿。可以说,就象前几年互联网接入时的发展速度一样,整个行业销售增长率将以几何基数增长,市场空间十分巨大。 四、什么是空气源热水器: “空气能”热水器是一种采用空气热能生产热水的热水器。通过电能驱动空气压缩机搬运空气中的热量,通从冷媒的膨胀和压缩实现与水的热交换。它是继燃气热水器、电热水器和太阳能热水器之后的第4代热水器,它综合电热水器和太阳能热水器的优点安全、节能、环保型热水器,可一年三百六十五天全天候运转,制造相同的热水量,使用成本只有电热水器的1/4,燃气热水器的1/3,太阳热水器的1/2。 五、空气源原理: 空气源热水器以制冷剂作为媒介,冷媒吸收了环境空气中的热量后汽化,通过压缩机压缩制热,变成高温高压气体,再经热交换器与水交换热量后,经膨胀阀释放压力,回到低温低压的液化状态,通过制冷剂的不断循环,不断吸收空气中的低品位热量,并将该部分热量转移,来制取热水。 在自然界中,水总由高处流向低处,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温传递到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范

05商用B系列直热循环型热泵热水机组

05商用B系列直热循环型热泵热水机组

第五章商用B系列直热循环型热泵热水机组 一、产品概述 1、产品特点 直热循环型空气源热泵热水机组,采用先进的水路自控系统,冷水进入机组后即被加热到55℃,直接进入储热水箱供用户使用且水箱内水温下降时可以自动循环保温,确保水箱内热水温度。机组在-7~43℃范围内,一年四季全天候工作,不受阴雨等恶劣天气影响,被广泛应用于宾馆、工厂、公寓、别墅、发廊、浴足、泳池等各种需要生活用水的场所。

模块化设计,有12kW、20kW、39kW三种冷量的模块可选。通过组合1~16个相同或不同的单元模块,可形成制热量在12~624kW范围的系列产品,满足不同工程的需要。 ●出水温度高 采用先进的水路控制系统,出水温度高,出厂时设定在55℃,最高出水温度可达60℃。 ●产水迅速,开机就有热水 直热型设计,冷水进入后即被加热到可使用的温度,开机就有热水,产水量大而且迅速。 ●能效比高 能效比高,平均能效达4.5以上,最高达5.8,同等能耗下的产水量远远高于其他热水装置。 ●运行安全、可靠 采用热泵方式制取生活热水,区别于使用电或者燃料直接加热热水的方式,消除了传统热水器具有的易燃、易爆、煤气中毒、触电等危险;且先进的微电脑控制系统,保护功能齐全,从根本上杜绝了漏电、干烧、超高温等安全隐患。 - 22 -

经专家反复研究实验,优化后的设计,结构紧凑美观,控制方便简洁,性能安全可靠,能效领先国际;且关键零部件均采用国际知名品牌,配合本公司精心制作,每台机组出厂前均通过严格的性能测试,保证机组能长期稳定高效运行。 ●控制简洁、方便 微电脑全自动控制,无需专人值守。友好的全中文人机界面,系统状况一目了然,多模块网络化控制,一套系统可以控制多达16台主机,且控制方便简捷,只需轻轻一按,即可产出热水。 ●安装灵活 机组紧凑轻巧,便于运输,无需专用机房,安装灵活;模块化的设计,自由组合,扩展方便;简单的管路系统,维护轻松简便,适合各类工程。 ●环保 采用逆卡诺循环的热泵技术,吸收空气中的热量加热生活用水。在运行过程中没有任何气体排放,属于绿色环保型产品。不会像煤、油、气等矿物燃料那样,在燃烧过程中会污染环境。 - 22 -

空气源热泵热水器国家标准全文

空气源热泵热水器国家标准 中华人民共和国国家质量监督检验检疫总局发布 中国国家标准化管理委员会 前言 本标准附录B为规范性附录、附录A为资料性附录。 本标准由中国机械工业联合会提出。 本标准由全国冷冻空调设备标准化技术委员会(SAC/TC 238)归口。 本标准主要起草单位:广州中宇冷气科技发展有限公司、合肥通用机械研究院、江苏天舒电器有限公司、、广东美的商用空调设备有限公司、合肥通用环境控制技术有限公司。 本标准准参加起草单位:大连冰山集团有限公司、重庆九龙韵新能源发展有限公司、北京同方洁净技术有限公司、广州恒星冷冻机械制造有限公司、艾欧史密斯(中国)热水器有限公司、浙江正理电子电气有限公司、北京华清融利空调科技有限公司、佛山市伊雷斯制冷科技有限公司、劳特斯空调(江苏)有限公司、浙江星星中央空调设备有限公司、泰豪科技股份有限公司、广东申菱空调设备有限公司、上海富田空调冷冻设备有限公司、艾默生环境优化技术(苏州)研发有限公司、(中外合资)滁州扬子必威中央空调有限公司、宁波博浪热能设备有限公司。 本标准主要起草人:覃志成、张秀平、张明圣、王天舒、舒卫民、李柏。 本标准参加起草人:俞乔力、朱勇、刘耀斌、袁博洪、邱步、凌拥军、黄国琦、区志强、丁伟、沙凤岐、黄晓儒、易新文、姚宏雷、文茂华、谢勇、王磊、钟瑜、王玉军、汪吉平。 本标准由全国冷冻空调设备标准化技术委员会负责解释。 本标准是首次制定。 商业或工业用及类似用途的热泵热水机 1、范围 本标准规定了商业或工业用及类似用途的热泵热水机(简称“热水机”)的术语和定义、型式与基本参数、要求、试验方法、检验规则、标志、包装、运输和贮存等。 本标准适用于采用电动机驱动,蒸汽压缩制冷循环,名义制热能力3000W以上,以空气、水为热源,以提供热水为目的热泵热水机,其他用途的热泵热水机也可参照使用。 2、规范性引用文件 下列文件中的条款通过本标准的引用而构成本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191包装储运图示标志(GB/T191—2000,eqv ISO 780:1997) GB/T 1720 漆膜附着力测定法 GB/T 2423.17电工电子产品基本环境试验规程试验Ka:盐雾试验方法(GB/T 2423.17---1999,eqv IEC60068-2-11:1981) GB/T2828.1计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T 2828.1—2003,ISO 2859:1999 IDT) GB/T 6388 运输包装收发货标志 GB 8624建筑材料燃烧性能分级方法 GB/T 10870—2001容积式和离心式冷水(热泵)机组性能试验方法 GB/T 13306 标牌 GB/T 13384 机电产品包装通用技术条件 GB/T 17758单元式空气调节机 GB/T 18430.1蒸汽压缩循环冷水(热泵)机组第1部分:工商业用和类似用途的冷水(热泵)机组

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

直热式和循环式空气源热泵热水机对比分析

直热式与循环式空气源热泵热水机对比分析 机组原理: 芬尼克兹(PHNIX)热泵运用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能通过压缩机的压缩变为高温热能来加热热水(图1),所以它能耗低、效率高、速度快、安全性好、环保性强,源源不断的供应热水。作空气源热泵工作原理图为热水系统它具有无以比拟的优点。空气源热泵热水机组遵循能量守恒定律和热力学第2定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境下的热量去加热制取高温的热水。它的原理与空调雷同。 图1 芬尼克兹(PHNIX)机组特点——直热式空气源热泵热水机组与循环式热泵机组特点比较 直热式: 芬尼克兹(PHNIX)直热式空气源热泵热水机组,自来水直接进机组(图2、3),低温自来水直接吸收高温冷媒的热量,使冷媒得到充分冷却,系统高压压力降低,压缩机克服系统压力所消耗的电能比较少 ,机组运行效率高.由于直热式的进水永远是常温,压缩机的排气温度变化不大,对压缩机的冲击较小能起到保护压缩机的作用,从而延长压缩机的寿命。 循环式: 循环式空气源热泵热水机组,该机组的补水是先补进保温水箱,然后经过循环泵进入机组加热,它的进水温度不断的再改变,压缩机的排气温度和排气压力也不停的在变,势必会对压缩机造成冲击,特别是水箱相对高温热水进行循环加热的时候,对压缩机冲击很大。因为,冷媒没有充分冷却,系统长期处于高压状态,压缩机克服系统压力所消耗的电能比较多,压缩机的寿命会缩短。 所谓循环式空气源热泵热水机,指的就是被加热的水反复多次循环才能被加热到设定的温度;直热式空气源热泵热水机,指的是被加热的水循环一次就被加热到设

污水源热泵影响因素

1.影响热泵系统运行的因素 水量、水温、水质和供水稳定性是影响污水源热泵系统运行性能的重要因素。 1. 1污水流量对热泵系统的影响 在热泵机组运行时,若污水流量过低,不利于机组的安全运行;污水流量过高时循 环水泵的功率就会增大,耗电量增加。 假设其它条件不变分析水流量对热泵机组性能的影响。在制冷工况下,当增大水的流量时,换热器的出口水温就会降低,换热系数增大,从而制冷量增加。然而,当水的流量增加到一定值时,换热系数不再增加,制冷量达到一定值不再变化,如图1.1。同样的,在冬季工况下增大水的流量时,水侧换热系数增大,蒸发温度升高,从而制热量也会增加,如图1.2 水量也会对热泵COP产生一定的影响。如图1.3所示,在夏季制冷运行时,增加冷凝器的水流量会导致冷凝压力的降低,使得压缩机的输入功率降低,从而COP值增大。然而,当水的流量增加到一定值时,COP值的增加速率趋于稳定。同样地,图1.4中的冬季制热运行时,增加蒸发器中水量使得热泵COP值增大。因为在蒸发压力增加的同时,压缩机内蒸汽的比体积增加虽然会导致工质的质量流量增加,但压缩比减小又使得单位质量压缩功下降,两者作用相互抵消,使得压缩机输入功率增加的幅度较制热量增加的幅度小,所以COP值增加。 图1.1 夏季工况下水流量和进水温度对制冷量的影响

图1.2 冬季工况下水流量和进水温度对制热量影响 1. 2污水温度对热泵系统的影响 在夏季制冷工况下,污水源热泵机组使用污水作为冷源,水的温度越低越好;在冬 季工况下污水作为热源时,温度则是越高越好。而且蒸发温度要适度,不能过高,否则 会导致压缩机的排气温度过高,可能导致润滑油发生炭化。因此,污水温度在200 C左 右时机组的制热和制冷将处于最佳工况点。 水温对热泵COP值是有一定影响的。夏季制冷时,如果升高冷凝器入口处的水温,则会导致冷凝压力的增加,此时制冷量会降低,同时压缩机的功率会增大,COP值反而 下降,如图1.3所示。冬季以制热工况运行时,如果升高蒸发器入口处的水温,则会导 致蒸发压力的增加,制热量增大,此时压缩机功率的增加速度较为缓慢,热泵COP值 增大。然而,当水温增加到一定值时,热泵的COP值不再发生改变,如图1.4

热泵技术及直热循环式与循环式热泵对比

热泵技术及直热循环式与循环式热泵对比 生活热水供应是人民生活质量提高的必然。热泵热水机组是当前最为节能、环保、安全、可靠的制取生活热水的设备。随着改革、开放,人民的生活有了极大的提高。城里每家每户都有了煤气供应,大大方便了烧热水。以后电热水器、燃气热水器大量进入寻常百姓家,每个家庭用热水有了保证。至于酒店、宾馆等等商业设施,自然必须有集中的热水供应。目前,就连学生宿舍、小区住宅,都纷纷安装上了中央热水系统,保证了人们对于热水的需求,洗脸洗澡,做饭洗菜等都用上了热水,使人们沐浴在一个“温暖、温馨”的天地里。 当前生活热水供应的耗能是很高的,椐统计,城市各类商业建筑生活热水的能耗约为其建筑总能耗的10-40%(其中,写字楼约为2.7%;商场10.7%;饭店31%;医院41.8%);城市民用建筑生活热水能耗约为其建筑总能耗的20-30%。而建筑能耗约占整个社会总能耗的30%,这样折算下来,热水的能耗约为整个社会总能耗的3-4%,根据估算,为满足全国城镇居民生活热水供应(年人均耗用热水25-35 升/日),一年约要耗用相当于1750 亿到2450 亿度电的能量。节能是热水技术发展的永恒主题,高能耗是常规热水技术无法克服的缺点。 热泵技术是一种热能回收技术,使用热泵技术,利用空气中、水中所蕴藏的趋于无限的能量,一年四季都可以将空气中和水中取出的热量来制造热水。利用热泵原理制造的热水机组是一种热效率大于1 的设备。无论是水源热泵或者空气源热泵,都是可以吸取低温水源或空气源的热量,再将这一些热量连同本身所消耗的一部分电能所转化的热量,转送到常温环境条件下去应用。就拿空气源热泵热水机组而言,利用了制冷工质循环过程的“泵”热原理: 少量电能驱动机组进行,单位时间用电量为Q1;机组运行,利用制冷剂的相变从空气中吸收大量热能Q2;冷水进入机组,被加热成高温热水,得到Q3。 根据能量守恒定律:输入能量=输出能量即Q3=Q1+Q2 标准工况下:Q2=3.6Q1,故Q3=Q1+3.6Q1=4.6Q1 性能系数COP=输出能量/输入能量=Q3/Q1=4.6 即相当于消耗1kW的电能得到4.6kW的热能。 其中从空气中吸收的热能Q2是免费的,故公式中“输入能量”不包括Q2。

~~空气源热泵热水机形式对比分析

第11卷 第3 期2011年6月 REFRIGERATION AND AIR -CONDIT IONING 20-23 收稿日期:2010-11-08 作者简介:张剑飞,本科,助理工程师,主要从事制冷与空调方面的研究。 空气源热泵热水机形式对比分析 张剑飞 秦妍 (大连三洋压缩机有限公司) 摘 要 针对使用相同型号压缩机的一次加热式与循环加热式热泵热水机进行试验研究。分别对机组的主要参数如水流量、冷凝温度、蒸发温度、过冷度、吸气过热度进行对比分析,同时对两者运转情况和除霜方式进行简要对比。 关键词 空气源;热泵热水器;一次加热;循环加热;性能 Comparative analysis on the forms of air source heat pump water heater Zhang Jianfei Qin Yan (Dalian SANYO Com pressor Co.,Ltd.) ABSTRACT Studies one -time heating H PWH (heat pump w ater heater)and circulate heating H PWH w ith the same co mpr essor by contrast ex perim ent.M akes a co mpar ative analy sis of main parameters o f the units,such as w ater flo w rate,co ndensing tem pera -tur e,evaporating temper ature,subco oling ,superheat,meanw hile makes a simple com -parison of o peratio n condition and defro sting w ays of tw o units. KEY W ORDS air source;heat pump w ater heater;one -time heating;circulate heating;per -formance 空气源热泵热水机是继锅炉、燃气热水器、电热水器和太阳能热水器之后的第4代热水制取装置。周峰等[1] 给出了几种热水器形式的对比,见表1。从表中可以看出,热泵热水机在多方面都具有明显的优势,在能源供应日益紧张的今天,空气源热泵热水机凭借其高效、节能、环保以及安全等诸多优势势必会成为未来应用的主流。 国外同类产品已经相当成熟,在发达国家的使用比例有的高达70%。在日本其应用已经普及,生活热水工程中有60%~70%使用空气源热泵热水机;在澳大利亚达到30%~40%;在欧洲、美洲也有大量应用[2]。 但是我国引入该技术时间并不长,这一产品的技术成熟度还较差。因此,对热泵热水机产品进行全面、深入的了解,以便更好地设计和应用是非常必要的。笔者针对国内市场广泛应用的2种不同形式的热泵热水机进行对比分析,就影响机组性能的主要参数如水流量、蒸发温度、冷凝温 度、过冷度、过热度等进行比较研究,同时对两者的运行状态和除霜方式进行简单对比。 表1 几种热水器对比 热水器种类空气源热 泵热水器 电热水器 太阳能热水器燃气热水器燃料种类电电 电 天然气有无污染 无无无 有有无危险性无有触电隐患有触电隐患危险是否方便方便较方便不方便较方便燃值860k cal/(kW #h)860k cal/(kW #h )860kcal/(k W #h)9000kcal/m 3热效率370%95%280%70%燃料单价0.5元/千瓦时0.5元/千瓦时0.5元/千瓦时2.0元/米3 120升水的费用/元 0.752.941.01.5年运行费用/元 273.8 1073.1 365 547.5 1 热泵热水机形式介绍1.1 热水机分类 GB/T 21362)20085商业或工业用及类似用途的热泵热水机6中已给出明确的分类,热水机按制热

污水源热泵文献综述

城市污水源热泵的探析 摘 要:随着全球气候变化、不可再生能源的日益枯竭问题的日益凸显,节能与环保重要性更加突出。城市污水作为一种清洁能源,对其所携带的废热的利用的研究受到国内外专家的关注。污水源热泵技术作为一种新型能源技术,可充分利用污水中得废热,实现污水的资源化。本文简要介绍了我国污水资源的现状,污水源热泵的工作原理、分类,污水源热泵系统在国内外研究现状,分析了污水热泵节能环保方面的优势,以及污水源热泵当前遇到的难题及解决方法。 关键词:节能环保; 污水源热泵; 废热利用; 经济 0、前言 随着经济的迅速发展、人口的增加、常规能源的大量消耗,能源供需形式日趋紧张。能源资源短缺对世界经济发展的约束性日益突出。据世界能源年鉴数据统计,截止到2010年,中国石油可采储量为148亿吨,占世界总量的1.1%,世界排名第14;天然气可采储量为2.8万亿立方米,占世界总量的1.5%,世界排名第14;煤炭储量为1145万吨,占世界总量的66.8%,世界排名第3。可见中国能源储量在总量十分丰富。但是人均水平却只相当于世界人均水平的 6.4%、5.6%、66.8%,人均资源储量非常,远远低于世界水平。 20世纪50年代以来,中国的能源工业开始发展,特别是改革开放以后,能源的开采和供给能力不断的增强,促进经济的快速发展;20世纪90年代末,能源对外开放和投入的增加缓解了能源对经济发展的制约。1993年,中国成为石油净进口国,1996年中国成为原油净进口国;21世纪以来,能源供需形势又日趋紧张,中国经济面临着能源的严重挑战 [1]。中国能源的开采和供需面临着资源约束,特别石油是对外依存度的提高[2]。 能源的短缺严重制约着中国经济的发展,开发洁净能源和可再生能源越来越受到国内外专家学者的关注。高污染、高耗能、低效益的发展模式不仅极大的浪费了一次性资源,对环境的污染也非常严重,因而改善能源结构、提高能源利用率尤为重要。对开发地热能、太阳能等新能源、煤炭净化、余热回收等研究的推广称为如今的热点。 一.余热利用 余热利用是指回收生产工艺过程中排出的具有高于环境温度的气态(如高温废气)、液态(如冷却水、生活废水)、固态(如各种高温钢材)物质所载有的热能,并加以重复利用的过程。余热是能源利用过程中没有被利用的、废弃的能源,它包括高温废气余热、冷却介质余热、废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余热等七种。 我国余热普遍存在,特别冶金、化工、纺织等行业的生产过程中、城市排放生活污水中存着这丰富的余热资源。这些余热余压以及其它没有得到利用的余能不仅造成能源的浪费,而且还污染了环境。 1.1工业余热 统计数据表明,我国工业余热资源的回收率仅为33.5% [3]。回收利用潜力巨大。城市消耗了全球近60% 的水资源,它排放的污水中的余热巨大,回收价值高。 工业余热按照能量形态分为三大类,即载热性余热、可燃性余热和有压性余热。 (1)载热性余热 载热性余热指的是工业生产过程中排出的废气和物料、产物等所带走得高温热以及化学反应热等。例如:燃气轮机、内燃机等动力机械的排气,钢厂产品所携带的热,钢厂厂冷却水、凝结水所携带的显热,炉窑产生的高温烟气、高温炉渣、高温产品等。 (2)可燃性余热

格力商用循环型空气能热泵热水机组

第四章商用循环型空气能热泵热水机组 一、产品概述 1、产品特点 商用循环型空气能热泵热水机组利用热泵原理,以消耗一部分电能为补偿,通过热力循环,从周围空气中吸取热量,通过压缩机将其输送至冷凝器,将来自水箱内的水循环加热至生活或生产所需要的目标值(30 ~ 58℃可调)。商用循环型空气能热泵热水机组分为单机系列和模块化系列,共有18kW,36kW,65kW 三个基本模块,对于模块化机组,通过组合1 ~ 16 个相同或不同的模块,机组可以形成制热量为18 ~ 1040kW 范围内的系列产品。商用循环型空气能热泵热水机组因其节能,高效,环保而广泛应用于工厂、宾馆、酒楼、医院、美容院、洗衣店、洗浴中心和热水应用量较大的其他场合。 ◆环保节能 机组运行过程中没有任何排放气体,绿色环保。并且运行节能,平均能效达4.5 以上(最高达 5.8)。 ◆安全可靠 完全实现水电分离,消除了传统热水器具有的易燃、易爆、触电、煤气中毒等危险;且先进的微电 脑控制,保护功能齐全,从根本上杜绝了漏电、干烧、超高温等安全隐患。 ◆精心设计 采用名优压缩机, 系统稳定可靠; 电子膨胀阀节流,可调节范围更广更精确; 热水专用套管式冷凝器,适用水质范围广,不易脏堵,机组使用寿命长。 ◆模块化设计,自由组合 格力专利的模块化设计,最多16 台机组自由组合,任意一台机组均可作为主控模块; 组合灵活,拓展性强。 ◆全年全天候制热, 热水温度自由可调 产品环境温度范围为-7 ~ 43℃,满足全年全天候制热,并且热水温度可以根据用户实际使用需求, 从30 ~ 58℃任意可调, 机组运行时温差小, 水温上升平稳,满足不同用户的个性化需求。2、产品命名规则 K F RS - 36 □ S M □ / □ A S 11 10 9 8

空气源热泵热水机组工作原理图

空气源热泵热水机组工作原理图 冷水水源直接进入热水机组入水口,热水机组按设定的温度进行加热,加热后的热水进贮水保温水箱,然后通过循环泵从保温水箱抽水送入系统中。它是吸收空气中的热能,利用电能驱动压缩机工作,把空气中的低品位热能吸收并提升,再传输到热水中。它是以电能来驱动工作,而非电能来制热。燃油锅炉由于燃油的价格高,产生的效能并不高。电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏。 热泵是通过消耗一部分高品质的能量从低温热源(空气)转移到高温热源(热水)中的一种装置。转移到高温热泵(热水)中的热量QH包括消耗掉的高品质电能W和从低温热源(空气)中吸收的热量QL,根据能量守恒原理及热力学第一定律,有QH=W+QL (1)

(1)式两边同除以W则QH=1+QL ……(2)式中QH为机组所获得的能量,储存于热水中;W为机组所消耗的电能;QL为来自空气中的热量,这部分能量来自于大自然的馈赠,不论环境温度如何变化,它总是以热焓的形式寄存于空气之中,所以热泵是一种高效节能的制热装置。定义能效比(COP)为热泵机组产出的热量与投入的电能之比,即产出投入比COP=QH代入(2)式,即WCOP=1+QL …… (3)WCOP是与低温热源的热力参数相关的函数,对空气源热泵而言,其值随空气的温度、湿度等参数的改变而变化,但无论如何变化,由(3)式可知:显然COP值恒大于1,即热泵的热效率突破了传统加热设备的热效率极限100%,这就是热泵节能的热力学依据。 热泵不是热能的转换而是热量的搬运设备,热泵制热的效率,不受能量的转换效率(100%为其极限)的制约,而是受到逆向卡诺循环效率的制约,其理论上的最高效率为(工作温度+273.15)/高低温差。只要有效降低工作温差就可以提高制热效率。

浅析国内污水源热泵

浅析国内污水源热泵 城市污水是由工业废水和生活污水组成,水量巨大,是一种蕴含丰富低位热能的可再生热能资源,污水源热泵空调系统则是以城市污水作为建筑的冷热源,解决建筑物冬季采暖、夏季空调和全年热水供应的重要技术,也是城市污水资源化开发利用的思路和有效途径。同时减少了城市废热和CO2、SO2、NOX、粉尘等污染物的排放。 专家介绍,污水源热泵系统是我国当前各类热泵技术中发展和应用前景最被看好的一种。目前,该技术较为成熟,国内外工程实例很多,20世纪80年代初在瑞典、挪威等北欧国家就已经开始对污水源热泵技术的应用,而现在我国污水源热泵也得到一定程度的应用。数据统计显示,应用污水源热泵系统比电锅炉加热节省2/3以上的电能,比传统的燃煤锅炉节省l/2以上的煤炭资源。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,其运行费用仅为普通中央空调的50-60%。 虽然污水源热泵系统的应用前景被看好,但是还有几个问题急需要解决。污水源热泵系统污水的取水和换热是污水源热泵技术中的关键问题。在污水取水技术上,我国已经形成具有自主知识产权的多种污水取水技术,成功的解决了城市原生污水和污水厂二级处理污水取水问题。在污水换热技术上,我国则刚刚起步,许多问题等待解决。 首先,从污水源热泵技术的换热器结构设计的角度,由于城市污水的非牛顿特性和复杂性,其年度特性的测定非常困难,污泥污垢导热性能也难以测试,因此增加了污水换热器的设计难度,在设计污水换热器时目前只能进行估算,黏度取清水的10倍以上。其次,从国内外现有强化换热技术看,污水侧换热管内置毛刷和弹簧的清污方法尽管提高了污水换热效率,但也增加了内置物被污泥粘住、发生换热管路堵塞的问题;循环流化床除污和强化换热技术也存在长期运行后清污小球是否被污泥粘住、不能继续工作的问题。而对于城市污水在管外强化换热的问题,目前国内外基本是处于空白状态。另外,从污水源热泵技术发展过程中人们的工作重点看,人们普遍重视该技术工程应用类问题的研究和开发,而污水污水换热过程中污水流动特性、污泥污垢生长和去除、污水换热和强化换热等关键基础性问题的研究处于刚刚起步阶段,而该类问题的研究和解决必将是解决工程应用问题的前提和基础。 专家认为,污水换热器污水侧除污与强化换热是目前污水源热泵技术在解决稳定取水问题后,又一个迫切需要解决的关键问题,它直接关系到污水源源热泵技术系统在全年运行能耗的高低,关系到该项技术的实际节能效果,关系到污水换热设备结构大小和设备投资,关系到污水源热泵技术进一步推广应用。

空气能热泵热水机组的设计选型

空气能热泵热水系统的设计选型 随着人们生活水平的提高,热水器在各个场所使用越来越广泛。而选择中央热水工程方案首要考虑安全,同时要求管理方便、节能和环保。空气源热泵热水机组没有燃烧,没有排放,没有易燃易爆触电等隐患,比各种锅炉、电热水器都安全。又不像太阳能怕阴雨天和黑夜,能够全天侯工作。机组自动运行可无人值守。不仅初投资小,而且运行费用非常低,因此近年来空气能热水系统迅速发展。 空气源热泵热水设备是新一代的节能环保产品,符合当前建设节能社会的国 策。该系统采用热泵逆卡诺原理,从空气中的到大量免费热能,不但环保、安全、管理简单(全自动控制),而且不受天气影响全天候运行,是目前所有热水系统中综合经济性能最好的一种,可以节省可观的运行费用。 下面根据设计手册,和09版给排水技术措施对空气源热泵机组的设计选型做了单独整理。 一、热泵热水机组选用要求 空气能热水机组热源是空气,其性能受环境影响较大,根据现有资料: 1.环境温度低于-15℃时,大部分热水机阻不能正常启动。这就要求热水机组使用区域要求适用地区 冬季环境温度最低温度高于-15℃。 2.环境温度低于10℃时,热水机组制COP值开始衰减。这意味着要满足用户要求,系统需要辅助热 源。这就加大了热水系统的能耗。热水用水不经济。 由此可知空气源热泵热水机组适用于夏热冬暖地区。根据我国气候条件,推荐在长江以南地区选用空气源热泵机组。

二、热水供水系统设计 (一)计算参数 1.热水用水定额

2.冷水温度 在计算热水系统的耗热量时,冷水温度应以当地最冷月平均水温资料确定。无水温资料时,可按表6.2.1确定。 3.用水水温 采用集中热水供应系统的住宅,配水点的水温不应低于45℃。盥洗用、沐浴用和洗涤用的热水水温参见表6.2.3 注意:集中热水供应系统中,在水加热设备和热水管道保温条件下,加热设备出口处与配水点的热水温度差,一般不大于10℃。

相关主题
文本预览
相关文档 最新文档