当前位置:文档之家› 第6章ADAMS模型语言及仿真控制语言

第6章ADAMS模型语言及仿真控制语言

第6章ADAMS模型语言及仿真控制语言
第6章ADAMS模型语言及仿真控制语言

第6章 ADAMS模型语言及仿真控制语言

本章对ADAMS的模型语言及仿真控制语言进行了简介。通过本章的学习可以掌握ADAMS/Solver模型语言adm文件、ADAMS/Solver仿真控制语言acf文件的语法、结构,对一些关键语句进行深入的说明,通过学习可以深刻理解ADAMS中几何、约束、力元等的实质,可以脱离ADAMS/View环境直接利用ADAMS/Solver进行一些高级应用,并为进一步的ADAMS二次开发打下基础。

6.1ADAMS的主要文件介绍

ADAMS中关于模型及分析主要有以下几种类型文件:ADAMS/View二进制数据库bin 文件、ADAMS/View命令cmd文件、ADAMS/Solver模型语言adm文件、ADAMS/Solver 仿真控制语言acf文件,以及ADAMS/Solver仿真分析结果文件:req文件、res文件、gra 文件、out文件、msg文件。

ADAMS/View二进制数据库bin文件以“ .bin”为文件名后缀,文件中记录了从ADAMS 启动后到存储为bin文件时的全部信息-包含模型的完整拓扑结构信息、模型仿真信息以及后处理信息。可以包含多个模型、多个分析工况和结果。可以保存ADAMS/View的各种设置信息。文件为二进制不能阅读、编辑,只能通过ADAMS/View调阅,由于信息全面一般文件都比较大。

ADAMS/View命令cmd文件以“ .cmd”为文件名后缀,是由ADAMS/View命令编写的模型文件,可以包含模型的完整拓扑结构信息(包括所有几何信息)、模型仿真信息,为文本文件,可读性强,可以进行编程,是ADAMS的二次开发语言,不包含ADAMS/View 的环境设置信息,不包含仿真结果信息,只能包含单个模型。

ADAMS/Solver模型语言(ADAMS Data Language)adm文件,以“ .adm”为文件名后缀,文件中包含模型中拓扑结构信息,但有些几何形体如 link等不能保留。ADAMS/View 的环境设置不能保留。ADAMS/Solver可以读取adm文件,与ADAMS/Solver仿真控制语言acf文件配合可以直接利用ADAMS/Solver进行求解。

ADAMS/Solver仿真控制语言acf文件,以“ .acf”为文件名后缀,文件中可以包含ADAMS/Solver命令对模型进行修改和控制的命令,从而控制仿真的进行。

ADAMS/Solver将仿真分析结果中用户定义的输出变量输出到req文件,以“ .req”为文件名后缀;ADAMS/Solver将仿真分析结果中将模型的缺省输出变量输出到res文件,以“ .res”为文件名后缀;ADAMS/Solver将仿真分析结果中图形部分结果输出到gra文件,以“ .gra”为文件名后缀。ADAMS/Solver将仿真分析结果中用户定义的输出变量以列表的形式输出到out文件,以“ .out”为文件名后缀。ADAMS/Solver将仿真过程中的警告信息、错误信息输出到msg文件,以“.msg”为文件后缀。

下图为各种文件之间的关系

机械系统动力学分析及ADAMS 应用

图6-1ADAMS 各文件间的关系

6.2ADAMS/Solver 模型语言(ADAMS DATA Language)adm

6.2.1 ADAMS/Solver 模型语言分类及其语法介绍

ADAMS/Solver 模型语言可以定义系统的拓扑结构,确定系统的输出,定义仿真分析

参数等。

以下列表6-1是按功能分类的ADAMS/Solver 模型语言分类。

表6-1 ADAMS/Solver 模型语言 模型语言类型

模型语言关键字 Dataset Delimiter

TITLE ,END Inertia and material data

PART ,

FLEX_BODY ,POINT_MASS Geometry

GRAPHICS ,MARKER Constraints

COUPLER ,CVCV ,GEAR ,JOINT ,JPRIM ,MOTION ,PTCV , UCON Forces ACCGRAV ,BEAM ,BUSHING ,CONTACT ,FIELD ,FRICTION ,

GFORCE ,MFORCE ,NFORCE ,SFORCE ,SPRINGDAMPER ,

VFORCE ,VTORQUE

Generic systems modeling DIFF ,GSE ,LSE ,TFSISO ,VARIABLE

Aggregate element TIRE

Reference data ARRAY ,CURVE ,MATRIX ,PINPUT ,POUTPUT ,SPLINE ,

STRING

Analysis parameters DEBUG ,EQUILIBRIUM ,IC ,INTEGRATOR

KINEMATICS , SENSOR ,UINT

Output

FEMDATA ,LIST/NOLIST ,MREQUEST ,OUTPUT ,REQUEST ,

RESULTS (1)模型语言格式

第6章 ADAMS 模型语言及仿真控制语言

1,...,1,...,/[,]1(1,...),...(1,...)v vn v vn NAME id ARG c v vn ARGn c v vn e e ????????????????==???????????????????

?????

ADAMS/Solver 模型语言的格式如上,一般必包括“/”、id 号以及一个或多个变量表达

式。现以MARKER 语句说明。

[],,,,,,,,,/,,,_,,,,QP x y z REULER a b c QP x y z PART id MARKER id ZP x y z POINT MASS id XP x y z USEXP FLOATING ?????=???????????=????????????????=????=??????????=??????????=????????=??????????????????????????

其中{}表示三项中必须选择一种参数,[ ]表示可以任选两种中一种参数,[[ ]]表示一种参

数组合。因此在ADAMS/Solver 模型语言定义中可以定义如下:

MARKER/201,PART=4,QP=100,100,100,REULER=90D,0D,0D

MARKER/202,PART=4,QP=100,100,100,ZP=100,100,105,XP=100,105,100

MARKER/203,PART=4,FLOATING

(2)变量表达式

其中变量表达式分为以下几类:可以根据类别不同选择不同的变量名、变量可以由一

系列数值赋值、变量由一系列字符串赋值、变量由表达式赋值。

1.根据类别不同选择不同的关键词

如上面MARKER 第三种定义,其中FLOATING 为关键词,不需赋值。又如

SFORCE/10, I=8, J=9,TRANSLATION,FUNCTION=100 * DM(8, 9) * * (-1.3) - 200

其中TRANSLATION 是可以在TRANSLATION 和RORTATION 两个关键词选择一个,不需赋值。

2.变量可以由一系列数值赋值

如上面MARKER 中QP=100,100,100

3.变量由一系列字符串赋值

如积分算法说明定义:

INTEGRATOR/GSTIFF, PATTERN = T:F:F:F:T:F:F:F:T:T, HMIN = 1.0E-005, KMAX = 3,

INTERPOLATE = ON, CORRECTOR = MODIFIED

其中PATTERN = T:F:F:F:T:F:F:F:T:T 由一系列字符串赋值

4.变量由表达式赋值

如MOTION/1, JOINT=1, FUNCTION=POLY(TIME,0,0,360D)

MOTION/2, JOINT=2, FUNCTION=USER(0, 0, 6.28)

机械系统动力学分析及ADAMS应用

其中FUNCTION=POLY(TIME,0,0,360D) 为函数表达式,FUNCTION=USER(0, 0, 6.28)为用户子程序表达式。

(3)模型语言中的特殊约定

1.关于角度:模型语言中角度缺省单位为弧度,如需度则需在数字后加D。

如:RELUER=90D,0D,90D,在out文件中角度缺省单位为弧度,可以通过OUTPUT 语句中设置DSCALE变为度。

2.关于变量:可以任意颠倒变量的先后次序;变量名可以利用缩写;变量可以大写,也可以小写;如果没有提供变量并赋值,ADAMS/Solver认为变量被赋缺省值。不要将实型赋给整型变量。

3.空格与制表符:一个变量中连续出现5个空格或更多的空格,ADAMS/Solver认为空格后无效,但TITLE和函数表达式除外。

4.说明语句:感叹号后为说明,说明语句可以在任何位置。

5.续行:第一例为“,”表示该行为续行,或行尾为“&”表示下行为续行。如下所示:

PART/2, MASS = 2.3,CM = 5, IP = 183.005,&17310.260, 17418.946

6.隔符:同一语句中变量间的分隔符使用“/”,“=”,“,”,“\”,“;”,其中“;”表示可以在一行写两个语句。

7.id号:用于同一系统存在多个相同拓扑结构类型定义,如:

MARKER/201,PART=4,QP=100,100,100,REULER=90D,0D,0D

MARKER/202,PART=4,QP=100,100,100,ZP=100,100,105,XP=100,105,100

其中201、202为id号,以区分同一语句MARKER。

8.语句:一个语句必须在前5例开始,否则ADAMS/Solver认为该行为注释行;语句必须在1-80例之间,可以续行。

6.2.2模型文件的开头与结尾

(1)TITLE

位于adm模型文件的第一行,为一串字符,如:

This is The Truck Simulation Model 2003/10

(2)END

位于adm模型文件的最后一行。

TITLE 与END之间的语句构成ADAMS/Slover的主题,语句顺序可以变化。

6.2.3惯性单元

惯性单元包含三种惯性单元PART,FLEX_BODY,POINT_MASS,这里仅对PART简要介绍,FLEX_BODY,POINT_MASS可以有关ADAMS参考手册。

PART:PART语句确定刚体的质量、惯量信息、质心位置、初始位置、方位、初始速度。

PART语句有两种:

PART/id,GROUND。表明该PART被定义为地面。

第6章 ADAMS 模型语言及仿真控制语言

,

[][]/,[,] [,] [,]

[,,, [,,,]][,_]

,,,,,,,,,,,,,,,,,,,PART id MASS r CM r IM r IP xx yy zz xy xz yz MATERIAL mat name VX x VY y QG x y z REULER a b c VZ z WX a QG x y z ZG x y z XG x y z WY b WZ c ======????=????????==??=??????????=??===????????????=?=???[,][,][,1:2:3:4:5:6]

VM id WM id EXACT c c c c c c ???????????????????????

?=== z MASS 为PART 的质量;

z CM 为质心坐标系id 号;

z IM 为惯量坐标系id 号;

z IP 为PART 的相对于IM 惯量坐标系的惯量,没有IM 时为相对于CM 质心坐标系

的惯量;

z MATERIAL 为PART 的材料特性;

z QG 为PART 局部坐标系圆点;REULER 为PART 局部坐标系相对于地面坐标系的

三个欧拉角;

z QG 为PART 局部坐标系圆点;ZG 为PART 局部坐标系的Z 轴方向上一点,XG 为

PART 局部坐标系的XOZ 平面上任一点;

z VX 、VY 、VZ 、为PART 质心处初始速度在VM 坐标系的三个投影分量;

z WX 、WY 、WZ 为PART 初始角速度在WM 坐标系的三个投影分量;

z VM 为定义初始速度的坐标系,缺省为地面坐标系;

z WM 为定义初角始速度的坐标系,缺省为CM 坐标系;

z EXACT 为PART 的质心坐标系相对于局部坐标系的六个坐标中的精确输入值,在

初始装配中保持不变,关键字为X ,Y ,Z ,PSI ,THETA ,PHI ,其顺序可以任意。

举例如下:

PART/2, QG = 0, 0, 10, REULER =90D ,30D ,45D

, MASS = 1.40, CM = 3, IP = 145.2, 13716.1, 13802.2, VX = 10

, VY = 10, VZ = 0, WX = 0D, WY = 0D, WZ = 10D, EXACT = X:Y:PSI

上面语句表明,该PART id 号为2,该PART 局部坐标系圆点在地面坐标系中的位置为0,

0,10;PART 局部坐标系相对于地面坐标的欧拉角为90D ,30D ,45D ;质量为1.40;质心坐标系标号为3;相对于质心坐标系的惯量为145.2, 13716.1, 13802.2,0,0,0;质心处初始速度(在地面坐标系分解)为10,10,0;初始角速度为在质心坐标系分解为0D/sec, 0D/sec, 10D/sec,其中质心坐标x ,y 及在PART 局部坐标系中的第一个欧拉角在初始装配中保持不变(或优先保持不变)。

机械系统动力学分析及ADAMS 应用

6.2.4几何单元

几何单元包含GRAPHICS ,MARKER 两种几何单元,这里分别对GRAPHICS ,

MARKER 语句进行介绍。

GRAPHICS :GRAPHICS 语句用于确定接触碰撞或表达图形,可以分两类分别定义接

触的、定义几何图形的。这里介绍用于定义接触的GRAPHICS 语句。

用于接触的GRAPHICS 语句如下:

, AR C , C M id, R AD IU S r, R AN G LE r , BO X , C O R N ER id, X x, Y y, Z z , C IR C LE, C M id, R AD IU S r , C U R V E, C ID id, C R M id , C Y LIN D ER , C M id, R AD IU S r, LEN G T H r,R AN G LE r G R APH IC S/id , ===============FR U ST U M , C M id, R AD IU S r, LEN G T H r, T O P r,BO T T O M r, [R AN G LE r], PO IN T , R M id , PLAN E, R M id, X M IN r, X M AX r, Y M IN r, Y M AX r , ELLIPSO ID , C M id, X SC ALE r, Y SC ALE r, ZSC ALE r ================, EX T ER N AL, R M id, {File file_nam e, [ELEM EN T geom etry_nam e]}????????????????????????????????????==??=????

z ARC :创建一个圆弧,由三个参数表达圆弧:

CM 为圆弧的圆心坐标系的id 号;RADIUS 为圆弧的半径值;RANGLE 为圆弧的角度,

要注意,CM 坐标系的x 轴为圆弧的始点。

举例如下:

MARKER/2, PART = 3, QP = -450, -50, 0, REULER = 1.565051177D, 0D, 0D

GRAPHICS/2, ARC, CM = 2, RANGLE = 170D, RADIUS = 158.0

表明在MARKER (id =2)处作一个半径为158.0的圆弧,范围为170D 。

z BOX :创建一个矩形体,由4个参数表达长方体:

CORNER 为该长方体一个角处的坐标系的id 号;X ,Y 和Z 是长方体沿着上面坐标系

x ,y 和z 轴三个方向的长度。

z CIRCLE :创建一个圆,由2个参数表达圆:

CM 为圆心处坐标系的id 号;RADIUS 为圆的半径。

z CURVE :创建基于数据单元CURVE 语句的曲线图形。

CID 为所需创建CURVE 的id 号;CRM 为定义曲线的参考坐标系的id 号。CONTACT 。

和CVCV 语句需要的曲线为平面曲线,且该平面必须为包含RM 标记点的x,y 轴的平面。

z CYLINDER:创建一个顶面和底面都垂直于中心轴线的圆柱体,由4个参数表达。

CM 为圆柱底面处圆心坐标系的id 号,CM 坐标系的z 轴方向为圆柱体的中心线;

RADIUS 为圆柱体半径;RANGLE 为圆柱体圆弧的角度,且总是以CM 坐标系的x 轴

为起始点;LENGTH 为圆柱体的高度。

第6章 ADAMS 模型语言及仿真控制语言

举例如下:

GRAPHICS/6, CYLINDER, CM = 5, RANGLE = 160D, LENGTH = -200, RADIUS = 500 z ELLIPSOID :创建一个椭圆,由4个参数表达。

CM 为椭圆的圆心坐标系的id 号。XSCALE ,YSCALE 和ZSCALE 为沿着CM 坐标系的x ,y 和z 轴的直径,如果三个值都相等,那就会创建一个球。 z FRUSTRUM:创建一个顶面和底面都垂直于中心轴线的锥体,由4个参数表达。 CM 为锥体底面的圆心坐标系id 号,CM 坐标系的z 轴为锥体的中心轴线;TOP 和BOTTOM 分别为锥体的上、下圆平面半径;RANGLE 为锥体的旋转角度,且总是以CM 坐标系x 轴为起始点;LENGTH 为锥体的高度。

举例如下:

GRAPHICS/10, FRUSTUM, CM = 5, RANGLE = 260D, LENGTH = 400

, SIDES = 20, TOP = 500, BOTTOM = 1000

z PLANE :创建一个有限平面,由5个参数表达。

RM 为该平面的参考坐标系id 号,该平面位于RM 坐标系的x-y 平面内(也就是说RM 坐标系的z 轴垂直于该平面;XMIN ,XMAX ,YMIN 和YMAX 为该平面在RM 坐标系的x-y 平面内的范围。平面为二维的,可以定义与其他单元(点,圆弧,圆和曲线以及球)接触碰撞。

z EXTERNAL :创建ADAMS/Solver 可以识别的Parasolid 图形,用于接触碰撞。 例如:

GRAPHICS/19, EXTERNAL, RM=100, FILE = test.xmt_txt,ELEMENT = part1

该GRAPHICS 语句创建一个三维实体。该实体的数据包含在Parasolid 的文件testl.Xmt_txt 中。该文件中包含了几个几何实体,其中一个名为Part1。该实体以坐标系100为参考坐标系。

MARKER :该语句在空间定义了一个几何点和以该点引伸出的三个相互垂直的坐标轴。它的描叙形式如下所示:

,,,,,,,,,,/,

,,,_, ,, [,],QP x y z REULER a b c QP x y z PART id MARKER id ZP x y z POINT MASS id XP x y z USEXP FLOATING ?????=???????????=?????????????=???????=??????????=??????????=????????=??????????????????????????

,,,/ [,_],___,,,qp x y z MARKER id FLEX BODY id NODE ID fem node id REULER a b c ?=???==????=????

MARKER 必须从属于PART 、POINT_MASS 、FLEX_BODY 三种惯性单元之一。特性上存与惯性单元固定或浮动。MARKER 作为坐标系需要一个点定义其圆点,关于其方向

机械系统动力学分析及ADAMS 应用

有三种定义方法。

举例说明:

MARKER/6, PART=4,QP=0,1,0, REULER=90D,45D,100D

MARKER/7, PART=4,QP=0,1,0, ZP =0,1,10,XP =0,10,10

MARKER/8, PART=4,QP=0,1,0, ZP =0,1,10,XP =0,10,10,USEXP

MARKER/9, PART=4,FLOTING

以上4个坐标系中6、7、8为与PART 4固定的坐标系,9为属于PART 4但为浮动坐标系,浮动坐标系在ADAMS/Solver 中的VTORQUE ,VFORCE , GFORCE , CVCV , and PTCV 中需要。

坐标系6利用欧拉角定义该坐标系相对于PART 4的物体局部坐标系;

坐标系7利用ZP 表达坐标系的z 轴(QP 指向ZP ),XP 为坐标系XOZ 平面上一点,但不能与QP 、ZP 共线;ADAMS/Solver 自动确定其x 轴。

坐标系8利用XP 表达坐标系的x 轴(QP 指向XP ),ZP 为坐标系XOZ 平面上一点,但不能与QP 、XP 共线,ADAMS/Solver 自动确定z 轴,这种用法必须使用USEXP 关键字。

又如柔体上坐标系:

MARKER/12, FLEX_BODY=5,NODE_ID=40,REULER=90D,30D,45D

MARKER/13, FLEX_BODY=5,QP=100,100,0,REULER=90D,30D,45D

坐标系12位于FLEX_BODY 5上节点40处,利用欧拉角定义该坐标系相对于

FLEX_BODY 5的物体局部坐标系;

坐标系13位于FLEX_BODY 5上,相对于FLEX_BODY 5的物体局部坐标系的位置为100,100,0,利用欧拉角定义该坐标系相对于FLEX_BODY 5的物体局部坐标系;

ADAMS/Solver 自动确定并调整其到相近节点处。

6.2.5约束单元

约束单元包括COUPLER ,CVCV ,GEAR ,JOINT ,JPRIM ,MOTION ,PTCV , UCON 单元,这里分别对COUPLER ,JOINT 语句进行介绍,其它单元参考手册。

COUPLER 语句:COUPLER 语句将两个或者三个移动副或者转动副关联。其描叙如下:

/, 1, 2[,3]

,[1,]2[,3], ::,(1,...,30)C O U P L E R id J O IN T S id id id T T T S C A L E S r r r T Y P E R R R F U N C T IO N U S E R r r =??????????=????=??????????????=????????????????????

其中存在关系式:

r1*q1+r2*q2+r3*q3=0

q2/q3=r2/r3

举例说明如下:

JOINT/1, CYLINDRICAL, I = 3, J = 4

JOINT/2, REVOLUTE, I = 7, J = 8

JOINT/3, TRANSLATIONAL, I = 10, J = 11

COUPLER/1, JOINTS = 3, 2, 1, TYPE = T:R:T, SCALES = 90D, 2, -90D

第6章 ADAMS 模型语言及仿真控制语言

该COUPLER 语句将Joint 3的平动连接到Joint 2的转动上、Joint 1的平动上。铰链间位移关系为:(90D/180*3.14)*q1 +2*q2+(-90D/180*3.14)*q3 = 0。

同时满足q2/q3=2/(-90D/180*3.14)。

关系式中角度变量需换算为弧度。

JOINT 语句:JOINT 语句确定物体(刚体和柔性体)间的运动学约束。JOINT 的类型有:等速铰(constant-velocity), 圆柱铰(cylindrical),固定铰(fixed),虎克铰 (Hooke), 平面铰

(planar),齿轮齿条铰 (rack-and-pinion),转动铰 (revolute), 螺纹铰(screw), 球铰 (spherical),移动铰(translational), 和广义万向节铰(universal joints).

其格式如下:

,1,2 , 1,2/, , ,, [,1,2],,[1,2]C O N V E L C Y L IN D R IC A L IC T R A N r r F IX E D IC R O T r r H O O K E P L A N A R J O IN T id I id J id R A C K P IN P D r R E V O L U T E IC r r S C R E W P IT C H r S P H E R IC A L T R A N S L A T IO N A L IC r r U N IV E R S A L ??=???????=?

?????======?

?????????????????????????????????????? J ΟΙΝΤ 利用Ι、 J MARKER 来定义运动学铰链约束。下面对各种运动学约束的要求作介绍。

z CONVEL

该铰链定义两个 PART 具有相同转动速度, I 、J MARKER 的坐标必须相同且I 、J MARKER 的Z 轴是两个 PART 的转动轴,I MARKER Z 轴方向背离J MARKER ,J MARKER Z 轴方向背离I MARKER ,同时,I MARKER X 轴方向需与J MARKER X 轴方向平行。产生4个约束方程。

z CYLINDRICAL

该铰链定义两个 PART 可以沿着I 、J MARKER 的Z 轴平动和转动。定义要求I 、J MARKER 的坐标必须相同,其Z 轴需同向并重合。产生4个约束方程。

z FIXED

该铰链定义两个 PART 固接,要求I 和J MARKER 坐标圆点重合。产生个6约束方程。 z HOOKE

该铰链定义两个PART 可以分别沿自己的I MARKER 的x 轴、JMARKER 的y 轴转动。定义要求I MARKER 的X 轴垂直于J MARKER 的Y 轴,从而形成十字叉,I MARKER 的Z 轴、J MARKER 的Z 轴分别为其转轴方向,I 和J MARKER 的原点重合,在十字的中心。HOOKE 与UNIVERSAL 的功能相同,但两者之间MARKER 的定义方式不同。产生4个约束方程。

机械系统动力学分析及ADAMS 应用

z PLANAR

该铰链定义一个PART 的一个平面可以相对于第二个PART 的一个平面相对滑动。定义要求I MARKER 和J MARKER 的Z 轴平行,XOY 平面重合。产生3个约束方程。

z RACKPIN

该铰链定义一个PART 的的一个转动自由度与另一个PART 的移动自由度相关。定义要求I MARKER 的Z 轴为其转动轴向,J MARKER 的Z 轴为其移动轴向,PD 应为I MARKER 的Z 轴到J MARKER 的Z 轴距离的两倍,产生一个约束方程,完全可以由COUPLER 代替。

z REVOLUTE

该铰链定义一个PART 可以相对于第二个PART 以一确定轴线转动。定义要求I

MARKER 和J MARKER 的坐标圆点以及Z 轴重合,Z 轴为其相对转动轴。产生5个约束方程。

z SCREW

该铰链定义一个PART 可以相对于第二个PART 以一确定轴线转动并同时沿着该轴线移动,只不过转动与移动存在一定的关系,即每转一圈产生一个螺距(PITCH )的移动。定义要求I MARKER 和J MARKER 的Z 轴共线。产生一个约束方程。

z SPHERICAL

该铰链定义一个PART 可以相对于第二个PART 自由转动。定义要求I MARKER 和J MARKER 的坐标圆点重合,产生3个约束方程。

z TRANSLATIONAL

该铰链定义一个PART 可以相对于第二个PART 沿着一轴线移动,不能转动。定义要求I MARKER 和J MARKER 的Z 轴共线。产生5个约束方程。

z UNIVERSAL

该铰链定义两个PART 可以分别沿自己的I MARKER 的Z 轴、JMARKER 的Z 轴转动。定义要求I MARKER 的Z 轴垂直于J MARKER 的Z 轴,从而形成十字叉, I 和J MARKER 的原点重合,在十字的中心。UNIVERSAL 与HOOKE 的功能相同,但两者之间MARKER 的定义方式不同。产生4个约束方程。

6.2.6力元

力元包括ACCG RA V ,BEAM ,BUSHING ,CONTACT ,FIELD ,FRICTION ,GFORCE ,MFORCE ,NFORCE ,SFORCE ,SPRINGDAMPER ,VFORCE ,VTORQUE 单元,这里分别对BEAM ,FIELD 语句进行介绍,其它单元参考手册。

BEAM :ADAMS 中可以使用无质量的等截面梁来定义两个PART 之间的作用力。ADAMS/Solver 根据输入梁的物理特性,按照铁木辛柯梁理论求解梁中的各种力。

其语句格式如下:

/, , , , , , , [,] [,], , 1,...,21,B E A M id I id J id L E N G T H r IX X r IY Y r IZ Z r

A R E A r A S Y r A S Z r E M O D U L U S r G M O D U L U S r

C M A T R IX r r C R A T IO r ===========???=?????=??????

利用I MARKER 、J MARKER 定义一个无质量梁,其中 J MARKER 的 X 轴为梁的轴

第6章 ADAMS 模型语言及仿真控制语言

向。I MARKER 在梁无变形时应在J MARKER 的 X 轴上,并且I MARKER 、J MARKER 的坐标系平行。其它参数如下:

z LENGTH 为梁沿着J MARKER 的 X 轴的非变形长度。

z IXX 为沿J MARKER 的 X 轴极惯性矩。

z IYY 、IZZ 分别为沿着梁的横截面的中心轴(y-y 和z-z )的惯性矩。

z AREA 为梁的横截面积。梁的中性轴一定垂直通过该横截面。

z ASY 为铁木辛柯梁的y 方向的剪切修正因子。

z ASZ 为铁木辛柯梁的z 方向的剪切修正因子。

z EMODULUS 为铁木辛柯梁的弹性杨氏模量。

z GMODULUS 为铁木辛柯梁的弹性剪切模量。

z CMATRIX=r1,...,r21,为梁的结构阻尼矩阵元素,矩阵是对称的,只需要指明一半

的数据。输入矩阵的值如下式:

????????

??????????r21 r20 r18 r15 r11 r06r19 r17 r14 r10 r05r16 r13 r09 r04r12 r08 r03r07 r02r01

z CRATIO 为铁木辛柯梁结构阻尼矩阵与刚度矩阵的比率,缺省为零。

在梁的两个端点之间,作用有线性的拉伸、弯曲和扭转力矩,梁中各种力的计算公式如下式:

11112131415161222621

223242526233353132334353634441425355626600000000000000

000000000000x y z x y z F K C C C C C C x L F K K C C C C C C y F K K C C C C C C z K C C C T a K K b T K K c T ???????????????????????????=????????????????????????????????????

43445464515253545565616263646566x y z x y z V V V C C C C C C C C C C C C C C C ωωω????????????????????????????????????????

式中,,F T 分别为力和力矩; ,,,,,,,,,,,x y z x y Z

X Y Z a b c V V V ωωω分别表示,I J MARKER 之间的相对位移、转角、

速度、角速度;

机械系统动力学分析及ADAMS 应用

,K C 分别表示刚度系数和阻尼系数;

L 为梁,I J MARKER 之间的距离(梁的长度);

举例如下:

BEAM/2, I=10, J=20, LENGTH=100

, IXX=1000, IYY=500, IZZ=500, AREA=25.0

, ASY=1.11, ASZ=1.11, EMOD=28E6, GMOD=10.6E6,

, CRATIO=0.0001

FIELD :该语句定义,I J MARKER 之间的平动和转动的作用力和反作用力。语句格式如下:

, , 1,...,36, 1,...,36, 1,...,6, 1,...,6/, , , ( 1[,..., 30])[\ 1,...,6]C R A T I O r C M A T R I X r r K M A T R I X r r F O R C E r r L E N G T H r r F IE L D id I id J id F U N C T I O N U S E R r r L E N G T H r r ??????=???????=??????????=??????=??????=????===?=????????????????????????????????????

z CRATIO 为CMATRIX 相对于KMATRIX 的比率。如果输入CRATIO ,ADAMS/Solver

通过CRATIO 乘KMATRIX 获得CMATRIX 。缺省值为零。

z CMATRIX 为一个6*6的阻尼系数。其格式如下式:

?????????

???????????r36 r30 r24 r18 r12 r6r35 r29 r23 r17 r11 r5r34 r28 r22 r16 r10 r4r33 r27 r21 r15 r9 r3r32 r26 r20 r14 r8 r2r31 r25 r19 r13 r7 r1 z KMATRIX 为一个6*6的刚度系数矩阵。其格式如下:

第6章 ADAMS 模型语言及仿真控制语言

?????????

???????????r36 r30 r24 r18 r12 r6r35 r29 r23 r17 r11 r5r34 r28 r22 r16 r10 r4r33 r27 r21 r15 r9 r3r32 r26 r20 r14 r8 r2r31 r25 r19 r13 r7 r1 z FORCE 为对应于,I J MARKER 之间3个移动和3个转动的预载荷。

z LENGTH 为,I J MARKER 之间6个自由状态下的初始位移。

z FUNCTION 为利用用户子程序FIESUB 来定义一个非线性力场。

z FIELD 的力与力矩关系如下式:

0111213141516021

22232425260313233343536414243444546051

525354555606162636465660x y z x y z F x x K K K K K K F y y K K K K K K z z F K K K K K K K K K K K K T a a K K K K K K T b b K K K K K K c c T ????????????????????????????=?????????????????????????????????111213141516122122324252623313233435363414243445464151525354556526162636465663x y z x y z V F C C C C C C V F C C C C C C F V C C C C C C C C C C C C T C C C C C C T C C C C C C T ωωω????????????????????????????+???????????????????????????????????????

FIELD 的计算公式同BUSHING 的计算公式相似,不同之处是FIELD 计算公式中刚度和阻尼系数ij K 和ij C (i j ≠)不为零。同时,考虑初始位移,,X Y Z 和转角,,a b c 。FIELD 提供了定义最一般的力的方法,因此也可以利用FIELD 来定义一般情况下的梁,例如可以定义变截面的梁或者是使用非线性材料的梁。

举例如下:

FIELD/1, I=100, J=57, KMATRIX=0.198E+04

, 0, 0.126E-01, 0, -0.147E+04, 0,

, 0, 0, 0, 0, 0, 0,

, 0.126E-01, 0, 0.208E+03, 0, -0.933E-02, 0,

, 0, 0, 0, 0, 0, 0,

,-0.147E+04, 0, -0.933E-02, 0, 0.763E+07, 0,

, 0, 0, 0, 0, 0, 0

, LENGTH=0, 150, 0, 0, 0, 0

6.2.7系统模型单元

系统单元包括DIFF ,GSE ,LSE ,TFSISO ,V ARIABLE ,这里分别对DIFF ,V ARIABLE

机械系统动力学分析及ADAMS 应用

语句进行介绍。

DIFF :DIFF 语句用于创建一个用户自定义的状态变量,利用一阶微分方程来表达该变量。其格式如下:

/ 1 [,2][,_], [\]

(1[,...,30])e DIFF id IC r r STATIC HOLD FUNCTION IMPLICIT USER r r ??==???

?

z IC 当输入表达式为变量的显式时,为定义变量的初始值;如果输入表达式是一个隐

函数表达式,为定义变量的初始值及导数的近似值。如果提供的是一个显函数,就不用提供变量的导数的初值,因为ADAMS/Solver 可以从方程中直接计算出变量的导数。

z STATIC_HOLD 指在静态分析和准静态分析中变量的值不允许改变。

z IMPLICIT 指函数表达式或者DIFSUB 子程序定义为隐式微分方程。如果没有指明为

IMPLICIT 的情况下,ADAMS/Solver 就会假定表达式或者DIFSUB 为显式方程。

z FUNCTION USER(r1[,...,r30])e ??=????为微分方程表达式,用户可以自定义表达式来定义微分方

程。其格式中,USER 为字符串,r1[,…,r30]为数值表,传递系统变量到用户定义子程序DIFSUB 中。在函数表达式中,DIF (i )为DIFF/i 语句中定义的变量值。DIF1(i )为DIFF/i 语句定义的变量的导数。

举例如下:

DIFF/1, IC=2

,FUNCTION = -5.0*DIF(1) + 8.0 + COS(TIME)

DIFF/1定义了变量的显式形式为:

()58c o s y y t ?

=?++,y(0) = 2

DIFF/2, IC=2, IMPLICIT

, FUNCTION = DIF1(2) + 5.0*DIF(2) - 8.0 - COS(TIME)

DIFF/2定义公式的隐式形式为:

()58co s 0y y t ?

+??= y(0) = 2

V ARIABLE :V ARIABLE 语句以代数表达式的形式定义变量。其格式如下:

/, [] (1[,...,30])e V A R IA B L E id IC r F U N C T IO N U S E R r r ??==???

? IC 为V ARIABLE 的初始值。

????

??=r30])..,USER(r1[,.FUNCTION e 为V ARIABLE 的表达式子程序中定义的变量。如果显通过表达式来定义变量,FUNCTION 后面需要有等号和表达式。如果用用户子程序来定义变量,FUNCTION 后面需要有等号,字符串USER ,以及ADAMS/Solver 将要传递给用

第6章 ADAMS 模型语言及仿真控制语言

户子程序V ARSUB 的值(r1[,…r30])

举例如下:

V ARIABLE/4, FUNCTION = IMPACT(DZ(10,90),

, VZ(10,90), 1, 3E5, 1.2, 1,.05)

该V ARIABLE 语句利用碰撞函数定义了一个变量。

6.2.8轮胎单元

TIRE :TIRE 语句定义轮胎单元。该语句可以模拟车辆与地面之间的相互作用力以及轮胎的旋转作用,须提供轮胎的属性文件(.tpf )和路面数据文件(.rdf )。轮胎属性文件包含一些参数,如ADAMS/Solver 用来计算轮胎力的cornering stiffness (侧偏刚度)。而且轮胎模型类型不同,轮胎属性文件中的须提供的参数也不相同。路面数据文件(.rdf )定义了轮胎碾过的路面数据。

TIRE 的其格式如下:

???????

?????=====????????????????????????????????????????????????===??????????????????????????????????

??????????============id JOINT ,r]VZ r][,VY r][,VX NONE[,JOINT ,id30]id[,...,USTRINGS ,r30]r1[,...,S UPARAMETER ,USER UATIRE SMITHERS FIALA DELFT MODEL

,r WZ ,r]

WIDTH i[,SEGS ,r]ALPHA0r[,RLENGTH ,RGRA

,c RDF ,z y,x,CMOFFSET ,id IMARKID ,c

TPF r,MASS id,J yz],xz,xy,zz[,yy,xx,IP TIRE/id,

轮胎是一个综合单元,它代表了由一些更基本的ADAMS/Solver 语句组成的复杂实体,这些语句包括PART,MARKER,GRAPHICS,和GFORCE 。当每次创建一个TIRE 时,ADAMS/Solver 会自动地创建这些语句。这些组成部分的作用如下:

z PART :用来表达轮胎的惯性力。

z GFORCE :以一组三维力和力矩来表达车辆与路面的相互作用。

z MARKERS :指定连接点处的坐标。

z JOINT :将轮胎连接到车辆上。

z GRAPHICS :显示轮胎和路面状况。

机械系统动力学分析及ADAMS应用

语句中的各部分参数意义如下:

z ALPHA0=r :指明αold 的初始值,用来计算轮胎侧偏角的一阶滞后影响。

z CMOFFSET=x,y,z:定义从I MARKER点到轮胎质心处的位移。x,y和z为I MARKER 的坐标值。轮胎质心MARKER与I MARKER的坐标方向相同。

z IMARKID=id:为TIRE创建的I MARKER的id号。I MARKER为轮胎连接到车辆上的位置和方向。如果没有指明I MERKID时,ADAMS/Solver会在内部创建I

MARKER。当使用了JOINT=NONE选项时,必需要指明I MARKER。

z IP=xx,yy,zz[,xy,xz,yz]:指明轮胎的6个惯性矩(积)。惯性矩(积)相对于轮胎的质心坐标CM。

z J=id:为轮胎被连接到车辆上的MARKER的id号。J MARKER的z 轴必须平行于轮胎的旋转轴(使用右手法则)。如果车辆的四个轮子都向前旋转,则四个轮胎的J MARKER的z 轴都要指向左边。

z JOINT=id:指明TIRE语句中创建的连接点转动铰链的id号。JOINT缺省时为ADAMS/Tire自动创建的id值。

z JOINT=NONE:允许创建轮胎,但不直接连到车辆上。需要使用JOINT或者BUSHING进一步语句才能将轮胎安装到车辆上。

z MASS=r:指明轮胎部分的质量。该值包括轮胎,轮辋和所有刚性连接的旋转子部件(如刹车片等等)。

z RDF=c:指明路面数据文件(RDF)的路径和文件名。该路面数据文件包含了一个三维路谱和路面的摩擦属性的信息。

z RGRA:定义一个flag值(0或1),1使ADAMS/Solver自动生成路面图形。该图形是由TIRE命令中指明的路面数据文件中的数据生成的。

z RLENGTH为考虑轮胎侧偏角一阶滞后影响的松弛长度(relaxation length)。

z SEGS为圆柱和锥体的两个平行的圆之间的绘制的直线段的数量,近似的代表圆的圆周。

z TPF=c:为轮胎属性文件的路径和文件名。轮胎属性文件包含了DAMS/Solver用来计算在给定的系统条件下的轮胎力和力矩的所有的输入数据。

z UPARAMETERS=r1[,...,r30]:定义了至多三十个实数用来传递给TIRSUB函数。

z USTRINGS=id1[,...,id30]:定义了至多三十个字符串标志符,它们的相应的字符串被传递给TIRSUB。

z VX=r, VY=r, VZ=r:指明了轮胎质心处沿着全局坐标系的x ,y,z轴的初始速度。

z WIDTH=r:为轮胎的宽度。

z WZ=r:轮胎相对于I MARKER的z 轴的初始的旋转速度。

举例如下:

TIRE/1, J=303

, MASS=10,

, IP=25.0E4,25.0E4,33.0E4

, TPF=TIRE.TPF

第6章 ADAMS 模型语言及仿真控制语言

该例子中,缺省文件为Fiala 模型。缺省的路面为平直路面。另外,所有需要的单元被自动创建。下面的一个例子涉及到了一些初始转速和路面图形:

TIRE/2, J=305

, MASS=10,

, IP=25.09E4,25.09E4,33.56E4

, TPF=TIRE.TPF

, WZ=22.5

, SEGS=5

, RGRA

6.2.9数据单元

数据单元包括ARRAY ,CURVE ,MATRIX ,PINPUT ,POUTPUT ,SPLINE ,STRING ,这里分别对ARRAY ,CURVE 语句进行介绍。

ARRAY :ARRAY 语句定义一组数组,其中可包括输入变量(U ),状态变量(X ),和输出变量(Y ),或者与系统单元GSE ,LSE 和TFSISO 相关的的初始条件。

其语句形式如下:

??????????????===

===r1200]r1[,...,NUMBERS i],SIZE [, IC][,i]SIZE [, Y ,id1200]id1[,...,VARIABLES i],SIZE [, U ,i]SIZE [,X ,ARRAY/id

z IC 创建一维数组,可以在用户自定义子程序中引用。也可以为LSE 或者GSE 来分配

初始状态数组。

z NUMBERS=r1[,...,r1200]:当使用IC 数组时,允许输入一维的实数组。

z SIZE=I :定义数组的大小。范围为1到1200。

z V ARIABLES=id1[,...,id1200]:将全部V ARIABLE 的id 集合。

z X :对于系统单元LSE ,GSE 或者TFSISO ,将 ARRAY 命令指定为状态变量数组。 z U :将集合了V ARIABLES 创建为数组。

z Y :对于系统单元LSE ,GSE 或者TFSISO ,将 ARRAY 命令指定为输出数组。 举例如下:

ARRAY/1, X

ARRAY/2, U, V ARIABLES=2

ARRAY/3, IC, NUMBERS= 0.0, 0.0

CURVE::该语句定义三维参数曲线,其表达式如下所示:

机械系统动力学分析及ADAMS 应用

/, , (1[,...,30])\ ,__

[,]O P E N C U R V E i d C L O S E D M I N P A R r F U N C T I O N U S E R r r M A X P A R r C O N T R O L P O I N T S M A T R I X i d C U R V E P O I N T S T E N S I O N r ?????

???

?=???=??????=????????????=????=????

z CLOSED :曲线是闭环曲线。

z OPEN :曲线为开环曲线。

z FUNCTION=USER (r1[,...,r30])\:定义并传递参数给用户子程序CURSUB 以计算曲

线坐标和偏导。

z MAXPAR=r :用户子程序定义曲线参数的最大值。缺省值为1.0。

z MINPAR=r :为用户子程序定义曲线参数的最小值。缺省值为-1.0。

z MATRIX=id :为包含曲线数据的MATRIX 的id 号。

z CONTROL_POINTS : 基于控制点的三次多项式的B 样条曲线。

z CURVE_POINTS :曲线通过数据点。

z TENSION=r :为B 样条曲线运算使用中的收敛因子。缺省值为0.05。其范围为0到无

穷大。

举例如下:

CURVE/5, OPEN, CURVE_POINTS, MATRIX=2

该语句以MARTRIX/2中的曲线点坐标创建了一条开环曲线。ADAMS/Solver 以B 样条曲线来对该点进行插值。 6.2.10分析参数单元

分析参数单元包括DEBUG ,EQUILIBRIUM ,IC ,INTEGRATOR ,KINEMATICS , SENSOR ,UINT 。这里分别对DEBUG , EQUILIBRIUM 语句进行介绍。

DEBUG :该语句用于输出数据的定义以方便系统调试。其语句形式如下:

}{[]????????????????

????????????????????????????TOPOLOGY ,DOF ,RHSDUMP ,JMDUMP ,REQDUMP ,VEBOSE ,EPRINT DUMP DEBUG/

z DOF :将自由度信息以表格文件的形式打印出。缺省为Off 。

z DUMP :将系统的方程按ADAMS/Solver 内部表示法文件的形式打印出。缺省为Off 。 z EPRINT :打印出每一步长下的信息,可以根据输出的信息确定误差的来源。缺省

为Off 。

z JMDUMP :在每次迭代时雅可比矩阵运算信息。缺省为Off 。

z REQDUMP :在每次迭代时,对REQUEST 和MREQUEST 进行输出。缺省为Off 。 z RHSDUMP :在每次迭代时,对YY 数组(状态向量),RHS 数组(误差信息),和

DELTA 数组(状态向量的增量)进行输出。缺省为Off 。

第6章 ADAMS 模型语言及仿真控制语言

z TOPOLOGY :msg 文件中打印出系统拓扑结构数据。缺省为Off 。

z VERBOSE :将附加的信息打印到屏幕,如子程序名等。缺省为Off 。

举例如下:

DEBUG/EPRINT

该DEBUG 语句将打印出每一步长下的信息。

EQUILIBRIUM :该EQUILIBRIUM 语句指明了在静平衡分析和准静态分析中的误差和其它参数。其语句形式如下:

, , ,, , 1 [ : . . . : 10], /, _ ,_,A L IM IT r E R R O R r IM B A L A N C E r S T A T IC M A X IT r P A T T E R N c c S T A B IL IT Y r E Q U IL IB R IU M T L IM IT r A C C E L E R A T IO N E R R O R r G L O B A L D Y N A M IC ?=???????=????????=????=????????=????=????????=????= ,__ ,_ D A M P IN G r

K IN E T IC E N E R G Y E R R O R r S E T T L IN G T IM E r ????????????????????????????????????=????????????=??????=????????

??

z

ACCELERATION_ERROR=r :利用动力学仿真进行静力学仿真时允许的最大加速度误差。缺省值为1.0E-02,取值范围大于零。 z

ALIMIT=r :在进行静态仿真时允许的最大角度增加量。缺省值为0.17453(10D ),取值范围大于零。 z

DYNAMIC : ADAMS/Solver 利用动力学进行静力学仿真。 z

ERROR=r :在静力学仿真时允许的最大相对位移误差。缺省值为1.0E-04,取值范围大于零。 z

GLOBAL_DAMPING=r :指明动力学仿真时施加在所有物体上的阻尼系数。缺省值为0,取值范围大于等于零。 z

IMBALANCE=r :在静态仿真时允许的最大不平衡力。缺省值为1.0E-04,取值范围大于零。 z

KINETIC_ENERGY_ERROR=r :指明在静态仿真时最大动能误差。缺省值为1.0E-02,取值范围大于零。 z

MAXIT=I:在静态仿真时最大迭代数。缺省值为25,取值范围大于零。 z

PATTERN=c1[:...:c10]:在静力学仿真中Newton-Raphson 迭代的雅可比矩阵是否进行更新运算。 z

SETTLING_TIME=r :在利用动力学分析进行静力学仿真时允许的最长时间。缺省值为100,取值范围大于零。 z

STABILITY=r:将质量阵和阻尼阵按此比例增加到刚度阵,将增加收敛速度而不影响精度。 z STATIC=r :ADAMS/Solver 使用静态分析进行静力学仿真。缺省为STATIC 。

机械系统动力学分析及ADAMS 应用

z TLIMIT=r :指明在静态仿真时最大平移增量。缺省值为20,取值范围大于零。 举例如下:

EQUILIBRIUM/ STABILITY=0.01, TLIMIT=10

, IMBALANCE=1.0E-05

6.2.11输出单元

输出单元包括FEMDATA ,LIST/NOLIST ,MREQUEST ,OUTPUT ,REQUEST ,RESULTS 。这里分别对FEMDATA, MREQUEST 语句进行介绍。

FEMDATA :该语句输出构件载荷,变形,应力和应变的数据文件,以作为有限元分析金或疲劳寿命分析的输入。如果使用OUTPUT 命令就必需要指明FEMDATA 产生文件的类型。只有在OUTPUT 命令中指明了格式FEMDATA 才会输出文件。其语句格式如下:

[][][][][]

[]

[]

[]

n SKIP , t2 END , t1 START name FILE ,idn][,? id1 NODE id, FLEX_BODY ,STRESS,idn][,? id1 NODE id, FLEX_BODY STRAIN,idn][,? id1 NODE ,node_id DATUM id, FLEX_BODY RMATION,NODAL_DEFO id FLEX_BODY RMATION,MODAL_DEFO GMAG :FMAG :FZ :FY :FX PEAK_SLICE ,id FLEX_BODY id RM LOADS,,

FEMDATA/id ====??????????????????========???=???==

z

LOADS :输出所有施加在指定物体上的外部力以及惯性力,以时间为函数的。 z

RM = id :输出载荷的参考坐标系。 z

FLEX_BODY = id : 指明FENDATA 输出数据的柔性体的ID 值。 z

PEAK_SLICE = FX:FY:FZ:FMAG:GMAG :在载荷的峰值处输出FEM 载荷数据。 z

MODAL_DEFORMATION :输出指定柔性体上模态变形,以时间为函数的。 z

NODAL_DEFORMATION :输出指定柔性体上节点变形,以时间为函数的。 z

DATUM = node_id :指明节点的ID 。ADAMS/Solver 根据节点的ID 来计算节点的位移。 z

NODE = id1 [,…,idn]:指明将要输出数据的节点集合。 z

STRAIN :输出在指定物体上的应变信息。 z

STRESS :输出在指定物体上的应力信息。 z

FILE = name :对FEM 数据指明输出文件名。 z

START = t1:指明输出数据的开始时间。缺省情况下为仿真开始时间。 z END = t2:指明时间t2,在该时间点终止数据输出。

脚本语言和互动网页设计课程网上作业单选题答案

1: 下述选项中不属于JDBC基本功能的是:() 1.与数据库建立连接 2.提交SQL语句 3.处理查询结果 4.数据库维护管理 2:在page指令中,()属性是可以在页面中重复的的属性。 https://www.doczj.com/doc/704501150.html,nguage 2.buffer 3.import 4.autoFlush 3:下面哪种数据类型是基本数据类型()。 1.class 2.interface 3.数组 4.char 4:下列哪种数据类型是引用类型()。 1.boolean 2.int 3.interface 4.long

5: 在JSP中使用标记时,不会出现的属性是:() https://www.doczj.com/doc/704501150.html, 2.property 3.value 4.以上皆不会出现 6: 不能在不同用户之间共享数据的方法是() 1.通过cookie 2.利用文件系统 3.利用数据库 4.通过ServletContext对象 7:能够获取当前页信息并调用页面方法的对象是()。 1.request 2.page 3.pageContext 4.session 8: 可以取得用交提交的参数的所有记录值的方法是( ) 1.getParameter() 2.getAttribute()

3.getParameterValues() 4.getSession() 9:下面哪一个运算符有3个操作数()。 1.* 2.++ 3.&& 4.?: 10:以下文件名后缀中,只有()不是静态网页的后缀。 1..html 2..htm 3..jsp 4..shtml 11:以下选项中,哪一项不是JSP指令()。 1.page 2.import 3.include 4.taglib 12:实际开发中使用Session可以设置访问的安全性,请选择Session所设置的属性的数据类型( ) 1.String

搬运机器人结构设计与分析_毕业设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 搬运机器人结构设计与分析 摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作。 本课题主要对搬运机器人的机械部分展开讨论,对原有的机械结构提出了新的改进方法,并把现在的新技术应用到本课题中,从而使得搬运机器人更加适用于现在的工业工作环境。通过详细了解搬运机器人在工业上的应用现状,提出了具体的搬运机器人设计要求,并根据搬运机器人各部分的设计原则,进行了系统总体方案设计以及包括:机器人的手部、腕部、臂部、腰部在内的机械结构设计。此搬运机器人的驱动源来自液压系统,执行元件包括:柱塞式液压缸、摆动液压缸、伸缩式液压缸等。通过液压缸的运动来实现搬运机器人的各关节运动,进而实现搬运机器人的实际作业。 关键词:搬运机器人;液压系统;机械结构设计;操作

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ Abstract In the modern large-scale manufacturing industry,enterprises to improve productivity, and,guarantee product quality, as an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. Industrial robot technology standards and application level, to a certain extent, reflect a level of national industrial automation. Currently, Industrial robot mainly tasked with welding, spraying, handling and stacking, repetitive and intensity of significant work. The subject of the main part of the handling of their machinery discussions, and on the original mechanical structure proposed for the new improved method, which makes the handling robot is more applicable to the present industrial working environment.Through a detailed understanding of the robot in the industrial application,to propose specific handling robot design requirements,and according to the robot design principles of various parts,for the system as well as including:the robot's hand, wrist, arm, waist, the design of mechanical structures.The transfer robot driven by the source from the hydraulic system, and the implementation of components including:plunger hydraulic cylinders, hydraulic cylinders, swing, telescopic hydraulic cylinders, etc.Through the hydraulic cylinder movements to implement the joint transport robot motion,And realize the operational handling robot. Keywords:Transfer robot;Hydraulic System;Mechanical Design;Operating

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

脚本语言和互动网页设计

2016-2017学年第一学期期末考试《脚本语言和互动网页设计》大作业 一、编程题((每小题100分,共100分) 编写程序register.html和register.jsp。做一用户注册界面register.html,注册信息包括:用户名,年龄,性别,籍贯。然后提交到register.jsp进行注册检验,若用户名为admin,就提示“欢迎你,管理员!”,否则显示“注册成功”并显示出注册信息。 Register.html 用户注册

用户注册

搬运机器人设计

搬运机器人 设计 班级: 学号:

搬运机器人能够模仿人手部的部分动作,按照设定的程序、轨迹和要求,代替人工在高温和危险的作业区进行单调持久的作业,实现一些人工不可能完成的工作,这不仅可以使人手避免出 现可能的危险情况,保障生产安全,还能促进工作线的流水化,提高了工作效率,降低了劳动强度,改善了劳动环境,已经成为现代制造业中不可或缺的一种自动化装置。 本机器人用于生产线上工件的自动搬运,下图为机器人动作 示意图,机械手按下述顺序周而复始地工作: 图九朋机械手工也吓意图 根据对机器人的工艺过程及控制要求分析,机械手的动作过程如图所示: 原点__彳下降——彳夹紧——彳上升——彳慢遇I__彳快进I 慢退k—上升k——放松k——下降k—FiSa 快退——慢堪

亠、搬运机械手总体结构设计 (1)该机器人采用圆柱坐标型,具有三个自由度,即手臂的 伸长、缩短,手臂的上升、下降和整体旋转。 (2)该机器人采用液压驱动,其具有体积小、质量轻、结构紧凑、传动平稳、操作简单、安全、经济、易于实现过载保护且液压元件能够自行润滑等一系列优点。 (3)在控制方式选择上,由于其功能只是在两个传送带之间搬移工件,运动简单,控制要求不高,因此采用点位控制方式。 (4)此搬运机器人是在两个工作台之间搬运工件,其动作比较简单,选用电位器进行定位。 (5)此机器人应用于自动生产线上,因此,它应该能够按照控制程序自动运行,即具有自动运行模式。 二、搬运机械手机械结构设计 1、机身设计 因为圆柱坐标式机器人把回转与升降两个自由度归属于机身,所以设计回转与升降机身,选用旋转液压缸与升降液压缸单独驱动的回转型机身,如图1所示,升降液压缸在上,旋转液压缸在下。 2、臂部设计 采用双导向杆的臂部伸缩结构。缸体直接固定在升降立柱上,活塞杆与两根导向杆连接一起组成伸缩臂,由于活塞杆与导 向杆全部藏在缸体内,油管也从活塞杆内部通过,其特点是结构 紧凑,外观整洁。结构如图2所示

脚本语言的发展

脚本语言的发展 主流的脚本语言 目前主流的脚本语言有以下几种: Groovy Ruby Python Groovy Groovy 是 JVM 的一个替代语言—替代是指可以用 Groovy 在 Java 平台上进行 Java 编程,使用方式基本与使用 Java 代码的方式相同。在编写新应用程序时,Groovy 代码能够与 Java 代码很好地结合,也能用于扩展现有代码。目前的 Groovy 版本是 1.6.3,在 Java 1.4 和 Java 5 平台上都能使用,也能在 Java 6 上使用。 Groovy 的一个好处是,它的语法与 Java 语言的语法很相似。虽然 Groovy 的语法 源于 Smalltalk 和 Ruby 这类语言的理念,但是可以将它想像成 Java 语言的一种更加简 单、表达能力更强的变体。(在这点上,Ruby 与 Groovy 不同,因为它的语法与 Java 语法差异很大。) 许多 Java 开发人员非常喜欢 Groovy 代码和 Java 代码的相似性。从学习的角度 看,如果知道如何编写 Java 代码,那就已经了解 Groovy 了。Groovy 和 Java 语言的 主要区别是:完成同样的任务所需的 Groovy 代码比 Java 代码更少。(有时候会少很 多!) Ruby Ruby,一种为简单快捷面向对象编程(面向对象程序设计)而创的脚本语言,在 20世纪90年代由日本人松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)开发, 遵守GPL协议和Ruby License。它的灵感与特性来自于 Perl、Smalltalk、Eiffel、Ada 以及 Lisp 语言。由 Ruby 语言本身还发展出了JRuby(Java 平台)、IronRuby(.NET 平台)等其他平台的 Ruby 语言替代品。 1

搬运机器人结构设计与分析设计说明

搬运机器人结构设计与分析 摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作。 本课题主要对搬运机器人的机械部分展开讨论,对原有的机械结构提出了新的改进方法,并把现在的新技术应用到本课题中,从而使得搬运机器人更加适用于现在的工业工作环境。通过详细了解搬运机器人在工业上的应用现状,提出了具体的搬运机器人设计要求,并根据搬运机器人各部分的设计原则,进行了系统总体方案设计以及包括:机器人的手部、腕部、臂部、腰部在的机械结构设计。此搬运机器人的驱动源来自液压系统,执行元件包括:柱塞式液压缸、摆动液压缸、伸缩式液压缸等。通过液压缸的运动来实现搬运机器人的各关节运动,进而实现搬运机器人的实际作业。 关键词:搬运机器人;液压系统;机械结构设计;操作

Abstract In the modern large-scale manufacturing industry,enterprises to improve productivity, and,guarantee product quality, as an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. Industrial robot technology standards and application level, to a certain extent, reflect a level of national industrial automation. Currently, Industrial robot mainly tasked with welding, spraying, handling and stacking, repetitive and intensity of significant work. The subject of the main part of the handling of their machinery discussions, and on the original mechanical structure proposed for the new improved method, which makes the handling robot is more applicable to the present industrial working environment.Through a detailed understanding of the robot in the industrial application,to propose specific handling robot design requirements,and according to the robot design principles of various parts, for the system as well as including:the robot's hand, wrist, arm, waist, the design of mechanical structures.The transfer robot driven by the source from the hydraulic system, and the implementation of components including:plunger hydraulic cylinders, hydraulic cylinders, swing, telescopic hydraulic cylinders, etc.Through the hydraulic cylinder movements to implement the joint transport robot motion,And realize the operational handling robot. Keywords:Transfer robot;Hydraulic System;Mechanical Design;Operating

搬运机器人设计说明书

目录 1绪论 (2) 1.1机器人的论述 (2) 1.2机器人的历史现状 (4) 1.3机器人的发展趋势 (5) 2搬运机器人的总体设计 (6) 2.1搬运机器人原理设计 (6) 2.2搬运机器人的机械系统设计 (6) 3手臂设计及计算 (9) 3.1搬运机器人臂部的驱动计算 (10) 3.2臂部上零件的选型及其校核 (13) 4结论 (15) 5参考文献 (16)

阶段,例如,美国通用汽车公司1968年订购了68台工业机器人;1969年该公司又自行研制出SAM新工业机器人,并用21组成电焊小汽车车身的焊接自动线;又如,美国克莱斯勒汽车公司32条冲压自动线上的448台冲床都用工业机器人传递工件。 (3)1970年至今一直处于推广应用和技术发展阶段。1970-1972年,工业机器人处于技术发展阶段。1970年4月美国在伊利斯工学院研究所召开了第一届全国工业机器人会议。据当时统计,美国大约200台工业机器人,工作时间共达60万小时以上,与此同时,出现了所谓了高级机器人,例如:森德斯兰德公司(Sundstrand)发明了用小型计算机控制50台机器人的系统。又如,万能自动公司制成了由25台机器人组成的汽车车轮生产自动线。麻省理工学院研制了具有有“手眼”系统的高识别能力微型机器人。 其他国家,如日本、苏联、西欧,大多是从1967,1968年开始以美国的“Versatran”和“Unimate”型机器人为蓝本开始进行研制的。就日本来说,1967年,日本丰田织机公司引进美国的“Versatran”,川崎重工公司引进“Unimate”,并获得迅速发展。通过引进技术、仿制、改造创新。很快研制出国产化机器人,技术水平很快赶上美国并超过其他国家。经过大约10年的实用化时期以后,从1980年开始进入广泛的普及时代。 我国虽然开始研制工业机器人仅比日本晚5-6年,但是由于种种原因,工业机器人技术的发展比较慢。目前我国已开始有计划地从国外引进工业机器人技术,通过引进、仿制、改造、创新,工业机器人将会获得快速的发展。 1.3机器人发展趋势 随着现代化生产技术的提高,机器人设计生产能力进一步得到加强,尤其当机器人的生产与柔性化制造系统和柔性制造单元相结合,从而改变目前机械制造的人工操作状态,提高了生产效率。 就目前来看,总的来说现代工业机器人有以下几个发展趋势: a)提高运动速度和运动精度,减少重量和占用空间,加速机器人功能部件的标准化和模块化,将机器人的各个机械模块、控制模块、检测模块组成结构不同的机器人; b)开发各种新型结构用于不同类型的场合,如开发微动机构用以保证精度;开发多关节多自由度的手臂和手指;开发各类行走机器人,以适应不同的场合; c)研制各类传感器及检测元器件,如,触觉、视觉、听觉、味觉、和测距传感器等,用传感器获得工作对象周围的外界环境信息、位置信息、状态信息以完成模式识别、状态检测。并采用专家系统进行问题求解、动作规划,同时,越来越多的系统采用微机进行控制。

脚本语言和交互网页设计复习题

脚本语言和交互网页设计复习题 一、单项选择题 假设在应用中有一个,它的文件路径如下: ,那么在浏览器端访问的是什么? ( ) 下面对动作描述正确的是( ) 在页面被请求的时候引入一个文件。 寻找或者实例化一个。 把请求转到一个新的页面。 输出某个的属性。 在体系架构中,承担显示功能(层)的组件是( ) . 在页面中的输出语句是( ) () . () () () 对象的作用是( ) 针对错误网页,未捕捉的例外 用来传送回应的输出 正在执行的内容 用户端请求,此请求会包含来自请求的参数 下面哪一个不是本身已加载的基本类?() 、.* 、.* 、.* 、.* 对于预定义的说法错误的是:() 、一次可声明多个变量和方法,只要以“;”结尾就行 、一个声明仅在一个页面中有效 、声明的变量将作为局部变量 、在预定义中声明的变量将在页面初始化时初始化 从“员工” 表的“姓名”字段中找出名字包含“玛丽”的人,下面哪条语句正确:()、* 员工姓名’玛丽’ 、* 员工姓名’玛丽’ 、* 员工姓名‘玛丽’ 、* 员工姓名‘玛丽’ 下述选项中不属于基本功能的是:() . 与数据库建立连接.提交语句 .处理查询结果. 数据库维护管理 在中使用<>标记时,不会出现的属性是:() . . 以上皆不会出现 . 下面哪个不是操作的属性()。 .. . . . 以下方法中,哪一个方法不是类的方法()。 .. . .

关于正确的说法是:() 、文件与所定义的类名可以不同,但一定要注意区分字母的大小写 、在文件中引用,其实就是用<>语句 、被引用的文件的文件名后缀为 、文件放在任何目录下都可以被引用 程序的入口点是:() 、()、()、()、() 不能在不同用户之间共享数据的方法是() 、通过、利用文件系统 、利用数据库、通过对象 .下面对动作描述正确的是( ) 在页面被请求的时候引入一个文件。 寻找或者实例化一个。 把请求转到一个新的页面。 输出某个的属性。 在安装完服务器后,需要配置运行环境,增加的环境变量属性是( ) . 实际开发中使用可以设置访问的安全性,请选择所设置的属性的数据类型( ) 可以取得用交提交的参数的所有记录值的方法是( ) () () () () 下列哪些不是的特点:() 将内容的生成与显示分离 使用可重用的组件 采用标记简化开发 对这样的图形界面程序的支持 .以下文件名后缀中,只有()不是静态网页的后缀。 . . . . . 下列描述中,只有()错误的。 .提供了多种语言支持 . 提供了多种平台支持 . 采取编译执行的方式,极大的提高了运行性能 . 提供跨平台支持,也可以在下执行 . 以下选项中()不是开发应用程序所必需的。 .. . 服务器. 开发工具 . 在指令中,()属性是可以在页面中重复的的属性。

关节型搬运机器人设计

关节型搬运机器人设计 摘要 随着现代工业机器人技术的发展,工业机器人的使用迅速增长。本文通过对国外工业机器人的分析,并结合搬运所需要的条件,设计出了工厂自动化生产和生产线使用的搬运机器人。 本文着重对搬运机器人的总体设计方案、机构及控制系统从理论上进行了详细的分析和设计。在搬运机器人总体设计中,采用了应用最为广泛的平面关节型;在机构设计中,主要设计了搬运机器人末端执行器、手腕、手臂和腰的机械结构;在末端执行器设计上采用了一种具有接近觉、接触觉及滑动觉的初级智能机械手;在控制系统的设计中,采用可编程控制器(PLC)进行控制,并对控制系统的硬件原理做了分析,对PLC 的程序也进行了编译;在驱动系统设计中,采用了气动和电机两种驱动方式,主要动作采用电机驱动。 关键词:搬运机器人,三感觉机械手,可编程序控制器 Design of the joint transporting robot Abstract Under the development of the modern industrial robot’s technology , the use of industrial robot increases rapidly. Through analyzing the domestic and foreign industrial robots, combing the conditions of the transportation, the transporting robot for the factory automation produce and the production line is designed in this article. The emphasis on this article is to analyze and design the transporting robot in theory. The analytical objects include the total scheme, the mechanism design, and the control system design. In the total scheme design, the most wildly applied plane joint type is chosen. In the mechanism, the transporting robot’s end-effector, the wrist, the arm and the waist are mainly designed. A kind of the approaching sense, the contact sense and the skidding sense primary intelligence manipulator is adopted in the end-effector; In the control system, the programmable controller (PLC) is used, the principle of hardware is analyzed and the programs in PLC are compiled. In the actuating system, two driving types are used which include the pneumatic operation and the motor. The main movement is driven by the motor. Key words: Transporting robot, three feelings manipulators, programmable controller(PLC)

搬运机械手设计

专业课程设计说明书

目录 第1章课题规划.................................. 错误!未定义书签。 课题背景分析................................ 错误!未定义书签。 设计任务书.................................. 错误!未定义书签。第2章功能分析.................................. 错误!未定义书签。 设计任务功能分析............................ 错误!未定义书签。 总功能提炼.............................. 错误!未定义书签。 功能分解................................ 错误!未定义书签。 功能结构分析及功能结构图绘制............ 错误!未定义书签。 本章小结.................................... 错误!未定义书签。第3章系统原理方案设计.......................... 错误!未定义书签。 功能单元求解................................ 错误!未定义书签。 分功能求解.............................. 错误!未定义书签。 系统原理方案综合求解.................... 错误!未定义书签。 方案优化及评价.......................... 错误!未定义书签。 本章小结.................................... 错误!未定义书签。第4章总体设计.................................. 错误!未定义书签。 系统总体结构草图............................ 错误!未定义书签。 本章小结.................................... 错误!未定义书签。第5章总结...................................... 错误!未定义书签。参考文献......................................... 错误!未定义书签。

脚本语言和互动网页设计 答案

脚本语言和互动网页设计 交卷时间:2016-07-10 14:00:58 一、单选题 1. (5分) 可以取得用交提交的参数的所有记录值的方法是( ) ? A. getParameter() ? B. getAttribute() ? C. getParameterValues() ? D. getSession() 得分:5知识点:脚本语言和互动网页设计作业题展开解析 2. (5分) 下面对useBean动作描述正确的是( ) ? A. 在页面被请求的时候引入一个文件。 ? B. 寻找或者实例化一个JavaBean。 ? C. 把请求转到一个新的页面。 ? D. 输出某个JavaBean的属性。 得分:5知识点:脚本语言和互动网页设计作业题展开解析

答案B 解析 3. (5分)能够获取当前页信息并调用页面方法的对象是()。? A. request ? B. page ? C. pageContext ? D. session 得分:5知识点:脚本语言和互动网页设计作业题展开解析 答案B 解析 4. (5分)以下选项中()不是开发JSP应用程序所必需的。 ? A. JDK ? B. J2EE SDK ? C. web服务器 ? D. 开发工具Eclipse 得分:5知识点:脚本语言和互动网页设计作业题展开解析 答案B 解析

5. (5分)下面哪个方法不属于session对象()。 ? A. getAttributeNames() ? B. getServletContext() ? C. invalidate() ? D. addCookie(Cookie cook) 得分:5知识点:脚本语言和互动网页设计作业题展开解析 答案D 解析 6. (5分)下列描述中,只有()错误的。 ? A. JSP提供了多种语言支持 ? B. JSP提供了多种平台支持 ? C. JSP采取编译执行的方式,极大的提高了运行性能 ? D. JSP提供跨平台支持,也可以在UNIX下执行 得分:5知识点:脚本语言和互动网页设计作业题展开解析 答案A 解析 7. (5分)以下文件名后缀中,只有()不是静态网页的后缀。

搬运机器人

摘要 随着工业自动化的普及和发展,控制器的需求量逐年增大,搬运机械手的应用也逐渐普及,主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运, 可以更好地节约能源和提高运输设备或产品的效率,以降低其他搬运方式的限制和不足,满足现代经济发展的要求。 本机械手的机械结构主要包括由两个电磁阀控制的液压钢来实现机械手的上升下降 运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的快进、慢进、快退、慢退的运动运动;其动作转换靠设置在各个不同部位的行程开关(SQ1---SQ9)产生的通断信号传输到PLC控制器,通过PLC内部程序输出不同的信号,从而驱动外部线圈来控制电动机或电磁阀产生不同的动作,可实现机械手的精确定位;其动作过程包括:下降、夹紧、上升、慢进、快进、慢进、延时、下降、放松、上升、慢退、快退、慢退;其操作方式包括:回原位、手动、单步、单周期、连续;来满足生产中的各种操作要求。 关键词:搬运机械手可编程控制器(PLC)液压电磁阀

Abstract With the popularity of industrial automation and development, the demand for year-on-year increase of controller, handling the application of robot gradually popularity, mainly in the automotive, electronic, mechanical processing, food, medicine and other areas of the production line or cargo transport, we can be more good to save energy and improve the transport efficiency of equipment or products, to reduce restrictions on other modes of transportation and inadequate to meet the requirements of modern economic development. The manipulator mechanical structure includes two solenoid valves controlled by hydraulic manipulator steel to achieve the increased decline in sports and workpiece clamping action, the two different motor speed through the two motor coils positive control in order to achieve car of the fast-forward, slow forward, fast rewind, slow movement back movement; conversion by setting its action in various different parts of the trip switch (SQ1 --- SQ9) generated on-off signal transmission to the PLC controller, through the PLC internal different output signal, which drives the external coil to control the motor or solenoid valves have a different action, the robot can achieve precise positioning; their course of action include: decline in clamping increased, slow forward, fast forward, slow progress, the extension of , the drop in, relax, rise, slow back, rewind, slow back; its operation, including: Back in situ, manual, single-step, single cycle, continuous; to meet the production requirements of the various operations and maintenance. Keywords: handling mechanical hands Programmable Logic Controller (PLC) hydraulic solenoid valve

搬运机器人开题报告

华南理工大学广州学院 本科生毕业设计(论文)开题报告 论文题目 搬运机器人结构设计 学院机械工程学院 专业班级机械工程及自动化1班 姓名陈显基 学生学号201038686168 指导教师李虹 填表日期2014年3月10日

姓名陈显基开题时间2014.3.10 学院机械工程学院 指导教师 专业班级机械工程及自动化1班 李虹 (导师组) 中文搬运机器人结构设计 论文题目 英文Handling Robot Design 选题的背景和意义: 从1914年到现在,机器人已从第一代示教再现型机器人、第二代带感觉的机器人发展到第三代智能机器人,而服务机器人正是第三代机器人的典型代表。目前国外的科学家们在移动机构设计、传感器融合与环境建模技术、路径规划技术、能源技术、智能控制技术、人机交互技术、成本控制等方面都取得了长足的进步。美国iRobot公司推出室内地毯和地板清洁机器人,具有污物探测功能,可根据房间地面的具体情况进行有重点的清洁[1]。本田公司的双足机器人“ASIMO”,步行时速达3km几乎与人类相同[2]。索尼QRIO机器人可以漫步、跳舞,做很多高难度动作而且能识别口语并做出回应[3]。三菱重工的家用机器人“Wakamaru”能识别家庭成员的脸部特征,并通过转动脸部和手腕来表现喜怒哀乐[4]。韩国的“irobi”机器人不仅能念书、唱歌、讲故事当家里无人的时候,它还可以确认大门是否上锁以及煤气是否关闭[5]。假如有人闯进家门,它还可以将其拍摄下来给主人发电子邮件。美国的“InTouch Health”远程医疗机器人具有时双向的视频和语音传送系统以及行走系统,已成为医与患者之间的连心桥[5]。配备有各种检测装置的机器人保更成为美国军方后勤部门以及各大公司的新宠。 虽然以上机器人的发展都是趋向于智能化,但是负载能力还是比较小。假如有间房屋倒塌了,一般都起重车不能进去,或者有交通意外出现了,但是所在位置车是很难到的,那么在这种状况下,怎样去解决呢?处理这样的事件,也是需要机器人,这样能够更加好的保护好人类安全。但是现有的机器人的负载太少了,就算刚刚的状况先切小块再用这个机器人处理也行,不过太浪费时间和能源了。为了提高工作效率,为了增加人类安全,需要增加机器人的负载。因此选择了液压系统,一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油[6]。常用典型液压元件(动力元件、执行元件、控制元件、辅助元件)的工作原理、结构、型号编制、选用注意事项、常见故障与排除方法[7]。德国KUKA机器人推出世界上最大负载机器人KR1000,最大负载达到1000kg,负载虽然大,但是是工业机器人,活动受到限制[8]。 美国大狗,是一种4足仿生机器人,它高2.3英尺,重165磅。采用汽油动力驱动,体内装有维持机身平衡的回转仪。它的最高负载量可达300磅,以每小时3.3英里的速度

InstallShield脚本语言的编写

InstallShield脚本语言的编写 编号:QA001188 建立日期: 1999年6月16日最后修改日期:1999年6月16日 InstallShield脚本语言是类似C语言,利用InstallShield的向导或模板都可以生成基本的脚本程序框架,可以在此基础上按自己的意愿进行修改和添加。 一.基本语法规则 1.变量 BOOL 布尔型值为TRUE(1)或FALSE(0) CHAR 字符型一字节长的(8bit)的字符 HWND 窗口句柄用来存放窗口句柄 INT 整型两字节长的整数 LIST 列表型指向InstallShield列表,用ListCreate和ListDestroy LONG 扩展数值型 LPSTR 扩展指针 NUMBER 数值型存放四字节长的数值,范围从-2147483648到+2147483647 POINTER 指针型 SHORT 短数值型 STRING 字符串型十分类似VC中的LPCTSTR 变量如同标准的C语言,在使用前需要事先声名。变量通常在两个位置进行声名,一是主程序外部,这样的变量为全局变量,二是各函数的变量声名区,这样的变量是局部变量。 2.操作符 一般的与C语言相同操作符,在这里不做详解,以下主要介绍比较特殊的操作符, (1) + , - , * , / 以上四个操作符与C语言中意义和用法都相同。 (2) && 与操作,与C语言中用法相同,例:x1 && x2 (3) || 或操作,与C语言中用法相同,例:x1 || x2 (4) ! 非操作,与C语言中用法相同,例:!x1 (5) * 指针操作,类似C语言中的*

(6) & , | , ^ , ~ , << , >> 分别为位与,位或,按位异或,按位取反,左移和右移,其意义和用法都与C语言中基本相同。 (7) . 该操作符用于结构,用来得到结构的子项,与Delphi的 . 用法类似,例如: typedef SETTINGSREC begin BOOL bSwitchOn; STRING szMssg[255]; INT nVal; end; SETTINGSREC settings; program settings.bSwitchOn = FALSE; settings.szMssg = "Off"; settings.nVal = 0; (8) = 既可作为赋值号,同时也做等于符,例如: str1 = "String"; if str1="String" then endif; (9) & 取地址符,与C语言用法类似。 (10) < , > , = , <= , >= , != 分别表示小于,大于,等于,小于等于,大于等于,不等于 (11) + , ^ , % 用于字符串的操作。 (12) -> 结构指针,与C语言中用法类似。 (13) @ 用于得到Resource窗口中定义的字符串,例: szReferenceFile = svDir ^ @PRODUCT_KEY; 3.函数 InstallShield的函数使用前同样需要声名,函数的参数传递方式十分类似C语言,例如

相关主题
文本预览
相关文档 最新文档
用户名:
密码: