当前位置:文档之家› 生理生化课后习题答案

生理生化课后习题答案

生理生化课后习题答案
生理生化课后习题答案

植物生理学课后习题答案

第一章植物的水分生理(重点)

●水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。

●渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势

的水势下降值。

●压力势:指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有

弹性的细胞壁产生一种限制原生质体膨胀的反作用力。

●质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

●共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一

个细胞质的连续体,移动速度较慢。

●渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

●根压:由于水势梯度引起水分进入中柱后产生的压力。

●蒸腾作用:指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

●蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。

●蒸腾比率:光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。

●水分利用率:指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。

●内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升

原因的学说。

●水分临界期:植物对水分不足特别敏感的时期。

1.将植物细胞分别放在纯水和1mol/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?

答:在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。

2.从植物生理学角度,分析农谚“有收无收在于水”的道理。

答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。

水分在植物生命活动中的作用很大,主要表现在4个方面:

●水分是细胞质的主要成分。细胞质的含水量一般在70~90%,使细胞质呈溶胶状态,保证了旺盛

的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。

●水分是代谢作用过程的反应物质。在光合作用、呼吸作用、有机物质合成和分解的过程中,都

有水分子参与。

●水分是植物对物质吸收和运输的溶剂。一般来说,植物不能直接吸收固态的无机物质和有机物

质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。

●水分能保持植物的固有姿态。由于细胞含有大量水分,维持细胞的紧张度(即膨胀),使植物枝

叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。

3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的?

●通过膜脂双分子层的间隙进入细胞。

●膜上的水孔蛋白形成水通道,造成植物细胞的水分集流。植物的水孔蛋白有三种类型:质膜上

的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔

蛋白在植物体中分布最丰富、水分透过性最大。

4.水分是如何进入根部导管的?水分又是如何运输到叶片的?

答:进入根部导管有三种途径:

●质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

●跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。

●共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个

细胞质的连续体,移动速度较慢。

这三条途径共同作用,使根部吸收水分。

根系吸水的动力是根压和蒸腾拉力。

运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。

5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?

●保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。

●保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外

壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。

保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。

6.气孔的张开与保卫细胞的什么结构有关?

●细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。

●细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸

长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。

9.设计一个证明植物具有蒸腾作用的实验装置。

10.设计一个测定水分运输速度的实验。

第二章植物的矿质营养(重点)

●矿质营养:植物对矿物质的吸收、转运和同化。

●大量元素:植物需要量较大的元素。

●微量元素:植物需要量极微,稍多即发生毒害的元素。

●溶液培养:是在含有全部或部分营养元素的溶液中栽培植物的方法。

●透性:细胞膜质具有的让物质通过的性质。

●选择透性:细胞膜质对不同物质的透性不同。

●胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。

●被动运输:转运过程顺电化学梯度进行,不需要代谢供给能量。

●主动运输:转运过程逆电化学梯度进行,需要代谢供给能量。

●转运蛋白:包括两种通道蛋白和载体蛋白。

通道蛋白:横跨两侧的内在蛋白,分子中的多肽链折叠成通道,内带电荷并充满水。

载体蛋白:跨膜的内在蛋白,形成不明显的通道,通过自身构象的改变转运物质。

●单向运输载体:能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。

●同向运输器:指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。

●反向运输器:指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝

相反的方向运输。

●离子泵:膜内在蛋白,是质膜上的A TP酶,通过活化A TP释放能量推动离子逆化学势梯度进行

跨膜转运。

●生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。

●诱导酶:是指植物本来不含某种酶,但在特定外来物质的诱导下生成的酶。

●临界浓度:在营养元素严重缺乏与适量之间的浓度。是获得最高产量的最低养分浓度。

●生物膜:细胞的外周膜和内膜系统。

1.植物进行正常生命活动需要哪些矿质元素?如何用实验方法证明植物生长需这些元素?

答:分为大量元素和微量元素两种:

●大量元素:C H O N P S K Ca Mg Si

●微量元素:Fe Mn Zn Cu Na Mo P Cl Ni

实验的方法:使用溶液培养法或砂基培养法证明。通过加入部分营养元素的溶液,观察植物是否能够正常的生长。如果能正常生长,则证明缺少的元素不是植物生长必须的元素;如果不能正常生长,则证明缺少的元素是植物生长所必须的元素。

2.在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施?

缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。

补救措施:施加氮肥。

缺磷:生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期和成熟期都延迟,产量降低,抗性减弱。

补救措施:施加磷肥。

缺钾:植株茎秆柔弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。

补救措施:施加钾肥。

4.植物细胞通过哪些方式来吸收溶质以满足正常生命活动的需要?

(一)扩散

1.简单扩散:溶质从高浓度的区域跨膜移向浓度较低的邻近区域的物理过程。

2.易化扩散:又称协助扩散,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量。

(二)离子通道:细胞膜中,由通道蛋白构成的孔道,控制离子通过细胞膜。

(三)载体:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。

1.单向运输载体:(uniport carrier)能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。

2.同向运输器:(symporter)指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。

3.反向运输器:(antiporter)指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。

(四)离子泵:膜内在蛋白,是质膜上的A TP酶,通过活化A TP释放能量推动离子逆化学

势梯度进行跨膜转运。

(五)胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。

7.植物细胞通过哪些方式来控制胞质中的钾离子浓度?

●钾离子通道:分为内向钾离子通道和外向钾离子通道两种。内向钾离子通道是控制胞外钾离子

进入胞内;外向钾离子控制胞内钾离子外流。

●载体中的同向运输器。运输器与质膜外侧的氢离子结合的同时,又与另一钾离子结合,进行同

一方向的运输,其结果是让钾离子进入到胞内。

8.无土栽培技术在农业生产上有哪些应用?

●可以通过无土栽培技术,确定植物生长所必须的元素和元素的需要量,对于在农业生产中,进

行合理的施肥有指导的作用。

●无土栽培技术能够对植物的生长条件进行控制,植物生长的速度快,可用于大量的培育幼苗,

之后再栽培在土壤中。

10.在作物栽培时,为什么不能施用过量的化肥,怎样施肥才比较合理?

过量施肥时,可使植物的水势降低,根系吸水困难,烧伤作物,影响植物的正常生理过程。同时,根部也吸收不了,造成浪费。

合理施肥的依据:

●根据形态指标、相貌和叶色确定植物所缺少的营养元素。

●通过对叶片营养元素的诊断,结合施肥,使营养元素的浓度尽量位于临界浓度的周围。

●测土配方,确定土壤的成分,从而确定缺少的肥料,按一定的比例施肥。

11.植物对水分和矿质元素的吸收有什么关系?是否完全一致?

关系:矿质元素可以溶解在溶液中,通过溶液的流动来吸收。

两者的吸收不完全一致

相同点:①两者都可以通过质外体途径和共质体途径进入根部。

②温度和通气状况都会影响两者的吸收。

不同点:①矿质元素除了根部吸收后,还可以通过叶片吸收和离子交换的方式吸收矿物质。

②水分还可以通过跨膜途径在根部被吸收。

12.细胞吸收水分和吸收矿质元素有什么关系?有什么异同?

关系:水分在通过集流作用吸收时,会同时运输少量的离子和小溶质调节渗透势。

相同点:①都可以通过扩散的方式来吸收。②都可以经过通道来吸收。

不通电:①水分可以通过集流的方式来吸收。

②水分经过的是水通道,矿质元素经过的是离子通道。

③矿质元素还可以通过载体、离子泵和胞饮的形式来运输。

13.自然界或栽种作物过程中,叶子出现红色,为什么?

●缺少氮元素:氮元素少时,用于形成氨基酸的糖类也减少,余下的较多的糖类形成了较多的花

色素苷,故呈红色。

●缺少磷元素:磷元素会影响糖类的运输过程,当磷元素缺少时,阻碍了糖分的运输,使得叶片

积累了大量的糖分,有利于花色素苷的形成。

●缺少了硫元素:缺少硫元素会有利于花色素苷的积累。

●自然界中的红叶:秋季降温时,植物体内会积累较多的糖分以适应寒冷,体内的可溶性糖分增

多,形成了较多的花色素苷。

14.植株矮小,可能是什么原因?

●缺氮:氮元素是合成多种生命物质所需的必要元素。

●缺磷:缺少磷元素时,蛋白质的合成受阻,新细胞质和新细胞核形成较少,影响细胞分裂,生

长缓慢,植株矮小。

●缺硫:硫元素是某些蛋白质或生物素、酸类的重要组成物质。

●缺锌:锌元素是叶绿素合成所需,生长素合成所需,且是酶的活化剂。

●缺水:水参与了植物体内大多数的反应。

15.引起嫩叶发黄和老叶发黄的分别是什么元素?请列表说明。

●引起嫩叶发黄的:S Fe,两者都不能从老叶移动到嫩叶。

●引起老叶发黄的:K N Mg Mo,以上元素都可以从老叶移动到嫩叶。

●Mn既可以引起嫩叶发黄,也可以引起老叶发黄,依植物的种类和生长速率而定。

16.叶子变黄可能是那些因素引起的?请分析并提出证明的方法。

●缺乏下列矿质元素:N Mg F Mn Cu Zn。证明方法是:溶液培养法或砂基培养法。

分析:N和Mg是组成叶绿素的成分,其他元素可能是叶绿素形成过程中某些酶的活化剂,在叶绿素形成过程中起间接作用。

●光照的强度:光线过弱,会不利于叶绿素的生物合成,使叶色变黄。

证明及分析:在同等的正常条件下培养两份植株,之后一份植株维持原状培养,另一份放置在光线较弱的条件下培养。比较两份植株,哪一份首先出现叶色变黄的现象。

●温度的影响:温度可影响酶的活性,在叶绿素的合成过程中,有大量的酶的参与,因此

过高或过低的温度都会影响叶绿素的合成,从而影响了叶色。

证明及分析:在同等正常的条件下,培养三份植株,之后其中的一份维持原状培养,一份放置在低温下培养,另一份放置在高温条件下培养。比较三份植株变黄的时间。

第三章植物的光合作用(重点)

●光合作用:绿色植物吸收阳光的能量,同化CO2和水,制造有机物质并释放氧气的过程。

●吸收光谱:)经过叶绿素吸收后,在光谱上出现黑线或暗带。

●荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色。

●磷光现象:叶绿素在光照去掉光源后,还能继续辐射出极微弱红光的现象。

●增益效应:红光和远红光协同作用而增加光和效率的现象。

●光反应:必须在光下才能进行的,由光引起的光化学反应。

●碳反应:在暗处或光处都能进行的,由若干酶所催化的化学反应。

●光和单位:由聚光色素系统和反应中心组成。

●聚光色素:没有光化学活性,只有收集光能的作用,将光能聚集起来传给反应中心色素。包括

绝大多数的色素。

●原初反应:指光和作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程。

●反应中心:是将光能转换为化学能的膜蛋白复合体。包括特殊状态的叶绿素a。

●希尔反应:在光照下,离体叶绿体类囊体能将含有高铁的化合物还原为低铁化合物并释放氧。

●光和链:在类囊体摸上的PSII和PSI之间几种排列紧密的电子传递体完成电子传递的总轨道。

●光和磷酸化:是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把ADP和磷酸

合成为A TP的过程。

●光和速率:单位时间、单位叶面积吸收CO2的量或放出O2的量,或者积累干物质的量。

●同化力:由于A TP和NADPH用于碳反应中CO2的同化,把这两种物质合称为同化力。

●卡尔文循环:(Calvin cycle)CO2的受体是一种戊糖,CO2的固定的出产物是一种三碳化合物。

●C4途径:CO2固定最初的稳定产物是四碳化合物。

●光抑制:光能超过光和系统所能利用的数量时,光和功能下降。

●景天酸代谢途径:植物在夜间气孔开放,利用C4途径固定CO2,形成苹果酸,贮存在液泡中,

白天气孔关闭,将夜间固定的CO2释放出来,再经C3途径固定CO2的过程。

●光呼吸:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程。

●表观光合作用:没有把叶子的线粒体呼吸和光呼吸考虑在内的光和速率。

●真正光和作用:表观光和作用+呼吸作用+光呼吸。

●光饱和点:当达到某一光强度时,光和速率不再增加时的光强。

●温室效应:大气层中的CO2能强烈的吸收红外线,太阳辐射的能量在大气层中就“易入难出”,

使得温度上升。

●CO2补偿点:当光和吸收的CO2量等于呼吸放出的CO2量,这时外界CO2含量。

●光补偿点:同一叶子在同一时间内,光和过程中吸收的CO2与光呼吸和呼吸作用过程中放出的

CO2等量时的光照强度。

●光能利用率:指植物光合作用所积累的有机物所含的能量,占照射在单位地面上的日光能量的

比率。

1.植物光合作用的光反应和碳反应是在细胞的哪些部位进行的?为什么?

答:光反应在类囊体膜(光合膜)上进行的,碳反应在叶绿体的基质中进行的。

原因:光反应必须在光下才能进行的,是由光引起的光化学反应,类囊体膜是光合膜,为光反应提供了光的条件;碳反应是在暗处或光处都能进行的,由若干酶催化的化学反应,基质中有大量的碳反应需要的酶。

2.在光合作用过程中,A TP和NADPH是如何形成的?又是怎样被利用的?

答:形成过程是在光反应的过程中。

●非循环电子传递形成了NADPH:PSII和PSI共同受光的激发,串联起来推动电子传递,从水中

夺电子并将电子最终传递给NADP+,产生氧气和NADPH,是开放式的通路。

●循环光和磷酸化形成了A TP:PSI产生的电子经过一些传递体传递后,伴随形成腔内外H浓度

差,只引起A TP的形成。

●非循环光和磷酸化时两者都可以形成:放氧复合体处水裂解后,吧H释放到类囊体腔内,把电

子传递给PSII,电子在光和电子传递链中传递时,伴随着类囊体外侧的H转移到腔内,由此形成了跨膜的H浓度差,引起A TP的形成;与此同时把电子传递到PSI,进一步提高了能位,形成NADPH,此外,放出氧气。是开放的通路。

利用的过程是在碳反应的过程中进行的。

C3途径:甘油酸-3-磷酸被A TP磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸,然后在甘油醛-3-磷酸脱氢酶作用下被NADPH还原,形成甘油醛-3-磷酸。

C4途径:叶肉细胞的叶绿体中草酰乙酸经过NADP-苹果酸脱氢酶作用,被还原为苹果酸。C4酸脱羧形成的C3酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化和A TP作用,生成CO2受体PEP,使反应循环进行。

答:水裂解放氧是水在光照下经过PSII的放氧复合体作用,释放氧气,产生电子,释放质子到类囊体腔内。放氧复合体位于PSII类囊体膜腔表面。当PSII反应中心色素P680受激发后,把电子传递到脱镁叶绿色。脱镁叶绿素就是原初电子受体,而Tyr是原初电子供体。失去电子的Tyr又通过锰簇从水分子中获得电子,使水分子裂解,同时放出氧气和质子。

6.光合作用的碳同化有哪些途径?试述水稻、玉米、菠萝的光合碳同化途径有什么不同?

答:有三种途径C3途径、C4途径和景天酸代谢途径。

水稻为C3途径;玉米为C4途径;菠萝为CAM。

7.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征以及生理特征比较分析。

8.从光呼吸的代谢途径来看,光呼吸有什么意义?

光呼吸的途径:在叶绿体内,光照条件下,Rubisco把RUBP氧化成乙醇酸磷酸,之后在磷酸酶作用下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸和过氧化氢,过氧化氢变为洋气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油-3-磷酸,参与卡尔文循环。

●在干旱和高辐射期间,气孔关闭,CO2不能进入,会导致光抑制。光呼吸会释放CO2,消耗多

余的能量,对光合器官起到保护的作用,避免产生光抑制。

●在有氧条件下,通过光呼吸可以回收75%的碳,避免损失过多。

●有利于氮的代谢。

9.卡尔文循环和光呼吸的代谢有什么联系?

●卡尔文循环产生的有机物的1/4通过光呼吸来消耗。

●氧气浓度高时,Rubisco作为加氧酶,是RUBP氧化,进行光呼吸;CO2高时,Rubisco作为羧

化酶,使CO2羧化,进行卡尔文循环。

●光呼吸的最终产物是甘油酸-3-磷酸,参与到卡尔文循环中。

10.通过学习植物水分代谢、矿质元素和光合作用知识之后,你认为怎样才能提高农作物的产量。

●合理灌溉。合理灌溉可以改善作物各种生理作用,还能改变栽培环境,间接地对作用发生影响。

●合理追肥。根据植物的形态指标和生理指标确定追肥的种类和量。同时,为了提高肥效,需要

适当的灌溉、适当的深耕和改善施肥的方式。

●光的强度尽量的接近于植物的光饱和点,使植物的光合速率最大,最大可能的积累有机物,但

是同时注意光强不能太强,会产生光抑制的现象。

●栽培的密度适度的大点,肥水充足,植株繁茂,能吸收更多的CO2,但同时要注意光线的强弱,

因为随着光强的增加CO2的利用率增加,光合速率加快。同时,可通过人工的增加CO2含量,提高光合速率。

●使作物在适宜的温度范围内栽植,使作物体内的酶的活性在较强的水平,加速光合作用的碳反

应过程,积累更多的有机物。

●水分的缺失。水分是植物进行正常的生命活动的基础。

●矿质元素的缺失。有些矿质元素是叶绿素合成的元素,有些矿质元素是叶绿素合成过程中酶的

活化剂,这些元素都影响叶绿素的形成,出现叶子变黄。

●光条件的影响。光线过弱时,植株叶片中叶绿素分解的速度大于合成的速度,因为缺少叶绿素

而使叶色变黄。

●温度。叶绿素生物合成的过程中需要大量的酶的参与,过高或过低的温度都会影响酶的活动,

从而影响叶绿素的合成。

●叶片的衰老。叶片衰老时,叶绿素容易降解,数量减少,而类胡萝卜素比较稳定,所以叶色呈

现出黄色。

13.高O2浓度对光合过程有什么影响?

答:对于光合过程有抑制的作用。高的O2浓度,会促进Rubisco的加氧酶的作用,更偏向于进行光呼吸,从而抑制了光合作用的进行。

15.“霜叶红于二月花”,为什么霜降后枫叶变红?

答:霜降后,温度降低,体内积累了较多的糖分以适应寒冷,体内的可溶性糖多了,就形成较多的花色素苷,叶子就呈红色的了。

第四章植物的呼吸作用

●呼吸作用:指生物体内的有机物质,通过氧化还原而产生CO2同时释放能量的过程。

●有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,

同时释放能量的过程。

●无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,同时释放能量的

过程。

●呼吸速率:用植物的单位鲜重、干重或原生质表示,或者在一定时间内所放出的二氧化碳的体

积,或所吸收的氧气的体积来表示。

●呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。

第六章植物体内有机物的运输(重点)

●胞间连丝:是连接两个相邻植物细胞的胞质通道,行使水分、营养物质、小的信号分子,以及

大分子的胞质运输功能。

●压力流学说:筛管中溶液流运输是由源和库端之间渗透产生的压力梯度推动的。

●韧皮部装载:指光和产物从叶肉细胞到筛分子-伴胞复合体的整个过程。

●多聚体-陷阱模型::叶肉细胞合成的蔗糖运到维管束鞘细胞,经过众多的胞间连丝,进入居间

细胞,居间细胞内的运输蔗糖分别与1或2个半乳糖分子合成棉子糖或水苏糖,这两种糖分大,不能扩散回维管束鞘细胞,只能运送到筛分子。

●韧皮部卸出:装载在韧皮部的同化产物输出到库的接受细胞的过程。

●胞质泵动学说:筛分子内腔的细胞质呈几条长丝状,形成胞纵束,纵跨筛分子,每束直径为1

到几微米。在束内呈环状的蛋白质丝反复的、有节奏的收缩和张弛,就产生一种蠕动,把细胞质长距离泵走,糖分就随之流动。

●收缩蛋白学说:筛管腔内有很多具有收缩能力的P蛋白,是它推动筛管汁液运行。

●库强度:等于库容量和库活力的乘积。

●配置:指源叶中新形成同化产物的代谢转化。

●分配:指新形成同化产物在各种库之间的分布。

1.植物叶片中合成的有机物质是以什么形式和通过什么途径运输到根部?如何用实验证明植物体内有机物运输的形式和途径?

答:形式主要是还原性糖,例如蔗糖、棉子糖、水苏糖和毛蕊糖,其中以蔗糖为最多。运输途径是筛分子-伴胞复合体通过韧皮部运输。

验证形式:利用蚜虫的吻刺法收集韧皮部的汁液。蚜虫以其吻刺插入叶或茎的筛管细胞吸取汁液。当蚜虫吸取汁液时,用CO2麻醉蚜虫,用激光将蚜虫吻刺于下唇处切断,切口处不断流出筛管汁液,可收集汁液供分析。

验证途径:运用放射性同位素示踪法。

5.木本植物怕剥皮而不怕空心,这是什么道理?

答:叶片是植物有机物合成的地方,合成的有机物通过韧皮部向双向运输,供植物的正常生命活动。剥皮即是破坏了植物的韧皮部,使有机物的运输收到阻碍。

第八章植物生长物质(重点)

●植物生长物质:调节植物生长发育的物质。

●植物激素:是指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的

微量有机物。

●植物激素受体:指特异地识别激素并能与激素高度结合的蛋白质。

●植物激素突变体:由于基因突变而引起植物激素缺陷的突变体。

●植物多肽激素:具有调节生理过程和传递细胞信号功能的活性多肽。

●生长素极性运输:生长素只能从植物体的形态学上端向下端运输。

●植物生长调节剂:指一些具有植物激素活性的人工合成的物质。

●植物生长促进剂:促进分生组织细胞分裂和伸长,促进营养器官的生长和生殖器官的发育,外

施生长抑制剂可抑制其促进效能。

●植物生长抑制剂:抑制顶端分省组织生长,使植物丧失顶端优势,侧枝多,叶小,生殖器官也

受影响。

●植物生长延缓剂:是赤霉素类,使植株矮小,茎粗,节间短,叶面积小,叶厚,叶色深绿,不

影响花的发育。

1.生长素是在植物体的哪些部位合成的?生长素的合成有哪些途径?

答:合成部位---叶原基、嫩叶、发育中种子

途径(底物是色氨酸)----吲哚丙酮酸途径、色胺途径、吲哚乙腈途径和吲哚乙酰胺途径。

2.根尖和茎尖的薄壁细胞有哪些特点与生长素的极性运输是相适应的?

答:生长素的极性运输是指生长素只能从植物体的形态学上端向下端运输。在细胞基部的质膜上有专一的生长素输出载体。

3.植物体内的赤霉素、细胞分裂素和脱落酸的生物合成有何联系。

4.细胞分裂素是怎样促进细胞分裂的?

答:CTK+CRE1——信号的跨膜转换——CRE1上的pi基团到组氨酸磷酸转移蛋白上——细胞核内反应蛋白——基因表达——细胞分裂

5.香蕉、芒果、苹果果实成熟期间,乙烯是怎样形成的?乙烯又是怎样诱导果实成熟的?

答:Met——SAM——ACC+O2——Eth(MACC)

诱导果实的成熟:促进呼吸强度,促进代谢;促进有机物质的转化;促进质膜透性的增加。

6.生长素与赤霉素,生长素与细胞分裂素,赤霉素与脱落酸,乙烯与脱落酸各有什么相互关系?8.生长素、赤霉素、细胞分裂素、脱落酸和乙烯在农业生产上有何作用?

生长素:1.促进扦插的枝条生根2.促进果实发育3.防止落花落果

赤霉素:1.在啤酒生产上可促进麦芽糖化。2.促进发芽。3.促进生长。4.促进雄花发生。

细胞分裂素:细胞分裂素可用于蔬菜、水果和鲜花的保鲜保绿。其次,细胞分裂素还可用于果树和蔬菜上,主要作用用于促进细胞扩大,提高坐果率,延缓叶片衰老。

脱落酸:1.抑制生长2.促进休眠3.引起气孔关闭4.增加抗逆性

乙烯:1.催熟果实。2.促进衰老。

10.要使水稻秧苗矮壮分蘖多,你在水肥管理或植物生长调节剂应用方面有什么建议?

答:在水肥管理中,在氮、磷、硫、锌的肥料的使用中,要适量不能使用太多,使用太多利于伸长生长。在植物生长调节剂方面,使用TIBA、CCC。

11.要使水仙矮化而又能在春节期间开花,用MH处理好呢,还是用PP333处理好呢?为什么?答:用PP333处理。原因:MH是生长抑制剂,植株矮小,生殖器官也会受影响;PP333是生长延缓剂,使用后,植株矮小,而不会影响花的发育。

13.作物能抵御各种逆境胁迫,是由一种激素起作用或多种激素协同作用?请分析。

答:多种激素协同作用。

第九章光形态建成(重点)

●光形态建成:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成。●暗形态建成:暗中生长的植物幼苗表现出各种黄化特征。

●光敏色素:吸收红光-远红光可逆转换的光受体。

●去黄化:给黄化幼苗一个微弱的闪光出现的现象。

1.什么是植物光形态建成?它与光合作用有何不同?

答:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成,亦即光控制发育的过程。光形态建成控制的是细胞的结构,光合作用控制的是物质的形成;光形态建成中利用红光、远红光、蓝光和紫外光,光合作用中利用蓝紫光和红光;光形态建成在植物的各个器官中进行,光合作用在叶片中进行。

5.按你所知,请全面考虑,光对植物生长发育有什么影响?

答:光合作用,光形态建成。

6.光敏色素作用机理。

答:前体—Pr—Pfr——+【X】——【Pfr.X】——生理反应。

Pr——Pfr为660nm;相反为730nm。

7.举例说明光敏控制的快反应。

答:快反应是吸收光量子到诱导形态变化反应迅速,以分秒计。有棚田效应,指离体的绿豆根尖在红光下诱导膜产生少量正电荷,可以吸附在带负电荷的玻璃表面,而远红光逆转这种现象。

8.举例说明3中以上与光敏色素有关的生理现象。

答:棚田效应(快反应)、红光促进莴苣种子萌发和诱导幼苗去黄花反应(慢反应)。

第十章植物的生长生理

●细胞周期:新生的持续分裂的细胞从第一次分裂形成的细胞至下一次再分裂成为两个子细胞为

止所经历的过程。

●分化:分生组织的幼嫩细胞发育成为具有各种形态结构和生理代谢功能的成形细胞的过程。

●脱分化:已有高度分化能力的细胞核组织,在培养条件下逐渐丧失其特有的分化能力的过程。

●再分化:已经脱分化的细胞在一定条件下,又可经过愈伤组织或胚状体,再分化出根和芽,形

成完整植株的过程。

●酸-生长假说:生长素诱导细胞壁酸化并使其可塑性增大而导致细胞伸长的理论。

●细胞全能性:指植物体的每个细胞都携带着一套完整的基因组,并具有发育成完整植株的潜在

能力。

●组织培养:指在控制的环境条件下,在人工配制的培养基中,将离体的植物细胞、组织或器官

进行培养的技术。

●极性:指在器官、组织甚至细胞中在不同的轴向上存在某种形态结构和生理生化上的梯度差异。

●生长大周期:开始时生长缓慢,以后逐渐加快,达到最高点,然后生长速率又减慢以至停止。

●顶端优势:顶芽优先生长,而侧芽生长受抑制的现象。

●相关性:植物各部分之间的相互制约与协调的现象。

●向性运动:由外界刺激而产生,运动方向取决于外界的刺激方向。

●向光性:植物随光照入射的方向而弯曲的反应。

●向重力性:植物在重力影响下,保持一定方向生长的特性。

●感性运动:由外界刺激或内部时间机制而引起的,外界刺激方向不能决定运动方向。

●生理钟:生物对昼夜的适应而产生生理上有周期性波动的内在节奏。

第十一章植物的生殖生理

●春化作用(vernalization):低温诱导植物开花的作用。

●脱春化作用(devernalization):在春化作用结束之前,如遇高温、低温效果会消弱甚至解除。

●春化素(vernalin):在春化过程中形成的一种刺激物质。

●夜间断:若在长的暗期中给予一个短时间的光照处理使短日植物不开花而长日植物开花的反应。

●光周期:在一天之中,白天和黑夜的相对长度。

●光周期诱导:植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下仍然可

开花。

●长日植物(LDP):是指在一定的发育时期内,每天光照时间必须长于一定时数并经过一定天数

才能开花的植物。如:小麦、胡萝卜、油菜。

●短日植物(SDP):是指在一定的发育时期内,每天光照时间必须短于一定时数才能开花的植物。

如:大豆、水稻、棉花。

●日中性植物(DNP):是指在任何日照条件下都可以开花的植物。番茄、黄瓜、辣椒。

●临界日长是指昼夜周期中诱导短日植物开花能忍受的最长日照或诱导长日植物开花所必须的最

短日照。

●临界暗期:是指在昼夜周期中短日植物能够开花的最短暗期长度,或长日植物能够开花的最长

暗期长度。

第十二章植物的成熟和衰老生理(重点)

●呼吸跃变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,然后又下降的现

象。

●单性结实(parthenocarpy):不经受精而雌蕊的子房形成无子果实的现象。

●休眠(dormancy):成熟种子、鳞茎和芽在合适的萌发条件下暂时停止生长的现象。

●离层(abscisic layer):组成离区的排列紧密的细胞。

●生长素梯度学说(auxin gradient theory):决定脱落的不是生长素的绝对含量,而是相对浓度,

即离层两侧生长素浓度梯度起了调节脱落的作用。当远基(轴)端浓度高于近基(轴)端时,器官不脱落;当两端浓度差异小或不存在时,器官脱落;当远基(轴)端浓度低于近基(轴)端时,加速脱落。

4.从下列果实中取出种子立刻播在土中,种子不能很快萌发,请解释原因。

答:松树和桃树种子因为完成后熟,经过后熟才萌发,另外松树种子外皮坚硬。洪桐的胚没有发育完全,同时果皮和种子的子叶含有抑制物质。菜豆子叶和番茄种子果肉中有抑制物,需要除掉抑制物。

5.市面上出售方形的西瓜,这是怎么得来的?

答:方形玻璃容器。

6.苹果表面上长出字母,这是怎么得来的?

7.为什么果树有大小年现象?怎样克服它?

答:果树的发芽,长叶,开花等早春的生长活动都是有果树上一年的储备营养来完成,同时,幼果生长阶段正是花芽分化期,因此,上一年留果量过大会造成形成花芽所需的养分不足,所以形成的花量不足,另外也会使冬季树体积累的营养减少,所以第二年结果很少。因为第二年结果少又回形成大量花芽,所以树体会从一个极端走向另一个极端,即一年接很多,一年接很少形成大小年。解决的方法很简单,在大年时严格疏花蔬果,同时加强肥水管理,大小年就会消失。

8.水分和温度对种子化学成分的影响。

水分对种子化学成分的影响:水分缺少时,种子在较早的时期干缩,可溶性糖来不及转变为淀粉,被糊精胶结在一起,形成玻璃状而不呈粉状的子粒。蛋白质受影响较小,含量较高。

温度对种子成分的影响:温度对于油料种子的含油量和油份性质的影响都很大。种子成熟期间,适当的低温有利于油脂的累积。在油脂品质上,在亚麻种子成熟时温度较低而昼夜温差大时,有利于不饱和脂肪酸的形成;在相反的情形下,有利于饱和脂肪酸的形成。

第十三章植物的抗性生理

●植物抗性生理:是指逆境对植物生命活动的影响,以及植物对逆境的抵御抗性能力。

●渗透调节:通过加入或去除细胞内的溶质,从而使细胞内外的渗透势相平衡的现象。

●交叉适应:植物处于零上低温、高温、干旱或盐渍条件下,能提高植株对另外一些逆境的抵抗

能力,这种与不良环境反应之间的相互适应作用,称为植物中的交叉适应。

大学生物化学习题-答案

生物化学习题 蛋白质 —、填空题 1. 氨基酸的等电点(pl)是指—水溶液中,氨基酸分子净电荷为0时的溶液PH值。 2. 氨基酸在等电点时,主要以_兼性一离子形式存在,在pH>pI的溶液中,大部分以负/阴离子形式存在,在pH

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

生物化学(第三)课后习题详细解答

生物化学(第三版)课后习题详细解答 第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Galβ(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。

生物化学课后习题答案

第二章糖类 1、判断对错,如果认为错误,请说明原因。 (1)所有单糖都具有旋光性。 答:错。二羟酮糖没有手性中心。 (2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。 答:凡具有旋光性的物质一定具有变旋性:错。手性碳原子的构型在溶液中发生了 改变。大多数的具有旋光性的物质的溶液不会发生变旋现象。 具有变旋性的物质也一定具有旋光性:对。 (3)所有的单糖和寡糖都是还原糖。 答:错。有些寡糖的两个半缩醛羟基同时脱水缩合成苷。如:果糖。 (4)自然界中存在的单糖主要为D-型。 答:对。 (5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。 答:对。 2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。 答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。如果包括α-异构体、 β-异构体,则又要乘以2=16 种。 戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。没有环状所以没有α-异 构体、β-异构体。 3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-

苷还是β -苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖? 答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4) 葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。 蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩 醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。4 种连接方式α→α,α→β,β→α, β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。 4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25 D 为+ °,求该平衡混合物中α-D- 甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25 D 为+ °,纯β-D-甘露糖的[α]25 D 为- °); 解:设α-D-甘露糖的含量为x,则 (1-x)= X=% 该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:= 5、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的 结构式。. 6、水解仅含D-葡萄糖和D-甘露糖的一种多糖30g,将水解液稀释至平衡100mL。此水解液 在10cm 旋光管中测得的旋光度α为+ °,试计算该多糖中D-葡萄糖和D-甘露糖的物质的 量的比值(α/β-葡萄糖和α/β-甘露糖的[α]25 D 分别为+ °和+ °)。 解:[α]25 D= α25 D /cL×100= ( 30×1)×100= 设D-葡萄糖的含量为x,则 +(1-x)= X=%

生物化学题库及答案.

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是;在寡肽或多肽序列测定中,Edman反应的主要特点是。 8.蛋白质二级结构的基本类型有、、 和。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的α-螺旋往往会。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是 和。 10.蛋白质处于等电点时,所具有的主要特征是、。 11.在适当浓度的β-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA酶的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除β-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 14.包含两个相邻肽键的主肽链原子可表示为,单个肽平面及包含的原子可表示为。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,氨基酸

生物化学考试试题库

生物化学考试试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是;在寡肽或多肽序列测定中,Edman反应的主要特点是。 8.蛋白质二级结构的基本类型有、、 和。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的α-螺旋往往会。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是 和。 10.蛋白质处于等电点时,所具有的主要特征是、。 11.在适当浓度的β-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA酶的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除β-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 14.包含两个相邻肽键的主肽链原子可表示为,单个肽平面及包含的原子可表示为。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,氨基酸

生化习题-答案

第一章绪论 略 第二章核酸的结构与功能 一、名词解释 1.核苷:是核糖或脱氧核糖与嘌呤或嘧啶碱生成的糖苷。 2.核苷酸:核苷中的戊糖羟基被磷酸酯化,形成核苷酸。 3.核酸:多个核苷酸彼此通过3′,5′-磷酸二酯键连接所形成的多聚核苷酸,称为核酸。4.核酸的一级结构:指DNA分子中核苷酸的排列顺序及连接方式。 5.核酸的二级结构:即DNA的双螺旋结构模型。 6.环化核苷酸:即cAMP和cGMP。在细胞的代谢调节中作为激素的第二信使,控制细胞的生长、分化和细胞对激素的效应。 7.增色效应:DNA变性后,在260nm处的紫外吸收显著增高的现象,称增色效应(高色效应)。 8.减色效应:DNA复性后,在260nm处的紫外吸收显著降低的现象,称为减色效应。 9.核酸变性:指核酸双螺旋的氢键断裂变成单链的过程,并不涉及共价键的断裂。 10.熔解温度:50% 的双链DNA发生变性时的温度称为熔解温度(Tm)或解链温度。11.退火:变性DNA在缓慢冷却时,可以复性,此过程称为退火。 12.核酸复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋结构,这个过程称复性。 13.分子杂交:形成杂交分子的过程称为分子杂交。当两条来源不同的DNA(或RNA链或DNA 链与RNA链之间)存在互补顺序时,在一定条件下可以发生互补配对形成双螺旋分子,这种分子称为杂交分子。 14. 核酸降解:多核苷酸链上共价键(3′,5′-磷酸二酯键)的断裂称为核酸的降解。15.碱基配对:DNA双螺旋内部的碱基按腺嘌呤(A)与胸腺嘧啶(T)结合,鸟嘌呤(G)与胞嘧啶(C)结合,这种配对关系,称为碱基配对。 16.稀有碱基:是指A、G、C、U之外的其他碱基。 17.超螺旋:以DNA双螺旋为骨架,围绕同一中心轴形成的螺旋结构,是在DNA双螺旋基础上的进一步螺旋化。 二、填空 1.260. 2.下降,增大。 3.核糖,脱氧核糖。 4.嘌呤碱,嘧啶碱,260nm。5.大,高。 6.戊糖/核糖。7.核苷酸。 8.反密码子。 9.核苷酸,3′,5′-磷酸二酯键,磷酸,核苷,戊糖,碱基。 10.脱氧核糖核酸(DNA),核糖核酸(RNA),脱氧核糖,A、G、C、T;核糖,A、G、C、U。

生物化学课后答案_张丽萍

1 绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、 磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 2 蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1) N-末端测定法:常采用2,4―二硝基氟苯法、Edman 降解法、丹磺酰氯法。 ①2,4―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB )反应(Sanger 反应),生成DNP ―多肽或DNP ―蛋白质。由于DNFB 与氨基形成的键对酸水解远比肽键稳定,因此DNP ―多肽经酸水解后,只有N ―末端氨基酸为黄色DNP ―氨基酸衍生物,其余的都是游离氨基酸。 ② 丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS ―Cl )反应生成DNS ―多肽或DNS ―蛋白质。由于DNS 与氨基形成的键对酸水解远比肽键稳定,因此DNS ―多肽经酸水解后,只有N ―末端氨基酸为强烈的荧光物质DNS ―氨基酸,其余的都是游离氨基酸。 ③ 苯异硫氰酸脂(PITC 或Edman 降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC )反应(Edman 反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N ―末端的PTC ―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N ―末端氨基酸后剩下的肽链仍然是完整的。 ④ 氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N 端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N 端残基序列。 (2)C ―末端测定法:常采用肼解法、还原法、羧肽酶法。 肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C 端氨基酸以游离形式存 在外,其他氨基酸都转变为相应的氨基酸酰肼化物。

生物化学试题库(试题库+答案)

生物化学试题库及其答案——糖类化学 一、填空题 1.纤维素是由________________组成,它们之间通过________________糖苷键相连。 2.常用定量测定还原糖的试剂为________________试剂和 ________________试剂。 3.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是 ________________,肌肉中含量最丰富的糖是________________。 4.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 5.鉴别糖的普通方法为________________试验。 6.蛋白聚糖是由________________和________________共价结合形成的复合物。 7.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。 8.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。 9.多糖的构象大致可分为________________、________________、 ________________和________________四种类型,决定其构象的主要因素是 ________________。 二、是非题 1.[ ]果糖是左旋的,因此它属于L-构型。 2.[ ]从热力学上讲,葡萄糖的船式构象比椅式构象更稳 定。 3.[ ]糖原、淀粉和纤维素分子中都有一个还原端,所以它们都有还原性。 4.[ ]同一种单糖的α-型和β-型是对映体。 5.[ ]糖的变旋现象是指糖溶液放置后,旋光方向从右旋变成左旋或从左旋变成右旋。 6.[ ]D-葡萄糖的对映体为L-葡萄糖,后者存在于自然界。 7.[ ]D-葡萄糖,D-甘露糖和D-果糖生成同一种糖脎。 8.[ ]糖链的合成无模板,糖基的顺序由基因编码的转移酶决定。 9.[ ]醛式葡萄糖变成环状后无还原性。 10.[ ]肽聚糖分子中不仅有L-型氨基酸,而且还有D-型氨基酸。 三、选择题

大学生物化学考试题库

二、单选题 1维持蛋白质二级结构稳定的主要因素是:(B ) A、静电作用力 B、氢键 C、疏水键 D、德华作用力 2下面哪一项代是在细胞质进行的( D ) A、脂肪酸的β-氧化 B、氧化磷酸化 C、三羧酸循环 D、脂肪酸合成 3米氏常数Km是一个用来度量( A) A、酶和底物亲和力大小的常数 B、酶促反应速度大小的常数 C、酶被底物饱和程度的常数 D、酶的稳定性的常数 4某酶今有4种底物(S),其Km值如下,该酶的最适底物为(D )A、S1:Km=5×10-5M B、S2:Km=1×10-5M C、S3:Km=10×10-5M D、S4:Km=0.1×10-5M 5tRNA的分子结构特征是:(A) A、有反密码环和3’—端有—CCA序列 B、有密码环 C、有反密码环和5’—端有—CCA序列 D、5’—端有—CCA序列 6具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交? (C) A、5’-GpCpCpAp-3’ B、5’-GpCpCpApUp-3’ C、5’-UpApCpCpGp-3’ D、5’-TpApCpCpGp-3’ 7维系DNA双螺旋稳定的最主要的力是(C ) A、氢键 B、离子键 C、碱基堆积力D德华力 8草酰乙酸经转氨酶催化可转变成为(B ) A、苯丙氨酸 B、天冬氨酸 C、谷氨酸 D、丙氨酸 9在脂肪酸合成中,将乙酰CoA?从线粒体转移到细胞质中的化合物是(C) A、乙酰CoA B、草酰乙酸 C、柠檬酸 D、琥珀酸 10生物体大多数氨基酸脱去氨基生成α-酮酸是通过下面那种作用完成的?(D ) A、氧化脱氨基 B、还原脱氨基 C、联合脱氨基 D、转氨基 11下列氨基酸中哪一种可以通过氧化脱氨基作用生成α-酮戊二酸?( A )A、Glu B、Ala C、AspD、Ser 1212 蛋白质合成起始时模板mRNA首先结合于核糖体上的位点是(B) A、30S亚基的蛋白 B、30S亚基的rRNA C、50S亚基的rRNA D、50S亚基的蛋白 13原核细胞中新生肽链的N-末端氨基酸是(C ) A、甲硫氨酸 B、蛋氨酸 C、甲酰甲硫氨酸 D、任何氨基酸 14蛋白质合成所需的能量来自(C) A、ATP B、GTP C、ATP和GTP D、CTP 15蛋白质生物合成中多肽的氨基酸排列顺序取决于(C) A、相应tRNA的专一性 B、相应氨酰tRNA合成酶的专一性 C、相应mRNA中核苷酸排列顺序 D、相应tRNA上的反密码子 16热变性的DNA分子在适当条件下可以复性,条件之一是(B ) A、骤然冷却 B、缓慢冷却 C、浓缩 D、加入浓的无机盐 17Tm是指(C) A、双螺旋DNA达到完全变性时的温度 B、双螺旋DNA开始变性时的温度

生物化学课后习题解答[1]

第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。 糖蛋白是一类复合糖或一类缀合蛋白质。许多膜内在蛋白质加分泌蛋白质都是糖蛋白糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。一个寡搪链中单糖种类、连接位置、异头碳构型和糖环类型的可能排列组合数目是一个天文数字。糖蛋白中寡糖链的还原端残基与多肽链氨基酸残基之间的连接方式有:N-糖太键,如β- GlcNAc-Asn和O-糖肽链,如α-GalNAc-Thr/Ser, β-Gal-Hyl, β-L-Araf-Hyp,N-连接的寡糖链(N-糖链)都含有一个共同的结构花式称核心五糖或三甘露糖基核心,N-糖链可分为复杂型、高甘露糖型和杂合型三类,它们的区别王要在外周链,O-糖链的结构比N-糖链简单,但连

大学生物化学考试题库附有答案

大学生物化学考试题库 附有答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

蛋白质的二级结构内含子酶的活性部位氧化磷酸化基因组核酸的变性高能化合物反转录新陈代谢酶原的激活pI Tm 米氏常数Glycolysis β-氧化、蛋白质的四级结构增色效应米氏常数 PCR 1、蛋白质在一个较宽的生理pH范围内具有缓冲能力,是因为() A、它们是相对分子量很大的分子 B、它们含有许多具有不同pKa值的功能基团 C、它们含有许多肽键,而肽键对于体内的H+和OH-是不敏感的 D、它们含有许多氢键 2、下述氨基酸中,()与茚三酮作用呈黄色斑点 A、组氨酸 B、苏氨酸 C、脯氨酸 D、精氨酸 3、在生理pH条件下,下述三肽在水中的溶解度最大的是() A、Asp-Ser-His B、Ala-Asn-Phe C、Ala-Ile-Phe D、Ala-Ser-His 4、下列关于双螺旋DNA的结构与性质的有关叙述,除()外都是正确的 A、A/T = G/C B、AT含量为35%的DNA解链温度高于AT含量为65%的DNA C、当DNA复性时,紫外吸收值增高 D、温度升高是导致DNA变性的因素之一 5、酶能加快化学反应速度是由于下述哪种原因所致() A、增高活化能 B、降低活化能 C、降低反应物能量水平 D、降低反应的自由能 6、E. coli DNA复制涉及除()之外的哪些蛋白质 A、DNA聚合酶 B、RNA聚合酶 C、DNA解链蛋白 D、DNA旋转酶

7、下述DNA分子中,除()外都具有双链结构 A、E. coli DNA B、质粒DNA C、噬菌体X174 DNA D、线粒体DNA 8、在采用链终止法测定DNA顺序时,为了获得以腺苷酸残基为末端的一组大小不同的片段,应该采用哪种双脱氧类似物() A、5’-ddATP B、5’-ddCTP C、5’-ddGTP D、5’-ddTTP 9、催化单底物反应的酶的米氏常数(Km)是()无答案 A、底物和酶之间的反应的平衡常数 B、给出最大反应速度的底物浓度 C、给出最大半反应速度的底物浓度 C、大致与酶催化反应的速度成比例 10、在下列转录抑制剂中,能对真核生物和原核生物的转录都有作用的是() A、放线菌素D B、利福平 C、利链菌素 D、a-鹅膏蕈碱 11、下列氨基酸中,在水中溶解度最低的是() A、组氨酸 B、赖氨酸 C、亮氨酸 D、苏氨酸 12、X174噬菌体基因组的大小不足以编码它的九种不同的蛋白质,但它实际 编码了这些蛋白质。这是下述哪种原因所致() A、密码子的简并性 B、密码子重叠 C、基因重叠 D、密码子的摆动性 13、下述RNA在细胞内的含量最高的是() A、tRNA B、rRNA C、mRNA D、hnRNA 14、用于肌肉收缩的能量主要以哪种形式贮存在组织中() A、磷酸肌酸 B、磷酸精氨酸 C、ATP D、磷酸烯醇式丙酮酸 15、在DNA复制与DNA修复中共同出现的酶是() A、DNA连接酶 B、RNA聚合酶 C、DNA内切酶 D、RNA外切酶

生物化学试题及答案(1)

生物化学试题(1) 第一章蛋白质的结构与功能 [测试题] 一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序 8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀 15.电泳 16.透析 17.层析 18.沉降系数 19.双缩脲反应 20.谷胱甘肽 二、填空题 21.在各种蛋白质分子中,含量比较相近的元素是____,测得某蛋白质样品含氮量为15.2克,该样品白质含量应为____克。 22.组成蛋白质的基本单位是____,它们的结构均为____,它们之间靠____键彼此连接而形成的物质称为____。 23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带____电荷,在碱性溶液中带____电荷,因此,氨基酸是____电解质。当所带的正、负电荷相等时,氨基酸成为____离子,此时溶液的pH值称为该氨基酸的____。 24.决定蛋白质的空间构象和生物学功能的是蛋白质的____级结构,该结构是指多肽链中____的排列顺序。25.蛋白质的二级结构是蛋白质分子中某一段肽链的____构象,多肽链的折叠盘绕是以____为基础的,常见的二级结构形式包括____,____,____和____。 26.维持蛋白质二级结构的化学键是____,它们是在肽键平面上的____和____之间形成。 27.稳定蛋白质三级结构的次级键包括____,____,____和____等。 28.构成蛋白质的氨基酸有____种,除____外都有旋光性。其中碱性氨基酸有____,____,____。酸性氨基酸有____,____。 29.电泳法分离蛋白质主要根据在某一pH值条件下,蛋白质所带的净电荷____而达到分离的目的,还和蛋白质的____及____有一定关系。 30.蛋白质在pI时以____离子的形式存在,在pH>pI的溶液中,大部分以____离子形式存在,在pH

生物化学b2课后题答案汇总

蛋白质降解及氨基酸代谢: 1.氨基酸脱氨基后C链如何进入TCA循环.(30分) P315 图30-13 2.说明尿素形成机制和意义(40分) P311-314 概括精要回答 3.提高Asp和Glu的合成会对TCA循环产生何种影响?细胞会怎样应付这种状况?(30分) 参考答案: 核苷酸代谢及蛋白质合成题目及解答精要: 1.生物体内嘌呤环和嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成? 嘌呤环(Gln+Gly+Asp)嘧啶环(Gln+Asp) 2.简要说明糖、脂肪、氨基酸和核苷酸代谢之间的相互联系? 直接做图,并标注连接点 生物氧化及电子传递题目及解答精要: 名词解释:(60分,10分一题) 甘油-3-磷酸穿梭:P139 需概括 苹果酸-天冬氨酸穿梭:P139 需概括 电子传递链:P119 解偶联剂:P137 化学渗透假说:P131 生物氧化:P114 两个出处,总结概括 问答题:(10分) 1.比较底物水平磷酸化和氧化磷酸化两者的异同? 参考答案: 也可自己概括 2.以前有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但不久即放弃使用,为什么?(10分)

参考答案: 3.已知有两种新的代谢抑制剂A和B:将离体的肝线粒体制剂与丙酮酸、氧气、ADP和无机磷酸一起保温,发现加入抑制剂A,电子传递和氧化磷酸化就被抑制;当既加入A又加入抑制剂B的时候,电子传递恢复了,但氧化磷酸化仍不能进行,请问:①.抑制剂A和B属于电子传递抑制剂,氧化磷酸化抑制剂,还是解偶联剂?②.给出作用方式和A、B类似的抑制剂?(20分) 参考答案: 糖代谢及其他途径: 题目及解答精要: 1.为什么糖原讲解选用磷酸解,而不是水解?(50分) P178 2.糖酵解、TCA循环、糖异生、戊糖磷酸途径和乙醛酸循环之间如何联系?(50分) 糖酵解(无氧),产生丙酮酸进入TCA循环(有氧)(10分) 糖异生糖酵解逆反应(1,3,10步反应单独代谢流程)(10分) TCA循环中草酰乙酸可进入唐异生(10分) 戊糖磷酸途径是糖酵解中G-6-P出延伸出来并又回去的一条戊糖支路(10分) 乙醛酸循环是TCA循环在延胡羧酸和L-苹果酸间的一条捷径(10分) 糖酵解题目及解答精要: 1.名词解释(每个10分) 糖酵解:P63 激酶:P68 底物水平磷酸化:笔记 2.问答题 ①为什么砷酸是糖酵解作用的毒物?(15分) P75 ②糖酵解中两个耗能阶段是什么?两个产能阶段是什么?三个调控位点在哪里?(15分) P80 表22-1 ③糖酵解中磷酸基团参与了哪些反应?(20分) 在1,3,6,7,8,10步参加了反应 ④当肌肉组织激烈活动时,与休息时相比需要更多的ATP。在骨骼肌里,例如兔子的腿肌或火鸡的飞行肌,需要的A TP几乎全部由厌氧酵解反应产生的。假设骨骼肌缺乏乳酸脱氢酶,它们能否进行激烈的体力活动,即能否借

生物化学试题及答案 .

生物化学试题及答案 绪论 一.名词解释 1.生物化学 2.生物大分子 蛋白质 一、名词解释 1、等电点 2、等离子点 3、肽平面 4、蛋白质一级结构 5、蛋白质二级结构 6、超二级结构 7、结构域 8、蛋白质三级结构 9、蛋白质四级结构 10、亚基 11、寡聚蛋白 12、蛋白质变性 13、蛋白质沉淀 14、蛋白质盐析 15、蛋白质盐溶 16、简单蛋白质 17、结合蛋白质 18、必需氨基酸 19、同源蛋白质 二、填空题 1、某蛋白质样品中的氮含量为0.40g,那么此样品中约含蛋白 g。 2、蛋白质水解会导致产物发生消旋。 3、蛋白质的基本化学单位是,其构象的基本单位是。 4、芳香族氨基酸包括、和。 5、常见的蛋白质氨基酸按极性可分为、、和。 6、氨基酸处在pH大于其pI的溶液时,分子带净电,在电场中向极游动。 7、蛋白质的最大吸收峰波长为。 8、构成蛋白质的氨基酸除外,均含有手性α-碳原子。 9、天然蛋白质氨基酸的构型绝大多数为。 10、在近紫外区只有、、和具有吸收光的能力。 11、常用于测定蛋白质N末端的反应有、和。 12、α-氨基酸与茚三酮反应生成色化合物。 13、脯氨酸与羟脯氨酸与茚三酮反应生成色化合物。 14、坂口反应可用于检测,指示现象为出现。 15、肽键中羰基氧和酰胺氢呈式排列。 16、还原型谷胱甘肽的缩写是。 17、蛋白质的一级结构主要靠和维系;空间结构则主要依靠维系。 18、维持蛋白质的空间结构的次级键包括、、和等。 19、常见的蛋白质二级结构包括、、、和等。 20、β-折叠可分和。 21、常见的超二级结构形式有、、和等。 22、蛋白质具有其特异性的功能主要取决于自身的排列顺序。 23、蛋白质按分子轴比可分为和。 24、已知谷氨酸的pK1(α-COOH)为2.19,pK2(γ-COOH)为4.25,其pK3(α-NH3+)为9.67,其pI为。 25、溶液pH等于等电点时,蛋白质的溶解度最。 三、简答题

相关主题
文本预览
相关文档 最新文档