当前位置:文档之家› 24.2点和圆、直线和圆的位置关系 第1课时

24.2点和圆、直线和圆的位置关系 第1课时

24.2点和圆、直线和圆的位置关系 第1课时
24.2点和圆、直线和圆的位置关系 第1课时

24.2 点和圆、直线和圆的位置关系

教学目标

1. 了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

2. 从具体事例中认识理解直线和圆的三种位置关系,探究直线与圆的位置关系的数量关系及其运用.

3.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.

4.经历探索直线与圆的位置关系的过程,体会数学分类讨论思考问题的方法。

5.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

6.通过学习,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

教学重点

1.经历不在同一条直线上的三个点确定一个圆的探索过程和方法,并能掌握这个结论.

2. 从具体事例中认识理解直线和圆的三种位置关系,探究直线与圆的位置关系的数量关系及其运用.

3.了解三角形的外接圆、三角形的外心等概念.

教学难点

1. 经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

2. 从具体事例中认识理解直线和圆的三种位置关系,探究直线与圆的位置关系的数量关系及其运用.

课时安排

5课时.

教案A

第1课时

教学内容

24.2.1点和圆的位置关系(1).

教学目标

1.了解同心圆的概念.

2.了解点和圆的三种位置关系.

3.知道经过一点或两点可作无数个圆.

教学重点

点和圆的三种位置关系.

教学难点

经过两点作圆时圆心的分布.

教学过程

一、导入新课

问题我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.射击靶的示意图是由许多同心圆(圆心相同、半径不等的圆)构成的.你知道击中靶上不同位置的成绩是如何计算的吗?

二、新课教学

1.解决问题.

教师可让学生尝试回答,引导学生可分几个区域进行计算成绩.学生回答后,教师明确说:要解决这个问题,需要研究点和圆的位置关系.那么,

点和圆有几种位置关系呢?

我们知道,圆上所有的点到圆心的跟离都等于半径.如图,

设⊙O的半径为r,点A在圆内,点B在圆上,点C在圆外.容

易看出:

OA<r,OB=r,OC>r.

反过来,如果OA<r,OB=r,OC>r,则可以得到点A在圆内,点B在圆上,点C在圆外.

设⊙O的半径为d,点P到圆心的距离OP=d,则有:

点P在圆外d>r;

点P在圆上d=r;

点P在圆内d<r.

知道了这三种位置关系后,我们就可以回答击中靶上不同位置的成绩是如何计算的了.

射击靶图由内到外分成几个区域,这些区域用由高到低的环数来表示,射击成绩用弹着点位置对应的环数表示.弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩越好.

2.探究:我们知道,已知圆心和半径,可以作一个圆.经过一个已知点A能不能作圆,这样的圆你能作出多少个?经过两个已知点A,B能不能作圆?如果能,圆心分布有什么特点?

教师引导学生分别回答这三个问题.

(1)作圆,使它经过已知点A,你能作出几个这样的圆?

(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?圆心的分布有什么特点?与线段AB有什么关系?为什么?

学生思考、讨论,教师指导,最后明确:

(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).

(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B 的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).

三、巩固练习

教材第95页练习1.

四、课堂小结

本节应该掌握:

1.点和圆的三种位置关系.

2.经过一点或两点可作无数个圆.

五、布置作业

习题24.2 第1题.

第2课时

教学内容

24.2.1点和圆的位置关系(2).

教学目标

1.了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

2.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.3.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

教学重点

1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.2.掌握过不在同一条直线上的三个点作圆的方法.

教学难点

经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

教学过程

一、导入新课

我们知道经过一点、两点可以作无数个圆,那么,经过三点可以作多少个圆?本节课我们将进行有关探索.

二、新课教学

1.思考:经过不在同一条直线上的三个点A,B,C能不能作圆?如果能,如何确定所作圆的圆心?

教师指导学生分析、作图.

对于经过不在同一条直线上的三点作圆的问题,因为所求的圆要经过A,B,C三点,所以圆心到这三点的距离要相等.因此,这个点既要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上.

(1)连结AB、BC.

(2)分别作线段AB、BC的垂直平分线l1和l2,设交点为O,则OA=OB=OC.(3)以O为圆心,OA(或OB,OC)为半径作圆,⊙O就是所要求作的圆.

因为过A,B,C三点的圆的圆心只能是点O,半径等于OA,所以这样的圆只有一个,即:不在同一条直线上的三个点确定一个圆.

2.有关定义.

由右上图可以看出,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.3.思考:经过同一条直线上的三个点能作出一个圆吗?

如右图,假设经过同一条直线l上的A,B,C三点可以

作一个圆.设这个圆的圆心为P,那么点P既在线段AB的

垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P

为l1与l2的交点,而l1⊥l,l2⊥l,这与我们以前学过的“过

一点有且只有一条直线与已知直线垂直”矛盾.所以,经过

同一条直线上的三个点不能作圆.

上面证明“经过同一条直线上的三个点不能作圆”的方

法与我们以前学过的证明不同,它不是直接从命题的已知得

出结论,而是假设命题的结论不成立(即假设经过同一条直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法.

反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立.

三、巩固练习

1.已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?

解:如下图.O为外接圆的圆心,即外心.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

锐角三角形直角三角形钝角三角形2.(教材第95页练习3)如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?

解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.

四、课堂小结

本节课应该掌握

1.不在同一条直线上的三个点确定一个圆.

2.三角形的外接圆,三角形的外心等概念.

五、布置作业

习题24.2 第2题.

第3课时

教学内容

24.2.2直线和圆的位置关系(1).

教学目标

1.理解直线与圆有相交、相切、相离三种位置关系,了解圆的割线、切线和切点的概念.

2.经历探索直线与圆位置关系的过程,培养学生的探索能力.

3.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.

4.通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

教学重点

经历探索直线与圆位置关系的过程,理解直线与圆的三种位置关系.

教学难点

经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.

教学过程

一、导入新课

师:我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?

生:圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.过渡:本节课我们将类比地学习直线和圆的位置关系.

二、新课教学

1.复习点到直线的距离的定义.

生:从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.

2.探索直线与圆的三种位置关系

师:直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如图(1),如果我们把太阳看作一个圆,把地平线看作一条直线,太阳升起的过程中,太阳和地平线会有几种位置关系?由此你能得出直线和圆的位置关系吗?

如图(2),在纸上画一条直线l,把钥匙环看作一个圆.在纸上移动钥匙环,你能发现在移动钥匙环的过程中,它与直线l的公共点个数的变化情况吗?

生:把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;在纸上移动钥匙环,它与直线l的公共点个数的有相交、相离和相切三种变化情况.师:从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?

生:有三种位置关系:

师:直线和圆有三种位置关系,如下图:

它们分别是相交、相切、相离.如图(1),直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.如图(2),直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.如图(3),直线和圆没有公共点,这时我们说这条直线和圆相离.

2.思考:如上图,设⊙O的半径为r,圆心O到直线l的距离为d.在直线和圆的不同位置关系中,d与r具有怎样的大小关系?反过来,你能根据d与r的大小关系确定直线和圆的位置关系吗?

根据直线和圆相交、相切、相离的定义,容易得到:

直线l和⊙O相交d<r;

直线l和⊙O相切d=r;

直线l和⊙O相离d>r.

三、巩固练习

1.如下图,A城气象台测得台风中心在A城正西方向300千米的B处,并以每小

时60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.

(1)A城是否会受到这次台风的影响?为什么?

(2)若A城受到这次台风的影响,试计算A城遭受这次

台风影响的时间有多长?

分析:因为台风影响的范围可以看成以台风中心为圆心,

半径为200千米的圆,A城能否受到影响,即比较A到直线BF

的距离d与半径200千米的大小.若d>200,则无影响,若d

≤200,则有影响.

解:(1)过A 作A C ⊥BF 于C .

在Rt △ABC 中,∵∠CBA =30°,BA =300,∴AC =AB sin30°=300×12

=150(千米). ∵AC <200,∴A 城受到这次台风的影响.

(2)设BF 上D 、E 两点到A 的距离为200千米,则台风中心在线段DE 上时,对A 城均有影响,而在DE 以外时,对A 城没有影响.

∵AC =150,AD =AE =200,∴DC =,

∴DE =2DC =

∴t =

s v =

=10(小时). 答:A 城受影响的时间为10小时. 2.教材第96页练习. 四、课堂小结

今天你学习了什么?有什么收获? 五、布置作业 习题24.2 第7、8题.

第4课时

教学内容

24.2.2直线和圆的位置关系(2). 教学目标

1.能判定一条直线是否为圆的切线,会过圆上一点画圆的切线. 2.理解切线的判定定理和性质定理,会用这两个定理解决简单问题.

3.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力.

教学重点

理解圆的切线的判定定理和性质定理,并能运用它解决简单问题. 教学难点

理解切线的判定定理,用反证法证明切线的性质定理. 教学过程

一、导入新课

上节课我们学习了直线和圆的位置关系,知道了直线和圆有相离、相切、相交三种位置关系.今天我们重点研究直线和圆相切的情况.

二、新课教学

1.探索切线的判定定理.

思考:如下图,在⊙O中,经过半径OA是外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?

教师引导学生思考,分析,让学生知道,圆心O到直线l的距离就是⊙O的半径,直线l就是⊙O的切线.

教师再次引导学生讨论点A与直线l的位置关系,从而得到切线的判定定理:

经过半径的外端并且垂直于这条半径的直线是圆的切线.

教师可举例相交、相离的情况,以深化对切线的理解.

教师还可以举生活中的直线和圆相切的实例,培养学生的感性认识.例如,下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,都是沿着圆的切线方向飞出的.

2.探索切线的性质定理.

思考:将上面“思考”中的问题反过来,如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?

实际上,我们有切线的性质定理:圆的切线垂直于过切点的半径.

证明:(见上图)假设OA与直线l不垂直,过点O作OM⊥l,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,于是直线l就与圆相交.而这与直线l是的⊙O切线矛盾.因此,OA与直线l垂直,从而得出切线的性质定理.

3.实际运用.

例如左图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.

分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OE是⊙O的半径就可以了.而OD是⊙O的半径,因此需要证明OE=OD.证明:如右图,过点O作OE⊥AC,垂足为E,连接OD,OA.

∵⊙O与AB相切于点D,

∴OD⊥AB.

又△ABC为等腰三角形,O是底边BC的中点,

∴AO是∠BAC的平分线.

∴OE=OD,即OE是⊙O的半径.

这样,AC经过⊙O的半径OE的外端E,并且垂直于半径OE,所以AC与⊙O相切.

三、课堂练习

教材第98页练习.

四、课堂小结

今天学习了什么?有哪些问题?

五、布置作业

习题24.2 第4题.

第5课时

教学内容

24.2.2直线和圆的位置关系(3).

教学目标

1.了解切线长的概念和切线长定理.

2.会作三角形的内切圆,知道内切圆和圆心的概念.

3.经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.

教学重点

作三角形的内切圆.

教学难点

作三角形的内切圆.

教学过程

一、导入新课

我们已经学习了切线的判定定理和性质定理,知道了怎样作三角形的外切圆,今天我们学习切线长及其定理和怎样作三角形的内切圆.

二、新课教学

1.切线长定理.

如图,过圆外一点P有两条直线P A,PB分别与⊙O相切.经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长.

如上图,P A,PB是⊙O的两条切线,切点分别为A,B.在半透明的纸上画出这个图形,沿着直线PO将图形对折,图中的P A与PB,∠APO与∠BPO有什么关系?

如右图,连接OA和OB.

∵P A和PB是⊙O的两条切线,

∴OA⊥AP,OB⊥BP.

又OA=OB,O P=OP,

∴Rt△AOP≌Rt△BOP.

∴P A=PB,∠APO=∠BPO.

由此得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

2.三角形内切圆.

思考:右图是一块三角形的铁皮,如何在它上面截下一块圆形

的用料,并且使截下来的圆与三角形的三条边都相切?

假设符合条件的圆已经作出,那么这个圆的圆心到三角形的三

条边的距离都等于半径.如何找到这个圆心呢?

我们以前学过,三角形的三条角平分线交于一点,并且这个点

到三条边的距离相等.因此,如图,分别作∠B,∠C的平分线BM

和CN,设它们相交于点I,那么点I到AB,BC,CA的距离都相等.以

点I为圆心,点I到BC的距离ID为半径作圆,则⊙I与△ABC的

三条边都相切,圆I就是所求作的圆.

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.

3.实例探究.

例如图,△ABC的内切圆⊙O与BC,CA,AB都分别相切于点D,E,F,且AB =9,BC=14,CA=13,求AF,BD,CE的长.

解:设AF=x,则,AE=x,CD=CE=AC-AE=13

-x,BD=BF=AB-AF=9-x.

由BD+CD=BC,可得(13-x)(9-x)=14.

解得x=4.

因此AF=4,BD=5,CE=9.

三、课堂练习

教材第100页练习.

四、课堂小结

今天学习了什么?有哪些问题?

五、布置作业

习题24.2 第11、12题.

教案B

第1课时

教学内容

24.2.1点和圆的位置关系(1).

教学目标

1.了解同心圆发概念.

2.了解点和圆的三种位置关系.

3.知道经过一点或两点可作无数个圆.

教学重点

点和圆的三种位置关系.

教学难点

经过两点作圆时圆心的分布.

教学过程

一、导入新课

同学们好,我们前面学习了圆的一些基本性质,今天我们学习点和圆的位置关系.

二、新课教学

1.问题我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.射击靶的示意图是由许多同心圆(圆心相同、半径不等的圆)构成的.你知道击中靶上不同位置的成绩是如何计算的吗?

如下图,设⊙O的半径为r,点A在圆内,点B在圆上,点C在圆外.容易看出:OA<r,OB=r,OC>r.

反过来,如果OA<r,OB=r,OC>r,则可以得到点A在

圆内,点B在圆上,点C在圆外.

设⊙O的半径为d,点P到圆心的距离OP=d,则有:

点P在圆外d>r;

点P在圆上d=r;

点P在圆内d<r.

知道了这三种位置关系后,我们就可以回答击中靶上不同位置的成绩是如何计算的了:弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩越好.2.探究:我们知道,已知圆心和半径,可以作一个圆.经过一个已知点A能不能作圆,这样的圆你能作出多少个?经过两个已知点A,B能不能作圆?如果能,圆心分布有什么特点?

经过一个点A作圆,只要以点A以外任意一点为圆心,以这一点与点A的距离为半径就可以作出,这样的圆有无数个(图(1)).

经过两点A,B作圆,由于所作圆的圆心到A,B两点的距离相等,所以圆心在线段AB的垂直平分线上,这样的圆也可以作出无数个(图(2)).

三、巩固练习

教材第95页练习1.

四、课堂小结

今天学习了什么?有什么收获?

五、布置作业

习题24.2 第1题.

第2课时

教学内容

24.2.1点和圆的位置关系(2).

教学目标

1.了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

2.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.3.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

教学重点

1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.2.掌握过不在同一条直线上的三个点作圆的方法.

教学难点

经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

教学过程

一、导入新课

复习上节内容,导入新课的教学.

二、新课教学

1.思考:经过不在同一条直线上的三个点A,B,C能不能作圆?如果能,如何确定所作圆的圆心?

教师指导学生分析、作图.

对于经过不在同一条直线上的三点作圆的问题,因为所求的圆要经过A,B,C三点,所以圆心到这三点的距离要相等.因此,这个点既要在线段

AB的垂直平分线上,又要在线段BC的垂直平分线上.如右图,

分别作出线段AB的垂直平分线l1和线段BC的垂直平分线l2,

设它们的交点为O,则OA=OB=OC.于是以点O为圆心,OA

(或OB,OC)为半径,便可作出经过A,B,C三点的圆.因

为过A,B,C三点的圆的圆心只能是点O,半径等于OA,所以

这样的圆只有一个,即

不在同一条直线上的三个点确定一个圆.

由右图可以看出,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.

2.思考:经过同一条直线上的三个点能作出一个圆吗?

教师引导学生用反证法进行证明.假设命题的结论不成立(即假设经过同一条直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法.

3.实例探究.

用反证法证明平行线的性质“两直线平行,同位角相等”.

如下图,我们要证明:如果AB // CD,那么∠1=∠2.假设∠1≠∠2.过点O作直线A′B′,使∠EOB′=∠2.根据“同位角相等,两直线平行”,可得A′B′//CD.这样,过点O就有两条直线AB,A′B′都平行于CD,这与平行公理“过直线外一点有且仅有一条直线与已知直线平行”矛盾.

这说明假设∠1≠∠2不正确,从而∠1=∠2.

三、巩固练习

教材第95页练习2、3.

四、课堂小结

今天你学习了什么?有什么收获?

五、布置作业

习题24.2 第2题.

第3课时

教学内容

24.2.2直线和圆的位置关系(1).

教学目标

1.理解直线与圆有相交、相切、相离三种位置关系,了解圆的割线、切线和切点的概念.

2.经历探索直线与圆位置关系的过程,培养学生的探索能力.

3.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.

4.通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

教学重点

经历探索直线与圆位置关系的过程,理解直线与圆的三种位置关系.

教学难点

经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.

教学过程

一、导入新课

我们在前面学过点和圆的位置关系,知道了点和圆的位置关系点在圆上、点在圆内和点在圆外三种,那么,直线和圆有几种位置关系呢?今天我们就探讨这个问题.

二、新课教学

1.直线与圆的三种位置关系

思考:(1)直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如图(1),如果我们把太阳看作一个圆,把地平线看作一条直线,太阳升起的过程中,太阳和地平线会有几种位置关系?由此你能得出直线和圆的位置关系吗?

(2)如图(2),在纸上画一条直线l,把钥匙环看作一个圆.在纸上移动钥匙环,你能发现在移动钥匙环的过程中,它与直线l的公共点个数的变化情况吗?

教师引导学生分析、思考、讨论,最后得出直线和圆有三种位置关系.如下图:

如图(1),直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.

如图(2),直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.

如图(3),直线和圆没有公共点,这时我们说这条直线和圆相离.

2.思考:如上图,设⊙O的半径为r,圆心O到直线l的距离为d.在直线和圆的不同位置关系中,d与r具有怎样的大小关系?反过来,你能根据d与r的大小关系确定直线和圆的位置关系吗?

根据直线和圆相交、相切、相离的定义,容易得到:

直线l和⊙O相交d<r;

直线l和⊙O相切d=r;

直线l和⊙O相离d>r.

三、巩固练习

教材第96页练习.

四、课堂小结

今天你学习了什么?有什么收获?

五、布置作业

习题24.2 第7、8题.

第4课时

教学内容

24.2.2直线和圆的位置关系(2).

教学目标

1.能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.

2.理解切线的判定定理和性质定理,会用这两个定理解决简单问题.

3.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力.

教学重点

理解圆的切线的判定定理和性质定理,并能运用它解决简单问题.

教学难点

理解切线的判定定理,用反证法证明切线的性质定理,

教学过程

一、导入新课

在生活中,有许多直线和圆相切的实例.例如,下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,都是沿着圆的切线方向飞出的.今天我们就研究直线和圆相切的情况.

二、新课教学

1.探索切线的判定定理.

思考:如下图,在⊙O中,经过半径OA是外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?

从图中可以看出,圆心O到直线l的距离就是⊙O的半径,直线l就是⊙O的切线.这样我们就得到了切线的判定定理:

经过半径的外端并且垂直于这条半径的直线是圆的切线.

2.探索切线的性质定理.

思考:将上面“思考”中的问题反过来,如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?

实际上,我们有切线的性质定理:圆的切线垂直于过切点的半径.

3.实际运用

例1 如左图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.

分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OE是⊙O的半径就可以了.而OD是⊙O的半径,因此需要证明OE=OD.证明过程见教材第98页.

三、课堂练习

教材第98页练习.

四、课堂小结

今天学习了什么?有哪些问题?

五、布置作业

习题24.2 第4题.

第5课时

教学内容

24.2.2直线和圆的位置关系(3).

教学目标

1.了解切线长的概念和切线长定理.

2.会作三角形的内切圆,知道内切圆和圆心的概念.

3.经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.

教学重点

作三角形的内切圆.

教学难点

作三角形的内切圆.

教学过程

一、导入新课

复习上节内容,导入新课的教学.

二、新课教学

1.切线长定理.

教师首先让学生阅读教材,了解切线长的概念,然后证明切线长定理.

(1)认识切线长.

如图,过圆外一点P有两条直线P A,PB分别与⊙O相切.经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长.

(2)切线长定理的证明.

如上图,P A,PB是⊙O的两条切线,切点分别为A,B.在半透明的纸上画出这个图形,沿着直线PO将图形对折,图中的P A与PB,∠APO与∠BPO有什么关系?

证明过程可见教材第99页,通过证明,得到切线长定理:

从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

2.三角形内切圆.

思考:右图是一块三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三条边都相切?

证明:如图,分别作∠B,∠C的平分线BM和CN,设它们相交于点I,那么点I 到AB,BC,CA的距离都相等.以点I为圆心,点I到BC的距离ID为半径作圆,则⊙I与△ABC的三条边都相切,圆I就是所求作的圆.

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.

3.实例探究.

例如下图,AB是⊙O的直径,∠ABT=45°,AT=AB.

求证:AT是⊙O的切线.

分析:AT经过直径的一端,因此只要证AT垂直于AB即可,而由已知条件可知AT=AB,所以∠ABT=∠ATB,又由∠ABT=45°,所以∠ATB=45°.

由三角形内角和可证∠TAB=90°,即AT⊥AB.

请大家自己写步骤.

生:证明:∵AB=AT,∠ABT=45°.

∴∠ATB=∠ABT=45°.

∴∠TAB=180°-∠ABT-∠ATB=90°.

∴AT⊥AB,即AT是⊙O的切线.

三、课堂练习

教材第100页练习.

四、课堂小结

今天学习了什么?有哪些问题?

五、布置作业

习题24.2 第11、12题.

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

如果⊙O的半径为r,圆心O到直线的距离为d,那么 要点诠释: 这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定. 要点三、切线的判定定理、性质定理和切线长定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理: 圆的切线垂直于过切点的半径. 3.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 5.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 6.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 名称确定方法图形性质

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

直线与圆的位置关系(教案)

《直线与圆的位置关系》的教学设计 一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书A版数学②第四章第二节“直 线与圆的位置关系”第一课时。 二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。 三、教学目标: 1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题;2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想;3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。 四、教学重点、难点、关键: (1)重点:用坐标法判断直线与圆的位置关系 (2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解 (3)关键:展现数与形的关系,启发学生思考、探索。 五、教学方法与手段: 1.教学方法:探究式教学法 2。教学手段:多媒体、实物投影仪 六、教学过程: 1.创设情境,提出问题 教师利用多媒体展示如下问题: 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km 处,受到影响的范围是半径长为30km的圆形区域,已知港口位于台风中心正北50km处,如果 这艘轮船不改变航线,那么它是否会受到台风的影响? 教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。 设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。 2.切入主题,提出课题 (1)由学生将问题数学建模,展示平面几何解决方法,得出结论。教师带领学生一起回顾初中所学直线与圆的三种位置关系及判断方法。

点直线和圆的位置关系教案

教学过程 一、课堂导入 问题:观察上面太阳升起的图片,思考直线和圆有怎样的位置关系?

二、复习预习 1、圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 2、圆周角定理的推论: (1)同圆或等圆中,相等的圆周角所对的弧也相等. (2)半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径 3、其它推论:①圆周角度数定理,圆周角的度数等于它所对的弧的度数的一半. ②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半. ③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等. ④圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角. 三、知识讲解 考点1 点与圆的位置三种位置关系 如图1所示,设⊙O 的半径为r , A 点在圆内,OA <r B 点在圆上,OB = r 图 1

C点在圆外,OC>r 反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点: 若OA<r,则A点在圆内 若OB= r,则B点在圆上 若OC>r,则C点在圆外 考点2 直线和圆的位置关系(设圆心到直线的距离为d,圆的半径为r.) 1、当d>r时,直线与圆相离(如图所示) 2、当d<r时,直线与圆相交(如图所示) 3、当d=r时,直线与圆相切(如图所示),此时直线即为圆的切线. 考点3 切线的判定和性质 1、切线的性质定理圆的切线垂直于过切点的半径 2、推论:经过圆心且垂直于切线的直线必经过切点,经过切点且垂直于切线的直线必经过圆心. 3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 考点4切线长定理1、切线长定义:从圆外一点作圆的切线,这点和切点之间的线段长,叫做这点到圆的切线长(如图AB长度即为切线长).

初中直线与圆的位置关系经典练习题

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

24.2 点和圆、直线和圆的位置关系(同步练习题)( 含答案)资料

24.2点和圆、直线和圆的位置关系 24.2.1点和圆的位置关系 1.如图,⊙O的半径为r. (1)点A在⊙O外,则OA__>___r;点B在⊙O上,则OB__=___r;点C在⊙O内,则OC__<___r. (2)若OA>r,则点A在⊙O__外___;若OB=r,则点B在⊙O__上___;若OC<r,则点C在⊙O__内___. 2.在同一平面内,经过一个点能作__无数___个圆;经过两个点可作__无数___个圆;经过__不在同一直线上___的三个点只能作一个圆. 3.三角形的外心是三角形外接圆的圆心,此点是__三边垂直平分线的交点___. 4.反证法首先假设命题的__结论___不成立,经过推理得出矛盾,由此判定假设__错误___,从而得到原命题成立. 知识点1:点与圆的位置关系 1.已知点A在直径为8 cm的⊙O内,则OA的长可能是( D) A.8 cm B.6 cm C.4 cm D.2 cm 2.已知圆的半径为6 cm,点P在圆外,则线段OP的长度的取值范围是__OP>6_cm___.3.已知⊙O的半径为7 cm,点A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系: (1)OP=8 cm;(2)OP=14 cm;(3)OP=16 cm. 解:(1)在圆内(2)在圆上(3)在圆外 知识点2:三角形的外接圆 4.如图,点O是△ABC的外心,∠BAC=55°,则∠BOC=__110°___. 5.直角三角形外接圆的圆心在__斜边的中点___上.若直角三角形两直角边长为6和8,则该直角三角形外接圆的面积为__25π___. 6.一个三角形的外心在其内部,则这个三角形是( C) A.任意三角形B.直角三角形

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

点、直线与圆的位置关系(中考复习教案)

点、直线与圆的位置关系(中考复习教案) 一、复习目标: 1、探索并了解点和圆、直线与圆以及圆与圆的位置关系; 2、理解不在同一直线上的三点确定一个圆; 3、掌握切线的判定定理及切线的性质定理,熟练运用它们解决一些具体的问题; 二、复习重点和难点: 复习重点: 1、熟练运用切线的判定定理和切线的性质定理解决一些具体的问题; 2、掌握点、直线与圆的位置关系及其性质和判定方法。 复习难点: 1、利用切线的判定定理和切线的性质定理解决一些具体的问题; 2、利用切线的性质和判定进行证明或计算时如何正确添加辅助线。 三、复习过程: (一)知识梳理: 1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内. 设圆的半径为r,点到圆心的距离为d,则 点在圆外?d>r.点在圆上?d=r.点在圆内?d<r. 2.直线和圆的位置关系有三种:相交、相切、相离. 设圆的半径为r,圆心到直线的距离为d,则 直线与圆相交?d<r;直线与圆相切?d=r;直线与圆相离?d>r 3.切线的性质和判定 (1)切线的定义:直线和圆有唯一公共点时,这条直线叫做圆的切线. (2)切线的性质:圆的切线垂直于过切点的半径. (3)切线的判定方法一:经过半径的外端,并且垂直于这条半径的直线是圆的切线. (4)切线的判定方法二:到圆心的距离等于半径的直线是圆的切线。 注意:证明一条直线是圆的切线的方法有两种:(1)当直线与圆有一个公共点时,把圆心和这个公共点连结起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;(2)当直线和圆的公共点没有明确时,可过圆心作直线的垂线,?再证圆心到直线的距离等于半径,简称“作垂线,证半径.”

直线与圆的位置关系(解析版)

直线与圆的位置关系 班级:____________ 姓名:__________________ 一、选择题(每小题5分,共40分) 1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是() A.相交 B.相切 C.相离 D.相交或相切 2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为() A.± B.±2 C.±2 D.±4 3.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为() A.1 B.2 C.4 D.4 4.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为() A.4 B.2 C. D. 5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是() A.y=x B.y=-x C.y=x D.y=-x 6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为2时,a 等于() A. B.2- C.-1 D.+1 7.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 C. D.3 8.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是() A.0°<α<30° B.0°<α≤60° C.0°≤α≤30° D.0°≤α≤60° 二、填空题(每小题5分,共10分) 9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k=________.

《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题 例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=1cm;(2)r=cm;(3)r=2.5cm. 例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值. 例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切. 例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案 例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可. 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)当r =1cm时CD>r,∴圆C与AB相离; (2)当r=cm时,CD=r,∴圆C与AB相切; (3)当r=2.5cm时,CD<r,∴圆C与AB相交. 说明:从“数”到“形”,判定圆与直线位置关系. 例2 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)∵直线AB与⊙C相离,∴0rCD,即r>. 说明:从“形”到“数”,由圆与直线位置关系来确定半径. 例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,

新人教版九年级数学点直线和圆的位置关系》测试题

点、直线、圆与圆的位置关系测试题 一、选择题:(每小题3分,共30分) 1.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的 位置关系为() A. 相离 B. 相切 C. 相交 D. 相交或 相离 2.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC 等于() A. 70° B. 35° C. 20° D. 10° 3.如图,在梯形ABCD中,AD∥BC,∠BCD=∠90°,以CD为直径的半圆O 切AB于点E,这个

(第4题图)梯形的面积为21,周长为20.那么半圆O 的半径为( ) A 、3 B 、7 C 、3或7 D 、2 ·O A D E B C 4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与 AB 的延长线交于P ,PC=5,则⊙O 的半径为( ) A. 33 5 B. 63 5 C. 10 D. 5 5.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位 置关系是( ) A、相离 B、相切 C、相切或相交 D、相交 6.A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于 A C 第2题图 第6题图 第3题图

( ) A. 15° B. 25° C. 30° D. 40° 7.AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上 一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( ) A. 到CD 的距离不变 B. 位置不变 C. 等分DB ⌒ D. 随C 点的移动而移动 8.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 2 1 35 9.如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O?与点A 不重 合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( )

九年级数学:《直线与圆的位置关系》(教学方案)

( 数学教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 九年级数学:《直线与圆的位置 关系》(教学方案) Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.

九年级数学:《直线与圆的位置关系》(教 学方案) 教材:华东师大版实验教材九年级上册 一、教材分析: 1、教材的地位和作用 圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。 2、教学目标 知识目标:使学生从具体的事例中认知和理解直线与圆的三种

位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。 过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。 情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。 3、教学重、难点 重点:理解直线与圆的相交、相离、相切三种位置关系; 难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

直线与圆的位置关系教案

【课题】4.2.1直线与圆的位置关系 【教材】人民教育出版社(A版)高中数学必修2第126页至128页【课时安排】 1个课时 【教学对象】高中一年级 【授课教师】 【教学重点】掌握直线和圆的几种位置关系,学会判定直线与圆的位置关系的两种方法: (1)直线到圆心距离与圆半径的大小关系,写出判定直线与圆的位置关系。 (2)通过解直线与圆方程组成的方程,根据解的个数,写出判定直线与圆的位置关系。 【教学难点】由位置关系得出大小关系式从而判断解的个数 【教学目标】 知识与技能 掌握直线和圆的几种位置关系,熟练掌握判断位置关系的两种方法。判断直线到圆心距离与圆半径的大小关系法和求解个数法 过程与方法 1、理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系; 2、体验通过比较圆心到直线的距离和半径之间的大小判断直线与圆的位置关系; 3、领会数形结合的数学思想方法,提高发现问题、分析问题、

解决问题的能力。 情感态度与价值观 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“坐标法”等数学思想的内涵,养成良好的思维习惯。 【教学方法】教师启发讲授、学生探究学习 【教学手段】PowerPoint,动画演示 【教学过程设计】 1、回顾旧知(3分钟) 平面几何中,直线与圆有哪几种位置关 系?在初中,我们怎样判断直线与圆的位 置关系? 一艘轮船在沿直线返回港口的途中,接到气象台的台风预 报:台风中心位于轮船正西70km处,受影响的范围是半径 教师 运用 边提 问边 回答 的形 式引 导学 生回 忆知 识点 老师 引导 学生 思考 学生 回忆 并回 答问 题 学生 观察 动画 并思 考如 何解 决 回顾知识点 的益处在于 不仅复习了 以前学习的 知识,又为 今后的学习 作铺垫 与学生进行 互动交流, 学生更积极 思考,并可 活跃课堂氛 围

点、直线和圆的位置关系测试题

(第4题图) 点、直线、圆与圆的位置关系测试题 一、选择题:(每小题3分,共30分) 1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直线和这个圆的位置关系为( ) A. 相离 B. 相切 C. 相交 D. 相交或相离 2.如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=70°,则∠BAC 等于( ) A. 70° B. 35° C. 20° D. 10° 3.如图,在梯形ABCD 中,AD ∥BC ,∠BCD=∠90°,以CD 为直径的半圆O 切AB 于点E ,这个梯形的面积为21,周长为20.那么半圆O 的半径为( ) A 、3 B 、7 C 、3或7 D 、2 ·O A D E B C 4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( ) A. 335 B. 6 3 5 C. 10 D. 5 5.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交 6.A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( ) A. 15° B. 25° C. 30° D. 40° 7.AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( ) A. 到CD 的距离不变 B. 位置不变 C. 等分DB ⌒ D. 随C 点的移动而移动 8.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD =20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 2 135 9.如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O?与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0

直线与圆的位置关系

直线与圆、圆与圆的位置关系 1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式 Δ=b 2-4ac ????? >0?相交=0?相切<0?相离 [知识拓展] 圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.

(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆O2:(x-a2)2+(y-b2)2=r22(r2>0). [ 常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×) (4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×) (5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√) (6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)

数学必修直线与圆的位置关系教案

直线与圆的位置关系 教学目标 1、知识与能力目标 A.知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系; B.能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。 C.掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。 2、过程与方法目标 让学生通过观察,看图,分析,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的位置关系。此外,通过直线和圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和把几何形成的结论转化为代数方程的形式的思想。培养学生借助直观解决抽象问题的能力,也就是由数到形,有形到数;有直观到抽象、由抽象到直观的转化能力(数形结合的思想)。 3、情感态度与价值观目标 通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。 教学重点与难点 教学重点:直线和圆位置关系的判断和应用 教学难点:通过解方程组来研究直线和圆的位置关系。 教学准备

制作多媒体课件,学生准备计算器,直尺,量角器。 教学过程: 一、复习 1.直线方程的形式 2.圆的方程形式 3.点与圆的位置关系 4直线与圆的位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点; 二、新课讲解 1.问题情境 问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为50km的圆形区域.已知港口位于台风中心正北70km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响? 师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课. 师:你怎么判断轮船受不受影响? 生:台风所在的圆与轮船航线所在直线是否相交. 师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系. 学生解决方法一:设O为台风中心,A为轮船开始位置,B为

直线和圆的三种位置关系知识点

(1)直线和圆的三种位置关系: ①相离:一条直线和圆没有公共点. ②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点. ③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线. (2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d. ①直线l和⊙O相交?d<r ②直线l和⊙O相切?d=r ③直线l和⊙O相离?d>r. (2)(1)切线的性质 ①圆的切线垂直于经过切点的半径. ②经过圆心且垂直于切线的直线必经过切点. ③经过切点且垂直于切线的直线必经过圆心. (2)切线的性质可总结如下: 如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心; ②直线过切点;③直线与圆的切线垂直. (3)切线性质的运用 由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直. (3)(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线. (2)在应用判定定理时注意: ①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线. ②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的. ③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂 线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”. (4)(1)内切圆的有关概念: 与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点. (2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形. (3)三角形内心的性质: 三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角. (5)(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含. 如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交. (2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离?d>R+r; ②两圆外切?d=R+r; ③两圆相交?R-r<d<R+r(R≥r); ④两圆内切?d=R-r(R>r); ⑤两圆内含?d<R-r(R>r).

相关主题
文本预览
相关文档 最新文档