当前位置:文档之家› 普通物理学教程力学课后答案高等教育出版社第三章动量

普通物理学教程力学课后答案高等教育出版社第三章动量

普通物理学教程力学课后答案高等教育出版社第三章动量
普通物理学教程力学课后答案高等教育出版社第三章动量

第三章 动量定理及其守恒定律

习题解答

3.5.1 质量为2kg 的质点的运动学方程为

j t t i t r ?)133(?)16(22+++-= (单位:米,秒)

, 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+==

, j i a m F ?12?24+==

为一与时间无关的恒矢量,∴质点受恒力而

运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:

'34265.0/?===arctg F arctgF x y α

3.5.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ?sin ?cos ωω+= ,a,b,

ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b i t a dt r d a

2222)?sin ?cos (/ωωωω-=+-== r m a m F

2ω-==, ∴作用于质点的合力总指向原点。

3.5.3 在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较低的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动?

解:以地为参考系,设谷物的质量为m ,所受到的最大静摩擦力为 mg f o μ=,谷物能获得的最大加速度为

2/92.38.94.0/s m g m f a o =?===μ ∴筛面水平方向的加速度至少等于3.92米/秒2,

才能使谷物与筛面发生相对运动。

3.5.3 题图 3.5.4题图

3.5.4 桌面上叠放着两块木板,质量各为m 1 ,m 2,如图所示,m 2和桌面间的摩擦系数为μ2,m 1和m 2

间的摩擦系数为μ1,问沿水平方向用多大的力才能把下面的木板抽出来。

解:以地为参考系,隔离m 1、m 2,其受力与运动情况如图所示,

其中,N 1'=N 1,f

1'=f 1=μ1N 1,f 2=μ2N 2,选图示坐标系o-xy ,对m 1,m 2分别应用牛顿二定律,有

02122

22211111

111=--=--=-=g m N N a m N N F g m N a m N μμμ 解方程

组,得

()2221211211/m g m g m g

m F a g

a μμμμ---==

要把木板从下面抽出来,必须满足12a a >,即

g

m g m g m g m F 12221211μμμμ>---()()g m m F 212

1++>∴μ

μ

3.5.5 质量为m 2的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m 1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力。

解:

以相对地面向右作加速直线运动的斜面为参考系(非惯性系,设斜面相对地的加速度为a 2),取m 1为研究对象,其受力及运动情况如左图所示,其中N 1为斜面对人的支撑力,f *为惯性力,a'即人对斜面的加速度,方向显然沿斜面向下,选如图所示的坐标系o'-x'y',应用牛顿第二定律建立方程:

??

?=+=+-)2('cos sin )1(0sin cos 12112111

a m a m g m a m g m N αααα

再以地为参考系,取m 2为研究对象,其受力及运动情况如右图所示,选图示坐标o-xy,应用牛顿第二

定律建立方程:

??

?=--=)4(0cos )3(sin 1222

21 ααN g m N a m N (1)、(2)、(3)联立,即可求得:g m m m m a g m m m m N α

α

α

α

2

12212

12211sin sin )('sin cos ++=

+=

3.5.6在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其

m 1g

f 1

N 1

a 1

a 2 x

y

f 1 N 1 m 1g

T

a

F N 2 m 2g

T

a

N 1 f 1 f 2 a 2 1 2f*=m 1a 2

中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:

②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ

①+②可求得:g m m g

m F a μμ-+-=

2

112

将a 代入①中,可求得:2

111)

2(m m g m F m T +-=

μ

3.5.7在图示的装置中,物体A,B,C 的质量各为m 1,m 2,m 3,且两两不相等. 若物体A,B 与桌面间的摩擦系数为μ,求三个物体的加速度及绳内的张力,不计绳和滑轮质量,不计轴承摩擦,绳不可伸长。

解:以地为参考系,隔离A,B,C ,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μm 2g ,T'=2T ,由于A 的位移加B 的位移除2等于C 的位移,所以(a 1+a 2)/2=a 3.

对A,B,C 分别在其加速度方向上应用牛顿第二定律: ③

①2/)(221332

22111a a m T g m a m g m T a m g m T +=-=-=-μμ

①,②,③联立,可求得:

g

m m m m m m m m a g m m m m m m m a g

m m m m m m m a ??

????-++++=??????-+++=??????-+++=μμμμμμ21321321321321312213213214)()1()(4)()1(24)()1(2

3.5.8天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),

天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律:

'2''2211T T a m T g m a m g m T ==-=-②① 由①②可求得:

2

12121212,2'm m g

m m T m m g m m T +=

+=

所以,天平右端的总重量应该等于T ,天平才能保持平衡。

3.5.11棒球质量为0.14kg ,用棒击棒球的力随时间的变化如图所示,设棒球被

击前后速度增量大小为70m/s ,求力的最大值,打击时,不计重力。

解:由F —t 图可知:

T

f 1 N 1

m 1g

a 1

T f 2 N 2

m 2g a 2

T' m 3g

a 3

T'

m 1g a T'

m 2

g a

F

max 03

.008.0max

05.008.005.005.00F F t F F t t t -=

≤≤=

≤≤时,当时,当

[斜截式方程y=kx+b ,两点式方程 (y-y 1)/(x-x 1)=(y 2-y 1)/(x 2-x 1)]

由动量定理:?

?

?-+

==?08

.005

.003.005

.00

05.008

.00

)08.0(max max dt

t tdt Fdt v m F F

可求得F max = 245N

3.5.12 沿铅直向上发射玩具火箭的推力随时间变化如图所示,火箭质量为2kg ,t=0时处于静止,求火箭发射后的最大速率和最大高度(注意,推力大于重力时才启动)。

解:根据推力F-t 图像,可知F=4.9t (t ≤20),令F=mg ,即4.9t=2×9.8,t=4s 因此,火箭发射可分为三个阶段:t=0—4s 为第一阶段,由于推力小于重力,火箭静止,v=0,y=0;t=4—20s 为第二阶段,

火箭作变加速直线运动,设t=20s 时,y = y 1,v = v max ;t ≥20s 为第三阶段,火箭只受重力作用,作竖直上抛运动,设达最大高度时的坐标 y=y 2.

第二阶段的动力学方程为:F- mg = m dv/dt

()()

m

y dt

tdt dt t dy dt t t vdt dy s

m v v t t t v t dt

tdt dv dt

tdt gdt dt m F dv y

t

t v 16729.448.94/9.4)9.448.94/9.4(/314)20(209.448.94/9.4208.92/9.48.92/9.4/120

420

420

4202max 24401=?+-=∴?+-====≤?+-=≤-=-=-=???????

第三阶段运动学方程

)2()20(9.4)20(314),1()20(8.931421---=---=t t y y t v

令v=0,由(1)求得达最大高度y 2时所用时间(t-20)=32,代入(2)中,得y 2-y 1=5030 y 2=y max =5030+1672=6702(m)

3.5.13抛物线形弯管的表面光滑,沿铅直轴以匀角速率转动,抛物线方程为y=a x 2,a 为正常数,小环套于弯管上。⑴弯管角速度多大,小环可在管上任一位置相对弯管静止?⑵若为圆形光滑弯管,情况如何?

解:以固定底座为参考系,设弯管的角速度为ω,小环受力及运动情况如图示:α为小环处切线与x 轴夹角,压力N 与切线垂直,加速度大小a=ω2x ,方向垂直指向y 轴。

在图示坐标下应用牛顿二定律的分量式:

mg N N x m N N ==-?==-?ααωααcos )90sin(sin )90cos(2

①/②得:tg α=ω2x/g ③;由数学知识:tg α=dy/dx=2a x ; 所以,ag ag g x ax 2,2,

/222===ωωω

若弯管为半径为R 的圆形,圆方程为:x 2 + (R-y)2 = R 2,即

x

2

22

/12212/1222/122222/)2()

(/)(,)(,)(x

R x x x R dx dy tg x R R y x R y R x R y R -=-?--==--=-=--=--α

代入③中,得:222

2

2

/,//x R g g x x R x -=

=-ωω

3.5.14北京设有供实验用的高速列车环形铁路,回转半径为9km ,将要建设的京沪列车时速250km/h ,若在环路上作此项列车实验且欲使铁轨不受侧压力,外轨应比内轨高多少?设轨距1.435m.

解:以地为参考系,把车厢视为质点,受力及运动情况如图示:车厢速度v=250km/h=69.4m/s ,加速度a =v 2/R ;设轨矩为l ,外轨比内轨高h, 有

l h l h l /sin ,/cos 22=-=αα

选图示坐标o-xy ,对车箱应用牛顿第二定律:

②①,R mv l Nh N mg l h l N N //sin /cos 222===-=αα ①/②得:222//v gR h h l =-,

两边平方并整理,可求得h :

cm

m R g v l v h 8.70782.090008.94.69/435.14.69/22422242==?+?=+=

3.5.15汽车质量为1.2×10kN ,在半径为100m 的水平圆形弯道上行驶,公路内外侧倾斜15°,沿公路取自然坐标,汽车运动学方程为s=0.5t 3+20t (m),自t=5s 开始匀速运动,问公路面作用于汽车与前进方向垂直的摩擦力是由公路内侧指向外侧还是由外侧直向内侧?

解:以地为参考系,把汽车视为质点,受力及运动情况如图示: v=ds/dt=1.5t 2+20,v| t=5 =1.5×52+20=57.5m/s ,a n =v 2/R=57.52/100=33

设摩擦力f 方向指向外侧,取图示坐标o-xy ,应用牛顿第二定律:

①ααααααααcos sin cos sin sin cos sin cos f ma N ma f N f mg N mg f N n n

+==--==+

②/①得:)sin /()cos (αααf mg f ma tg n -+=

α

αααααααtg a gtg m f f ma tg f mgtg n n sin cos )

(,

cos sin +-=

+=-

0,043.3033158.9<∴<-=-?=-f tg a gtg n α ,说明摩擦力方向与我们事先假设方向相反,指向内

侧。

3.5.16速度选择器原理如图,在平行板电容器间有匀强电场j E E ?=

,又有与之垂直的匀强磁场

k B B ?= 。现有带电粒子以速度i

v v ?= 进入场中,问具有何种速度的粒子方能保持沿x 轴运动?此装置用于选出具有特定速度的粒子,并用量纲法则检验计算结果。

解:带电粒子在场中受两个力的作用:电场力F 1=qE ,方向向下;磁场力F 2=qvB ,方向向上。粒子若沿x 轴匀速运动,据牛顿定律:

B E v qvB qE /,0=∴=-11

11

11

dim ,dim ------===MT M

NA T NA B E MT v 3.5.17带电粒子束经狭缝S 1,S 2之选择,然后进入速度选择器(习题3.5.16),其中电场强度和磁感应强度各为E 和B. 具有“合格”速度的粒子再进入与速度垂直的磁场B 0中,并开始做圆周运动,经半周后打在荧光屏上.试证明粒子质量为:m=qBB 0r/E ,r 和q 分别表示轨道半径和粒子电荷。

解:由3.5.16题可知,通过速度选择器的粒子的速度是v=E/B ,该粒子在B 0磁场中受到洛仑兹力的作

用做匀速圆周运动,其向心加速度为a n =v 2/r ,由牛顿第二定律:

E

B qrB v r qB m r

mv qvB ///002

0===

3.5.18某公司欲开设太空旅馆。其设计为用32m 长的绳联结质量相等的两客舱,问两客舱围绕两舱中点转动的角速度多大,可使客舱感到和在地面上那样受重力作用,而没有“失重”的感觉。 解:s rad r g r m mg /78.016/8.9/,2≈===ωω

3.5.20 圆柱A 重500N ,半径R A =0.30m ,圆柱B 重1000N,半径R B =0.50m ,都放置在宽度L=1.20m 的槽内,各接触点都是光滑的,求A 、B 间的压力及A 、B 柱与槽壁和槽底间的压力。

解:隔离A 、B,其受力情况如图所示,选图示坐标,运用质点平衡方程,有

???=-=-???=--=-)4(0cos

)3(0sin )2(0cos ')(!0

sin g m N N N N g m N N N A AB AB A AB B B B AB αααα 通过对△ABC 的分析,可知,sin

α=0.4/0.8=0.5 ∴α=30o, cos α=3/2,分别代入(1)、(2)、(3)、(4)中,即可求得: N B = 288.5 N , N B '= 1500 N , N A = 288.5 N , N AB = 577 N.

3.5.21图表示哺乳动物的下颌骨,假如肌肉提供的力F 1和F 2均与水平方向成45°,食物作用于牙齿的力为F ,假设F,F 1和F 2共点,求F 1和F 2的关系以及与F 的关系。

解:建立图示坐标o-xy ,应用共点力平衡条件:0,0==∑∑y x F F

x 方向,F 1cos α-F 2cos α=0, F 1= F 2

y

x o A B C AB=R A +R B =0.8 αα CB=L-R A -R B =0.4

N m B g

L

y 方向,F 1sin α+F 2sin α- F=0,

111245sin 2sin 2F F F F =?==α

3.5.22四根等长且不可伸长的轻绳端点悬于水平面正方形的四个顶点处,另一端固结于一处悬挂重物,重量为W ,线与铅垂线夹角为α,求各线内张力。若四根线均不等长,知诸线之方向余弦,能算出线内张力吗?

解:设四根绳子的张力为T 1,T 2,T 3,T 4,由于对称,显然,T 1=T 2=T 3=T 4=T ;设结点下边的拉力为F ,显然F=W. 在竖直方向上对结点应用平衡条件:

4Tcos α-W=0,T=W/(4cos α)

若四根线均不等长,则T 1≠T 2≠T 3≠T 4,由于有四个未知量,因此,即使知道各角的方向余弦,也无法求解,此类问题在力学中称为静不定问题。

3.6.1 小车以匀加速度a 沿倾角为α的斜面向下运动,摆锤相对小车保持静止,

求悬线与竖直方向的夹角(分别自惯性系和非惯性系求解)。

解:(1)以地为参考系(惯性系),小球受重力W 和线拉力T 的作用,加速度a

沿斜面向下,建立图示坐标o-xy,应用牛顿第二定律:?

??=-=αθα

θsin cos cos sin ma T mg ma T

解得 )sin /(cos ααθa g a tg -=

(2)以小车为参考系(非惯性系),小球除受重力W 、拉力T 外,还受惯性力

f *的作用(见上图虚线表示的矢量),小球在三个力作用下静止,据牛顿第二定律:

?

?

?=--=-0sin cos 0cos sin αθαθma T mg ma T 解得αα

θsin cos a g a tg -=

3.6.2 升降机内有一装置如图示,悬挂的两物体的质量各为m 1,m 2且m 1≠m 2,若不计绳及滑轮质量,不计轴承处摩擦,绳不可伸长,求当升降机以加速度a (方向向下)运动时,两物体的加速度各是多少?绳内的张力是多少?

解:以升降机为参考系,隔离m 1,m 2,受力及运动情况如图示,T 为绳中张力,f 1*=m 1a,f 2*=m 2a, a 1'=a 2'=a'为m 1、m 2相对升降机的加速度.

以向下为正方向,由牛顿二定律,有:

??

?=---=--''2221

11a m a m T g m a m a m T g m 解得:??

???+-=+-+-=)

/()(2)()('2121211221m m a g m m T m m g m m a m m a 设m 1、m 2的加速度分别为a 1、a 2,根据相对运动的加速度公式,

a a a a a a

+=+=''2211 写成标量式:a a a a a a +=+-=','21,将a ’代入,求得:

2211

121212122()2()m a m m g a m m m a m m g a m m --?=?+?

?

+-?=?+?

3.6.3图示为柳比莫夫摆,框架上悬挂小球,将摆移开平衡位置而后放手,小球随即摆动起来。⑴当小球摆至最高位置时,释放框架使它沿轨道自由下落,如图a ,问框架自由下落时,摆锤相对于框架如何运动?⑵当小球摆至平衡位置时,释放框架,如图b ,小球相对框架如何运动?小球质量比框架小得多。

解:以框架为参考系,小球在两种情况下的受力如图所示:设小球质量为m, 框架相对地自由落体的加速度为g ,因此小球所受的惯性力f*=mg ,方向向上,小球所受重力W=mg. 在两种情况下,对小球分别应用牛顿第二定律:

⑴小球摆至最高位置时释放框架,小球相对框架速度v=0,所以法向加速度

a n =v 2/l =0(l 为摆长);由于切向合力F τ=Wsin θ-f*sin θ=0,所以切向加速度a τ

=0. 小球相对框架的速度为零,加速度为零,因此小球相对框架静止。 ⑵小球摆至平衡位置时释放框架,小球相对框架的速度不为零,法向加速

度a n =v 2/l ≠0,T=ma n ;在切向方向小球不受外力作用,所以切向加速度a τ=0,因此,小球速度的大小不变,即小球在拉力T 的作用下相对框架做匀速圆周运动。

3.6.4摩托车选手在竖直放置圆筒壁内在水平面内旋转。筒内壁半径为3.0m ,轮胎与壁面静摩擦系数为0.6,求摩托车最小线速度(取非惯性系做)

解:设摩托车在水平面内旋转的最小角速度为ω,以摩托车本身为参考系,车受力情况如图示,运动状态静止。

在竖直方向应用平衡条件,μ0N = mg ①

在水平方向应用平衡条件,N = m ω2

r ② ①/②得:r

g

r

g

02

0,μωωμ=

=

最小线速度 s m rg r v /76.0/8.90.3/0=?==

=μω

3.6.5一杂技演员令雨伞绕铅直轴转动,一小圆盘在雨伞上滚动但相对地面在原地转动,即盘中心不动。⑴小盘相对于雨伞如何运动?⑵以伞为参考系,小盘受力如何?若保持牛顿第二定律形式不变,应如何解释小盘的运动?

解:⑴可把小盘当作质点,小盘相对雨伞做匀速圆周运动,与伞相对地的转向相反。

⑵以伞为参考系,小盘质点受5个力的作用:向下的重力W ,与扇面垂直的支持力N ,沿伞面向上的静摩擦力f 0,此外还有离心惯性力f C *和科氏惯性力f k *,方向如图所示。把这

些力都考虑进去,即可保持牛顿第二定律的形式不变,小盘正是在这些力的作用下相对伞做匀速圆周运动。

3.6.6设在北纬60°自南向北发射一弹道导弹,其速率为400m/s ,打击6.0km 远的目标,问该弹受地球自转影响否?如受影响,偏离目标多少(自己找其它所需数据)?

解:以地球为参考系,导弹除受重力作用外,

还要受离心惯性力和科氏惯性力的作用。

n ? τ?

T f*

W

f*=m ω2

r f C *

离心惯性力的方向在速度与重力加速度平面内,不会使导弹前进方位偏离,而科氏惯性力的方向垂直速度、重力加速度平面(指向纸面),要使导弹偏离前进方向。

由于导弹速度较大,目标又不是很远,可近似认为导弹做匀速直线运动,导弹击中目标所需时间t=6000/400=15s ,在此时间内导弹在科氏惯性力作用下偏离目标的距离:

m

t v t m mv t m f at S k 7.51523

606024240060sin 60sin 221*212122222=?????=?=??=?==

πωω

3.7.1就下面两种受力情况:⑴j i t F ?2?2+=

(N,s )

, ⑵j t i t F ?)1(?2-+=

(N,s )分别求出t=0,1/4,1/2,3/4,1时的力并用图表示;再求t=0至t=1时间内的冲量,

也用图表示。

解:⑴,?2?2j i t F +=

代入t 值得:

j i F j i F j F ?2?)(,?2?)(,?2)0(212141+=+==

j i F j i F ?2?2)1(,?2?)(2343+=+=

j i dt j tdt i dt F I ?2??2?210

10

10

+=+==???

Ns I 52122=+=,与x 轴夹角

α= arctgI y /I x = arctg2 = 63.5°

⑵ ,?)1(?2j t i t F -+=

代入t 值得:

j i F j i F j F ??)(,??)(,?)0(11311+=+==

i

F j i F ?2)1(,??)(412343=+=

j i tdt j dt j tdt i dt F I ?????22110

10

10

10

+=-+==????

Ns I 2/55.0122=+=,与x 轴夹角

α= arctgI y /I x = arctg0.5 = 26.5°

3.7.2一质量为m 的质点在o-xy 平面上运动,其位置矢量为:

j t b i t a r ?sin ?cos ωω+= ,求质点的动量。

解:质点速度:j t b i t a dt r d v ?cos ?sin /ωωωω+-==

质点动量:j t b m i t a m v m p ?cos ?sin ωωωω+-==

大小:t b t a m p p p y x ωωω22222

2cos sin +=+=

方向:与x 轴夹角为θ,tg θ= p y /p x = - ctg ωt ·b/a

3.7.3自动步枪连发时每分钟可射出120发子弹,每颗子弹质量为7.9g ,出口速率为735m/s ,求射击时所需的平均力。

解:枪射出每法子弹所需时间:Δt=60/120=0.5s ,对子弹应用动量定理:

N t mv t p F p t F 6.115.0/735109.7//,3=??=?=??=?=?-

3.7.4 棒球质量为0.14kg,棒球沿水平方向以速率50m/s 投来,经棒击球后,球沿水平成30o飞出,速率为80m/s ,球与棒接触时间为0.02s ,求棒击球的平均力。

解:以地为参考系,把球视为质点,

由动量定理,0v m v m t F

-=?,画出矢

量图,由余弦定理,2/1022

0222)30cos 2(?++=?v v m v m v m t F ,代入数据,可求得F=881N.由正弦定理 mv F Δt ??=30sin /sin /t F mv α,代入数据,

求得'3218,3179

.0sin ?=≈αα

3.7.5 质量为M 的滑块与水平台面间的静摩擦系数为μ0,质量为m 的滑块与M 均处于静止,绳不

可伸长,绳与滑轮质量可不计,不计滑轮轴摩擦。问将m 托起多高,松手后可利用绳对M 冲力的平均力拖动M ?设当m 下落h 后经过极短的时间Δt 后与绳的铅直部分相对静止。

解:以地为参考系,选图示坐标,先以m 为研究对象,它被托起h ,再落 回原来位置时,速度大小为gh v 2=

,在Δt 极短时间内与绳相互作用,速度又变为零,设作用在m 上

的平均冲力为F ,相对冲力,重力作用可忽略,则由质点动量定理有:

gh m mv mv t F 2)(0==--=?,∴t gh m F ?=/2

再以M 为研究对象,由于绳、轮质量不计,轴处摩擦不计,绳不可伸长,所以M 受到的冲力大小也是F ,M 受到的最大静摩擦力为f max =μo Mg ,因此,能利用绳对M 的平均冲力托动M 的条件是:

F ≥f max ,即2222

2/)(/2m g t M h Mg t gh m o o ?≥∴≥?μμ

3.7.6质量m 1=1kg, m 2=2kg, m 3=3kg, m 4=4kg ,m 1, m 2和m 4三个质点的位置坐标顺次是:(x,y) = (-1,1), (-2,0), (3,-2),四个质点的质心坐标是:(x,y)=(1,-1),求m 3的位置坐标。

解:由质心定义式:∑∑∑∑======4

1

4

1

4

1

4

1

,i i C i i i i i C i i i y m y m x m x m ,有

1,1)4321(343)2(2)1(1)(33432144332211=?+++=?++-?+-?+++=+++x x x m m m m x m x m x m x m C

1

),1()4321()2(430211)(33432144332211-=-?+++=-?++?+?+++=+++y y y m m m m y m y m y m y m C

3.8.1 质量为1500kg 的汽车在静止的驳船上在5s 内自静止加速至5m/s,问缆绳作用与驳船的平均力有多大?(分别用质点系动量定理、质心运动定理、牛顿定律求解)

解:(1)用质点系动量定理解:

以岸为参考系,把车、船当作质点 系,该系在水平方向只受缆绳的拉 力F 的作用, 应用质点系动量定

理,有F Δt=m 1v ∴F=m 1v/Δt=1500×5/5=1500N

(2)用质心运动定理解:F=(m 1+m 2)a c ,据质心定义式,有: (m 1+m 2)a c =m 1a 1+m 2a 2 , a 1为车对岸的加速度,a 1=(v-0)/Δt=v/Δt , a 2为船对地的加速度,据题意a 2=0,∴a c =a 1m 1/(m 1+m 2),代入a 1, a c =m 1v/[(m 1+m 2)Δt] ,∴F=m 1v/Δt=1500N

(3)用牛顿定律解: a 2=0 a 1

分别分析车、船两个质点的 F

f

受力与运动情况:其中f 为

静摩擦力,a 1=v/Δt ,对两个质点分别应用牛顿二定律:

N f F f F N

t v m a m f 150001500/111===-=?==

3.8.2汽车质量m 1=1500kg ,驳船质量m 2=6000kg ,当汽车相对船静止时,由于船尾螺旋桨的转动,可使船载着汽车以加速度0.2ms -2前进. 若正在前进时,汽车自静止开始相对船以加速度0.5ms -2与船前进相反方向行驶,船的加速度如何?

解:⑴用质心定理求解 车相对船无论静止还是运动,螺旋桨的水平推力不变,即车、船系统所受外

力不变,由质心运动定理可知,车运动时的质心加速度与车静止时的质心加

速度相等a C =0.2m/s 2 设车运动时相对船的加速度为a ',相对地的加速度为a 1,船相对地的加速度为a 2,由相对运动公式:,'21a a a += ①

由质心定义式可知:C a m m a m a m )(212211+=+②

将①代入②中,可得:'2

11

2a a a m m m C +-

=,取船前进方向为正,代入数据:

3.0)5.0(2.01500

2=--=a m/s 2

⑵用质点系动量定理求解 设船所受的水平推力为F ,在车静止时,可把车、船当作质量为(m 1+m 2)的质点,加速度为a =0.2,由牛顿第二定律:①a

m m F )(21+=

a 2

x

设车运动时相对船的加速度为a ',相对地的加速度为a 1,船相对地的加速度为a 2,由相对运动公式:

,'21a a a +=对车、船应用质点系动量定理的导数形式:

②2

22122112

1)'(2

1

a m a a m a m a m m m F dv dv ++=+=+=

令①=②,',)'()(2

11

2222121a a a a m a a m a m m m m m +-

=++=+,取船前进方向为正,代入数据:

3

.0)5.0(2.0600015001500

2=--=+a m/s 2

3.8.3气球下悬软梯,总质量为M ,软梯上站一质量为m 的人,共同在气球所受浮力F 作用下加速上升,当人以相对于软梯的加速度a m 上升时,气球的加速度如何?

解:由质心定理:F- (m+M)g = (m+M)a C ①

设人相对地的加速度为a 1,气球相对地的加速度为a 2,由相对运动公式:a 1=a m +a 2,由质心定义式可知:

(m+M )a C = m a 1+M a 2=m(a m +a 2)+M a 2 ②

①②联立,可求得:g M

m ma F a m

-+-=2

3.8.4水流冲击在静止的涡轮叶片上,水流冲击叶片曲面前后的速率都等于v ,设单位时间投向叶片的水的质量保持不变等于u ,求水作用于叶片的力。

解:以水为研究对象,设在Δt 时间内质量为Δm 的水投射到叶片上,由动量定理:

uv v v F v v m t F t m 2)(),(1212-=-=

-?=???

由牛顿第三定律,水作用叶轮的力F'= -F=2uv

3.8.5 70kg 重的人和210kg 重的小船最初处于静止,后来人从船尾向船头匀速走了3.2m 停下来,问人向哪个方向运动,移动了几米?不计船所受的阻力。

解:以地为参考系,选图示坐标o-x,设人的质量为m 1=70kg ,人相对地的速度为v 1,相对船的速度为v 1’,它们的方向显然与x 轴同向;设船的质量为m 2=210kg ,船相对地的速度为v 2,(方向显然与x 轴相反);据相对运动的速度变换公式,人对地的速度v 1=v 1’+v 2.

由于不计水的阻力,所以在水平方向上,人与船构成的质点系动量守恒,有:

m 1v 1+m 2 v 2=0,即 m 1(v 1’+ v 2)+m 2 v 2=0 ,可求得

v 2= - v 1’m 1/(m 1+m 2),将上式两边同时乘上相互作用时间Δt ,v 2Δt=s 2为船相对地的位移,v 1’Δt=s 1’=3.2m ,即

s 2 = - s 1’m 1/(m 1+m 2) = - 3.2×70/(70+210) = - 0.8m

3.8.6 炮车固定在车厢内,最初均处于静止,向右发射一枚弹丸,车厢向左方运动,弹丸射在对面墙上后随即顺墙壁落下,问此过程中车厢移动的距离是多少?已知炮车和车厢总质量为M ,弹丸质量为m ,炮口到对面墙壁的距离为L,不计铁轨作用于车厢的阻力。

解:以地为参考系,建立图示坐标o-x ,设弹丸出口时相对车的速度为 v ’, 对地的速度为v , 车后退的速度为V ,据相对运动的速度变换公式,可知:v=v ’+V 由于不计路轨对车的摩擦

阻力,所以,在水平方向,弹、

m

1

x

车组成的质点系动量守恒,有 MV+m v=0,将v 代入,

MV+m(v ’+V)=0,V= - v ’m/(m+M)

设弹发出到与车壁相碰所用时间为Δt ,用Δt 乘上式两边,得:

V Δt = - v ’Δt m/(m+M),其中:v ’Δt= -L ,V Δt 即为车在此过程中前进的距离S ,∴S=Lm/(m+M)

3.8.7载人的切诺基和桑塔纳汽车质量各为m 1=165×10kg ,和m 2=115×10kg ,各以速率v 1=90km/h 和v 2=108km/h 向东和向北行驶,相撞后连在一起滑出,求滑出的速度,不计摩擦

解:设两车撞后的共同速度为v ,由动量守恒:v m m v m v m

)(212211+=+ 向x 轴投影:x v m m v m )(2111+=

h km v v m m m x /2.549210

115101*********

11≈?==

?+??+

向y 轴投影:y v m m v m )(2122+=

h km v v m y /36.4410810

11522

12≈?==

?

h km v v v y x /7036.442.54222

2≈+=+=

与x 轴夹角?≈==3.392.54/36.44/arctg v arctgv x y α

3.9.1 一枚手榴弹投出方向与水平面成45o,投出的速率为25m/s ,在刚要接触与发射点同一水平面的目标时爆炸,设分成质量相等的三块,一块以速度v 3铅直朝下,一块顺爆炸处切线方向以v 2=15m/s 飞出,一块沿法线方向以v 1飞出,求v 1和v 3,不计空气阻力。

解:以地为参考系,把手榴弹视为质点系,由于在爆炸过程中,弹片所受的重力远远小于弹片之间的冲力,因而在爆炸过程中可忽略重力作用,认为质点系动量守恒。

设手榴弹质量为m,爆炸前速度为v ,由动量守恒,有:

32132133/3/3/v v v v v m v m v m v m ++=∴++=,

投影方程:

??

?-?+?=?-?

-?=?3212145sin 45sin 45sin 345cos 45cos 45cos 3v v v v v v v ,即 )2(45sin /3)

1(332121 ?-+=--=v v v v v v v

解得:?????≈=?++==+?=+=s

m v v v v s m v v v /12729045sin )3(/9015253321321

3.9.2铀238的核(质量为238原子质量单位)放射一个α粒子(氦原子的核,质量为

4.0原子质量单位)后蜕变为钍234的核,设铀核原来是静止的,α粒子射出时的速率为1.4×107m/s ,求钍核反冲的速率。

x(东)

解:由动量守恒,有0=+ααv m v m 钍钍

s m v m m v /1039.2104.1234

4

57?=??==

αα钍钍

3.9.3 三只质量均为M 的小船鱼贯而行,速度都是v ,中

间一船同时以水平速度u(相对于此船)把两质量均为m 的物体抛到前后两只船上,问当两物体落入船后,三只船的速度各如何?

解:以岸为参考系,

以船前进的方向为坐标的正方向;设物体抛出 M+m v 3

M-2m v 2 M+m v 1后,前边船、中间船、后边船的速度变为v 1、v 2、v 3,船的质量与速度变化情况如上图所示;在物体抛出的过程中,这个系统的总动量是守恒的,因此:前边船的动量变化应该等于中间船抛过来的物体的动量,即

(M+m)v 1-Mv=m(u+v),

其中(u+v)是向前抛出物相对岸的速度,由此式可求得:

v 1=v+um/(m+M),说明前边船速度变快。

同样,后边船的动量变化也应该等于中间船抛过来的物体的动量,即 (M+m)v 3-Mv=m(-u+v)=m(v-u),其中(v-u )是向后抛出物相对岸的速度,由此式可求得:v 3=v-um/(m+M),说明后边船速度变慢。

中间船的动量变化应该等于抛出物的动量之和,即

(M-2m)v 2-Mv=m(u+v)+m(v-u),由此式可求得:v 2=v ,说明中间船的速度没有发生变化。

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

工程力学课后习题答案(20200124234341)

《工程力学》复习资料 1.画出(各部分)的受力图 (1)(2) (3) 2.力F作用在边长为L正立方体的对角线上。设Oxy平面与立方体的底面ABCD 相平行,两者之间的距离为h,试求力F对O点的矩的矢量表达式。

解:依题意可得: cos cos F F x sin cos F F y sin F F z 其中3 3sin 3 6cos 45 点坐标为: h l l ,,则 3 ) ()(33 33 33 3j i h l F k F j F i F F M 3.如图所示力系由 F 1,F 2,F 3,F 4和F 5组成,其作 用线分别沿六面体棱边。已知:的F 1=F 3=F 4=F 5=5kN, F 2=10 kN ,OA=OC/2=1.2m 。试求力 系的简化结果。 解:各力向O 点简化 0.0.0 .523143C O F A O F M C B F A O F M C O F C O F M Z Y X 即主矩的三个分量 kN F F Rx 55 kN F F Ry 102kN F F F F RZ 54 3 1 即主矢量为: k j i 5105合力的作用线方程 Z y X 24.多跨梁如图所示。已知:q=5kN ,L=2m 。试求A 、B 、D 处的约束力。

取CD 段0 ci M 0 212 ql l F D 解得 kN F D 5取整体来研究,0iy F 0 2D B Ay F l q F F 0ix F 0 Ax F 0 iA M 0 32l F l ql l F D B 联合以上各式,解得 kN F F Ay A 10kN F B 255.多跨梁如图所示。已知:q=5kN ,L=2m ,ψ=30°。试求A 、C 处的约束力。(5+5=10分) 取BC 段0iy F 0 cos 2C B F l q F 0ix F 0 sin C Bx F F 0 ic M 0 22l l q l F By

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright ? 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系

第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力 考情分析 一、历年真题的分布情况 《工程力学(一)》历年考题的分值分布情况如下:

天津大学工程力学习题答案

3-10 求图示多跨梁支座A 、C 处的约束力。已知M =8kN ·m ,q =4kN/m ,l =2m 。 解:(1)取梁BC 为研究对象。其受力如图(b)所示。列平衡方程 (2)取整体为研究对象。其受力如图(c)所示。列平衡方程 3-11 组合梁 AC 及CD 用铰链C 连接而成,受力情况如图(a)所示。设F =50kN , q =25kN/m ,力偶矩M =50kN ·m 。求各支座的约束力。 F B kN 1842494902 332, 0=??===? ?-?=∑ql F l l q l F M C C B kN 62431830 3, 0=??+-=+-==?-+=∑ql F F l q F F F C A C A y m kN 32245.10241885.1040 5.334, 022?=??+??-=+?-==??-?+-=∑ql l F M M l l q l F M M M C A C A A

解:(1)取梁CD 为研究对象。其受力如图(c)所示。列平衡方程 (2)取梁AC 为研究对象。其受力如图(b)所示,其中F ′C =F C =25kN 。列平衡方程 F C (b) (c) ′C kN 254 50 252420124, 0=+?=+= =-??-?=∑M q F M q F M D D C kN 254 50256460324, 0=-?=-= =-??+?-=∑M q F M q F M C C D ) kN(252 25225250222021212, 0↓-=?-?-='--= =?'-??-?+?-=∑C A C A B F q F F F q F F M kN 1502 25425650246043212, 0=?+?+='++==?'-??-?-?=∑C B C B A F q F F F q F F M

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.doczj.com/doc/73715342.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

工程力学课后习题答案主编佘斌

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN ,力偶矩的单位为kN ?m ,长度单位为m ,分布载荷集度为kN/m 。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0.40 0.4 kN x Ax Ax F F F =-+==∑ ()0: 20.80.5 1.60.40.720 0.26 kN A B B M F F F =-?+?+?+?==∑ 0: 20.50 1.24 kN y Ay B Ay F F F F =-++==∑ 约束力的方向如图所示。 (c):(1) 研究AB 杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 2 ()0: 3320 0.33 kN B Ay Ay M F F dx x F =-?-+??==∑? A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 (b) A B C 1 2 q =2 (c) M=3 30o A B C D 0.8 0.8 0.8 20 0.8 M =8 q =20 (e) A B C 1 2 q =2 M=3 30o F B F Ax F A y y x dx 2?dx x A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 F B F Ax F A y y x

2 0: 2cos300 4.24 kN o y Ay B B F F dx F F =-?+==∑? 0: sin300 2.12 kN o x Ax B Ax F F F F =-==∑ 约束力的方向如图所示。 (e):(1) 研究CABD 杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0 x Ax F F ==∑ 0.8 ()0: 208 1.620 2.40 21 kN A B B M F dx x F F =??++?-?==∑? 0.8 0: 20200 15 kN y Ay B Ay F dx F F F =-?++-==∑? 约束力的方向如图所示。 4-16 由AC 和CD 构成的复合梁通过铰链C 连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m ,力偶M=40 kN ?m ,a=2 m ,不计梁重,试求支座A 、B 、D 的约束力和铰链C 所受的力。 解:(1) 研究CD 杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy ,列出平衡方程; 0()0: -20 5 kN a C D D M F q dx x M F a F =??+-?==∑? 0: 0 25 kN a y C D C F F q dx F F =-?-==∑? (3) 研究ABC 杆,受力分析,画出受力图(平面平行力系); A B C D 0.8 0.8 0.8 20 0.8 M =8 q =20 F B F Ax F A y y x 20?dx x dx A B C D a M q a a a C D M q a a F C F D x dx qdx y x y x A B C a q a F ’C F A F B x dx qdx

工程力学教程篇(第二版)习题第7章答案

第7章 刚体的平面运动 习题 7-1 直杆AB 长为l ,两端分别沿着水平和铅直方向运动,已知点A 的速度A υ为常矢量,试求当 60=θ时,点B 的速度和杆AB 的角速度。 (a ) (b ) 解法一(如图a ) 1.运动分析:杆AB 作平面运动。 2.速度分析:A B A B v v v +=,作速度矢量合成图 I A A B υυυ360tan == A A BA υυυ260cos /== A BA l AB υυω2== 解法二(如图b ) 1.运动分析:杆AB 作平面运动。 2.速度分析:杆AB 的速度瞬心是点I 。 ωυ?=AP A A A l l υυω260cos == A A B l l BP υυωυ32 60sin =??=?=

s rad /6=ω,试求图示位置时,滑块B 的速度以及连杆AB 的角速度。 解:1.运动分析:杆AB 均作一般平面运动,滑块作直线运动,杆OA 作定轴转动。 2.速度分析: 对杆AB ,s m OA A /12=?=ωυ A B A B v v v +=或AB B AB A v v ][][= 30cos B A υυ= s m B /38=υ s m A BA /3430tan =?=υυ s rad AB BA AB /2== υω 7-3 图示机构,滑块B 以s m /12的速度沿滑道斜向上运动,试求图示瞬时杆OA 与杆AB 的角速度。 解:AB 杆运动的瞬心为I 点。 AB B BP ωυ?= s r a d B AB /325.04 3 =?= υω s m AP AB A /2.7323.043=??=?=ωυ 4.0?=OA A ωυ s rad OA /184 .02 .7== ω 或利 s /m .B A 275 3 ==υυ

《工程力学》课后习题与答案全集

工程力学习题答案 第一章 静力学基础知识 思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √ 习题一 1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。 解:(a )杆AB 在A 、B 、C 三处受力作用。 由于力p u v 和B R u u v 的作用线交于点O 。 如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。 (b )同上。由于力p u v 和B R u u v 的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。 2.不计杆重,画出下列各图中AB 杆的受力图。 解:(a )取杆AB 为研究对象,杆除受力p u v 外,在B 处受绳索作用的拉力B T u u v ,在A 和E 两处还受光滑接触面约束。约束力A N u u u v 和E N u u u v 的方向分别沿其接触表面的公法线, 并指向杆。其中力E N u u u v 与杆垂直, 力A N u u u v 通过半圆槽的圆心O 。 AB 杆受力图见下图(a )。 (b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N u u u v 和C N u u u v , 故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且 B N = C N 。研究杆两点受到约束反力A N u u u v 和B N u u u v ,以及力偶m 的作用而 平衡。根据力偶的性质,A N u u u v 和B N u u u v 必组成一力偶。 (d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T u u v 和C T u u v ,在B 点受到支 座反力B N u u u v 。A T u u v 和C T u u v 相交于O 点, 根据三力平衡汇交定理, 可以判断B N u u u v 必沿通过

工程力学课后习题答案

第一章 静力学基本概念与物体的受力分析 下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。 1.1 试画出下列各物体(不包括销钉与支座)的受力图。 解:如图 (g) (j) P (a) (e) (f) W W F F A B F D F B F A F A T F B A 1.2画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。 解:如图 F B B (b)

(c) C (d) C F D (e) A F D (f) F D (g) (h) EO B O E F O (i)

(j) B Y F B X B F X E (k) 1.3铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题1.3图所示。在定滑轮上吊有重为W的物体H。试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。 解:如图 ' D 1.4题1.4图示齿轮传动系统,O1为主动轮,旋转 方向如图所示。试分别画出两齿轮的受力图。 解: 1 o x F 2o x F 2o y F o y F F F' 1.5结构如题1.5图所示,试画出各个部分的受力图。

解: 第二章 汇交力系 2.1 在刚体的A 点作用有四个平面汇交力。其中F 1=2kN ,F 2=3kN ,F 3=lkN , F 4=2.5kN ,方向如题2.1图所示。用解析法求该力系的合成结果。 解 0 00 1 42 3c o s 30c o s 45c o s 60 c o s 45 1.29 Rx F X F F F F KN = =+- -=∑ 00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑ 2.85R F KN == 0(,)tan 63.07Ry R Rx F F X arc F ∠== 2.2 题2.2图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=l.5kN 。求该力系的合成结果。 解:2.2图示可简化为如右图所示 23cos60 2.75Rx F X F F KN ==+=∑ 013sin600.3Ry F Y F F KN ==-=-∑ 2.77R F KN == 0(,)tan 6.2Ry R Rx F F X arc F ∠==- 2.3 力系如题2.3图所示。已知:F 1=100N ,F 2=50N ,F 3=50N ,求力系的合力。 解:2.3图示可简化为如右图所示 080 arctan 5360 BAC θ∠=== 32cos 80Rx F X F F KN θ==-=∑ 12sin 140Ry F Y F F KN θ==+=∑ 161.25R F KN == ( ,)tan 60.25Ry R Rx F F X arc F ∠= = 2.4 球重为W =100N ,悬挂于绳上,并与光滑墙相接触,如题2.4 图所示。已知30α=,

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

工程力学-课后习题答案

工程力学-课后习题答案

4-1 试求题4-1图所示各梁支座的约束力。设力 的单位为kN ,力偶矩的单位为kN m ,长度 单位为m ,分布载荷集度为kN/m 。(提示: 计算非均布载荷的投影和与力矩和时需应用积分)。 A B C D 0.8 0.8 0.4 0 00.7 2 ( A B C 1 2 q ( M= 30o A B C D 0.8 0.8 0.8 2 0.8 M = q =(

解: (b):(1) 整体受力分析,画出受力图(平面任意 力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0.40 0.4 kN x Ax Ax F F F =-+==∑ ()0: 20.80.5 1.60.40.720 0.26 kN A B B M F F F =-?+?+?+?==∑ 0: 20.50 1.24 kN y Ay B Ay F F F F =-++==∑ 约束力的方向如图所示。 (c):(1) 研究AB 杆,受力分析,画出受力图(平 面任意力系); A B C 1 2 q M= 30o F F A F A y x d 2?x A B C D 0.8 0.8 0.4 00 0.7 2 F F A F A y

(2) 选坐标系Axy ,列出平衡方程; 2 0()0: 3320 0.33 kN B Ay Ay M F F dx x F =-?-+??==∑? 2 0: 2cos300 4.24 kN o y Ay B B F F dx F F =-?+==∑? 0: sin 300 2.12 kN o x Ax B Ax F F F F =-==∑ 约束力的方向如图所示。 (e):(1) 研究C ABD 杆,受力分析,画出受力图 (平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0x Ax F F ==∑ 0.8 ()0: 208 1.620 2.40 21 kN A B B M F dx x F F =??++?-?==∑? 0.8 0: 20200 15 kN y Ay B Ay F dx F F F =-?++-==∑? 约束力的方向如图所示。 A B C D 0.8 0.8 0.8 20.8 M = q =F F A F A y x 20 x d

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

《工程力学》课后习题解答48128

4日1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a) (b)

98 解: 1-3 试画出以下各题中AB 梁的受力图。 (d) (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e)

解: 1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (a) F (b) W (c) (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) C B (c) B F D

2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上, F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。 解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆, (2) 列平衡方程: 1 21 4 0 sin 60053 0 cos6005 207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =?+-==?--=∴==∑∑ AC 与BC 两杆均受拉。 2-3 水平力F 作用在刚架的B 点,如图所示。如不计刚架重量,试求支座A 和D 处的约束 力。 (d) F C (e) W B (f) F F BC F 1 F

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

工程力学课后答案摘录概要

2-6 图示平面任意力系中F 1 = 402N ,F 2 = 80N ,F 3 = 40N ,F 4 = 110M ,M = 2000 N ·mm 。各力作用位置如图所示,图中尺寸的单位为mm 。求(1)力系向O 点简化的结果;(2)力系的合力的大小、方向及合力作用线方程。 F F F F (0,30) (20,20) (20,-30) (-50,0) 45 y x R F 'o o M y x o R F (0,-6) 解:N 15045cos 421R -=--?=∑=F F F F F x x 045sin 31R =-?=∑=F F F F y y N 150)()(22'R =∑+∑=y x F F F mm N 900305030)(432?-=--+=∑=M F F F M M O O F 向O 点简化结果如图(b );合力如图(c ),其大小与方向为 N 150' R R i F F -== 设合力作用线上一点坐标为(y x ,),则 x y O O yF xF M M R R R )(-==F 将O M 、'R y F 和'R x F 值代入此式,即得合力作用线方程为:mm 6-=y 2-7 图示等边三角形板ABC ,边长a ,今沿其边缘作用大小均为F P 的力,方向如图(a )所示,求三力的合成结果。若三力的方向改变成如图(b )所示,其合成结果如何? 解(a )0' R =∑=i F F a F a F M A P P 2 3 23=? =(逆) 合成结果为一合力偶a F M P 2 3 =(逆) (b )向A 点简化i F P ' R 2F -=(←) a F M A P 2 3 = (逆) F F F F F F 习题2-10图 F F F A ' A d R F R F 'A M 习题2-9图

工程力学教程篇(第二版)习题第14章答案

第14章 轴向拉伸与压缩 习题答案 14-1 用截面法求图14-1(a )(b )(c )所示各杆指定截面的内力。 (a ) (b ) (c ) 图14-1 解:(a ) 1. 用截面1-1将杆截开,取左段为研究对象,作受力图, 由平衡方程 0X =∑ 得 10N = 2. 用截面2-2将杆截开,取左段为研究对象,作受力图, 由平衡方程 0X =∑,20N P -= 得 2N P = 3. 用截面3-3将杆截开,取左段为研究对象,作受力图, 由平衡方程 0X =∑,30N P -= 得 3N P =

(b ) 1. 用截面1-1将杆截开,取左段为研究对象,作受力图, 由平衡方程 0X =∑,12202 N kN ? -= 得 12N k N = 2. 用截面2-2将杆截开,取左段为研究对象,作受力图, 由平衡方程 0X =∑,220N kN -= 得 12N k N = (c ) 1. 用截面1-1将杆截开,取右段为研究对象,作受力图, 由平衡方程 0X =∑,130N P P --+= 得 12N P =- 2. 用截面2-2将杆截开,取右段为研究对象,作受力图, 由平衡方程 0X =∑,20P N -= 得 2N P = 14-2 试计算图14-2(a )所示钢水包吊杆的最大应力。已知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图(b )所示。

(b ) (c ) 图14-2 解:吊杆的轴力90N kN =。吊杆的危险截面必在有圆孔之处,如图14-2(c )所示,它们的截面积分别为 22321(656520) 2.92510A mm m -=-?=? 2322(104 606018)5.1610A m m m -=?-?=? 232 3[11860(6018)2]4.9210A m m m -=?-??=? 显然,最小截面积为321 2.92510A m -=?,最大应力产生在吊杆下端有钉空处 3 max 31190102215.382.92510P N MPa A A σ-?====? 14-3 一桅杆起重机如图14-3所示,起重杆AB 为一钢管,其外径20D mm =,内径18d mm =;钢绳CB 的横截面积为20.1cm 。已知起重重量200P N =,试计算起重杆和钢绳的应力。

天津大学版工程力学习题答案第二章1

D o n e (略)2?1分别用几何法和解析法求图示四个力的合力。已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。 解: (一) 几何法 用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。 (二) 解析法 以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。首先计算合力在坐标轴上的投影 N 79.685 11002 18010 3 605 12 1103N 85.15 2100502 18010 1 605 22 110142 1 R 432 1 R =? -?+? =-+==-=? -+?+? -=-++-==∑∑F F F F F F F F F F F y y x x 然后求出合力的大小为 N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F 设合力F R 与x 轴所夹锐角为θ,则 82881838.3785.179 .68tan R R ' ?=== = θθx y F F 再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。 习题2?1图 F 1 F 2 F 4 F 3 F R 88°28′ (b) 2 3 1 1 1 1 F 1 F 2 F 3 F 4 F R θ (c) 2 3 1 1 1 1 F 1 F 2 F 3 F 4 (a) 0 25 50kN e a b c d O y x

工程力学教程篇(第二版)习题第5章答案

第5章 点的运动学 习题 5-1 已知图示机构中,l AB OA ==,a AD AC DM CM ====,求t ω?=时,点M 的运动方程和轨迹方程。 题5-1图 解:建立坐标系,设动点M 的坐标),(y x M ,则由图中几何关系可知,运动方程为: t l x ωcos = t a l t a t l y ωωωsin )2(sin 2sin -=-= 消参数,得轨迹方程:1)2(2222=-+a l y l x 5-2 已知曲柄连杆机构cm l r 60==,l MB 31 =,t 4=?(t 以s 计),如图所示。 求连杆上点,M 的轨迹,并求当0=t 时,该点的速度与加速度。 题5-2图

解:建立直角坐标系Oxy ,动点M 的坐标为: ??cos 32 cos l r x += ??sin 32 sin l r y -= 将cm l r 60==代入方程,点M 的运动方程: t x ωcos 100= t y ωsin 20= 消参数,动点M 的轨迹方程: 1201002222 =+y x 将运动方程对时间求导, t x 4s i n 400-=υ , t y 4cos 80=υ 将0=t 代入,0=x υ,s cm y /80=υ 当0=t 时,点M 的速度为s cm M /80=υ,方向向上。 将速度方程对时间求导, t a x 4c o s 1600 -=,t a y 4sin 320-= 将0=t 代入,2/1600s cm a x -=,0=y a 当0=t 时,点M 的加速度为2/1600s cm a M -=,方向向左。 5-3 靠在直角斜面上的直杆AB 长为l 在同一铅垂面内运动,约束限制A ,B 端不能脱离直角面,即只能沿水平与铅垂方向运动,已知)(t θθ=,试求杆AB 中点C 的速度和加速度。 解:建立C 的运动方程:θsin 2l x = θcos 2l y = 所以C 的轨迹为圆,建立弧坐标如图。

工程力学_课后习题答案

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN ,力偶矩的单位为kN ?m ,长度 单位为m ,分布载荷集度为kN/m 。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0.40 0.4 kN x Ax Ax F F F =-+==∑ ()0: 20.80.5 1.60.40.720 0.26 kN A B B M F F F =-?+?+?+?==∑ A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 (b) A B C 1 2 q =2 (c) M=3 30o A B C D 0.8 0.8 0.8 20 0.8 M =8 q =20 (e) A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 F B F Ax F A y y x

0: 20.50 1.24 kN y Ay B Ay F F F F =-++==∑ 约束力的方向如图所示。 (c):(1) 研究AB 杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 2 ()0: 3320 0.33 kN B Ay Ay M F F dx x F =-?-+??==∑? 2 0: 2cos300 4.24 kN o y Ay B B F F dx F F =-?+==∑? 0: sin300 2.12 kN o x Ax B Ax F F F F =-==∑ 约束力的方向如图所示。 (e):(1) 研究C ABD 杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy ,列出平衡方程; 0: 0x Ax F F ==∑ 0.80 ()0: 208 1.620 2.40 21 kN A B B M F dx x F F =??++?-?==∑? 0.8 0: 20200 15 kN y Ay B Ay F dx F F F =-?++-==∑? 约束力的方向如图所示。 4-16 由AC 和CD 构成的复合梁通过铰链C 连接,它的支承和受力如题4-16图所示。已知 均布载荷集度q =10 kN/m ,力偶M =40 kN ?m ,a =2 m ,不计梁重,试求支座A 、B 、D A B C 1 2 q =2 M=3 30o F B F Ax F A y y x dx 2?dx x A B C D 0.8 0.8 0.8 20 0.8 M =8 q =20 F B F Ax F A y y x 20?dx x dx A B C D M q

相关主题
文本预览
相关文档 最新文档