当前位置:文档之家› 圆周径向分布孔系加工

圆周径向分布孔系加工

圆周径向分布孔系加工
圆周径向分布孔系加工

制动鼓孔系加工专用机床主传动系统设计论文

畢業設計(論文)任務書 機電工程系機械設計製造及其自動化專業09機本班姓名:畢業設計(論文)時間:2013 年 3 月11 日至2013 年 6 月21 日畢業設計(論文)題目:制動鼓孔系加工專用機床主傳動系統設計 畢業設計(論文)任務 一、本畢業設計課題應達到的目的 本課題為機械加工的專用設備,用於汽車制動系統中零件-制動鼓孔系加工。通過設計培養學生獨立進行專用機床設計、計算的能力,使之熟悉專用機床設計的一般步驟,提高學生的工程意識、工程實踐能力和科技寫作水準。 能夠結合題目搜集資料,查閱相關文獻;具有扎實的機械設計,專用機床設計知識;具有較強的獨立設計能力。 設計內容包括零件的分析,機械加工方案的制定,專用機床總體方案的選擇,方案的優化與比較,部件設計,關鍵件的計算、校核,零件工作圖設計等內容。 二、主要技術參數 1.生產綱領:10萬 2.零件材料:HT200 3.廢品率:1% 4.備品率:5% 三、本畢業設計課題任務的內容和要求 設計內容包括零件的分析,機械加工方案的制定,專用機床總體方案的選擇,方案的優化與比較,部件設計,關鍵件的計算、校核,零件工作圖設計等內容。 要求:1、搜集資料,查閱文獻,現場實習,熟悉當前相關研究動態,完成開題報告。 2、論證和擬定總體方案(結構組成佈局及聯繫尺寸圖、控制方式等)(圖、表)。 3、具體機構的設計,關鍵件的計算、校核等。 4、裝配圖與零件圖(主傳動系統)。 5、撰寫設計計算說明書(不少於1.8萬字);相關外文翻譯(不少於3千漢字)。 四、對本畢業設計課題成果的要求 (1)開題報告一份。 (2)圖紙不少於折合3張A0圖紙。 (3)完成設計說明書一份。

铰孔工艺

6.6 铰孔工艺、编程 材料: 45#钢,正火处理 图6-6-1圆周均布孔加工零件 6.6.1 铰孔加工工艺 1.铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9~IT7级,表面粗糙度一般达Ra1.6~0.8μm。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6×φ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径0.05~0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和位

铰孔

6.3 铰孔 用铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和降低表面粗糙度的加工方法称为铰孔。由于铰刀的刀刃数量多,切削余量小,切削阻力小,导向性好、刚性好,因此其加工出的尺寸精度可达IT9~IT7、表面粗糙度可达Ra3.2~0.8μm 。 6.3.1 铰刀的种类和结构特点 铰刀按加工方法不同分为手用铰刀和机用铰刀;按所铰孔的形状不同又可分为圆柱形铰刀和圆锥形铰刀;按铰刀的容屑槽的形状不同,可分为直槽和螺旋槽铰刀;按结构组成不同可分为整体式铰刀和可调试铰刀。本节注意讲解标准圆柱铰刀。 1.标准圆柱铰刀 标准圆柱铰刀为整体式结构,它分为机铰刀和手铰刀两种,见图6-17所示。它的容屑槽为直槽,与钻头的结构组成类似,它由工作部分、颈部和柄部组成。工作部分又分为切削部分和校准部分。 手用铰刀如图6-17(b )所示,用于手工铰孔,其柄部为直柄,工作部分较长;机用铰刀如图6-20(a ),多为锥柄,用于机铰,装在钻床进行铰孔。 ○ 1切削锥角2? 铰刀具有较小的切削锥角。对于机铰刀,铰削钢件及其它韧性材料的通孔时,230?=?;铰削铸铁及其它脆性材料的通孔时,26~10?=??;铰盲孔时,290?=?,以便使铰出孔的圆柱部分尽量长,而圆锥顶角尽量短。 对于手铰刀,21~3?=??,目的是加长切削部分,提高定心作用,使铰削省力。 ○ 2前角γ 一般铰刀切削部分的前角0~3γ=??,校准部分的前角0?,这样的前角,使铰削近似于刮削,因此可得到较小的表面粗糙度。 ○ 3后角α 铰刀的后角一般为6~8??的夹角。 ○ 4校准部分棱边宽度f 校准部分的刀刃上留有无后角的窄的棱边,在保证导向和修光作用的前提下,应考虑尽可能地减少棱边与孔壁的摩擦,所以棱边宽度0.1~0.3f mm =,与麻花钻类似,校准部分也做成倒锥。其中,机铰刀的后段倒锥量为0.04~0.08mm ,以防铰刀振动而扩大孔口,它的校准部分的前段为圆柱形,制得较短,因为它的校准工作主要取决于机床本身。手铰刀由于要依靠校准部分导向,所以校准部分较长,且全长制成0.005~0.008mm 的较小倒锥。 ○5齿数Z 图6-17 铰刀结构 (a) 机用铰刀 (b) 手用铰刀

机械机床毕业设计188台式车床车头箱孔系加工镗模设计

0 引言 随着现代化机器向高速、高效和高精度发展,对机械零件的精度要求越来越高,其结构日趋复杂,特别是多孔系的箱体和复杂零件的出现,为机械加工开创了新的研究课题。 车床车头箱箱体是结构比较复杂的一种箱体。它的箱壁厚薄不均,要求加工表面较多,精度要求较高。箱体的加工表面主要是一些孔和平面。精度要求较高的支承孔以及孔与孔间、孔与平面间的相互位置精度较难保证,成为生产中的关键。 在箱体加工工艺中, 其工艺流程为先加工作为精基准的平面,然后以加工好的平面定位加工孔。其次,由于箱体上的孔是分布在外壁和中间隔壁的平面上的,采用先加工平面,可切去铸件表面的凹凸不平及夹砂等缺陷,这样不仅有利于以后工序的孔加工(例如,钻孔时可减少钻头引偏),也有利于保护刀具、对刀和调整等。 在现代生产中,机床夹具是一种不可缺少的工艺装备,它是一种能够使工件按一定的技术要求准确定位和牢固夹紧的工艺装备,广泛地应用于机械加工、检测和装配等整个工艺过程中。机床夹具直接影响着加工的精度、劳动生产率和产品的制造成本等,故机床夹具设计在产品设计和制造以及生产技术准备中占有及其重要的地位。 镗床夹具又称镗模,其功用是保证箱体类工件的孔及孔系的加工精度。镗模是依靠专门的导引元件——镗套来导引镗杆,从而保证所镗的孔具有很高的位置精度。因此,采用镗模后,镗孔的精度便可不受机床精度的影响。镗模广泛应用于高效率的专用组合镗床和一般普通镗床。即使缺乏上述专门的镗孔设备的工厂,也可以利用镗模来加工箱体孔系。 目前广泛应用的镗模,一般由以下元件组成:定位元件(如支承板等)、夹紧元件(如螺钉、压板等)、引导元件(如镗套等)、夹具体(如镗模支架、底座)。 镗模设计中,除合理解决工件的定位和夹紧外,还要着重考虑镗套、镗模支架、镗模底座和镗杆的设计问题。 工件的定位按照定位基准的选择原则,结合工件的结构特点和加工时应限制的自由度,选择定位元件及其组合。首先要保证满足工件的加工精度,尽量减少定位误差。同时,要使定位稳定可靠。定位元件要具有精度高、耐磨性好以及有足够的强度和刚度。 根据工件结构特点和定位方案,确定工件的夹紧方式。夹紧力的作用点,一般在工艺文件中已有规定,故尽可能遵循原夹紧点的位置,以保证工件定位稳定和防止工件在切削力、重力和惯性力作用下发生位置移动。 镗套的型式有固定式镗套和回转式镗套。固定式镗套工作时不能随镗杆转动,而与镗杆之间有相对运动,适用于低速场合。回转式镗套随镗杆一起转动,镗杆只在镗

机械制造及工艺——箱体孔系加工

箱体孔系加工和常用工艺装备 一、箱体零件孔系加工 箱体上一系列相互位置有精度要求的孔的组合,称为孔系。孔系可分为平行孔系「图8-35(a)〕、同轴孔系[图8-35(b)」和交叉孔系[图8-35(c)]。孔系加工不仅孔本身的精度要求较高,而且孔距精度和相互位置精度的要求也高,因此是箱体加工的关键。孔系的加工方法根据箱体批量不同和孔系精度要求的不同而不同,现分别予以讨论。 (一)平行孔系的加工 平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。生产中常采用以下几种方法 1.找正法 找正法是在通用机床上借助辅助工具来找正要加工孔的正确位置的加工方法。这种方法加工效率低,一般只适用于单件小批生产。根据找正方法的不同,找正法又可分为以下几种: (l)划线找正法。加工前按照零件图在毛坯上划出各孔的位置轮廓线,然后按划线一一进行加工。划线和找正时间较长,生产率低,而且加工出来的孔距精度也低,一般在±0.5 mm 左右。为提高划线找正的精度,往往结合试切法进行。即先按划线找正镗出一孔再按线将主轴调至第二孔中心,试镗出一个比图样要小的孔,若不符合图样要求,则根据测量结果更新调整主轴的位置,再进行试镗、测量、调整,如此反复几次,直至达到要求的孔距尺寸。此法虽比单纯的按线找正所得到的孔距精度高,但孔距精度仍然较低且操作的难度较大,生产效率低,适用于单件小批生产。 (2)心轴和块规找正法。镗第一排孔时将心轴插人主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,如图8-36所示。校正时用塞尺测定块规与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。镗第二排孔时,分别在机床主轴和加工孔中插入心轴,采用同样的方法来校正主轴线的位置,以保证孔心距的精度。这种找

加工箱体长孔的工艺方法和应用

加工箱体长孔的工艺方法和应用 【摘要】本文阐述了箱体孔系的常用的加工方法,重点分析了加工箱体长孔的工艺方法,同时结合轮胎起重机行走箱体中拨叉轴孔的加工问题,探讨了加工箱体长孔新工艺的应用,从而达到保证箱体长孔加工质量的目的。 【关键词】箱体长孔;工艺方法;镗床 在加工箱体长孔过程中,由于长孔的孔径和精度要求较高,通常用的加工手段是:首先,用钻头钻出孔(粗加工)后,留出精加工余量,再由技术水平较高的工人师傅直接镗出内孔达到精度要求;其次,完成工序:钻孔→扩孔→粗铰→精铰,来保证孔的质量。 1箱体孔系的加工方法 所谓的孔系是箱体上若干有相互位置精度要求的孔的组合。孔系可分为平行孔系、同轴孔系和交叉孔系。孔系加工是箱体加工的关键,根据箱体加工批量的不同和孔系精度要求的不同,孔系加工所用的方法也是不同的。 1.1平行孔系的加工 1.1.1找正法 找正法是在通用机床(镗床、铣床)上利用辅助工具来找正所要加工孔的正确位置的加工方法。这种找正法加工效率低,一般只适于单件小批生产。找正时除根据划线用试镗方法外,有时借用心轴量块或用样板找正,以提高找正精度。 (1)心轴和量块找正法。镗第一排孔时将心轴插入主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,校正时用塞尺测定块与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。镗第二排孔时,分别在机床主轴和已加工孔中插入心轴,采用同样的方法来校正主轴轴线的位置,以保证孔心距的精度。这种找正法其孔心距精度可达0.03mm。 (2)样板找正法。用l0~20mm厚的钢板制成样板,装在垂直于各孔的端面上(或固定于机床工作台上),样板上的孔距精度要高于箱体孔系的精度(一般0.0l~0.03mm),样板上的孔径较工件的孔径要大,以便于镗杆通过。 1.1.2镗模法 在成批生产中,广泛采用镗模加工孔系。工件装夹在镗模上,镗杆被支承在镗模的导套内,导套的位置决定了镗杆的位置,装在镗杆上的镗刀将工件上相应的孔加工出来。

铰刀在铰孔加工问题产生的原因及解决办法

铰刀在铰孔加工问题产生的原因及解决办法 本文详细讲述了铰孔加工过程中产生问题的现象。 如,孔径增大,误差大。出现上述现象的原因有可能是铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。并详细分析了解决了上述问题的方法。 具体各种铰刀铰孔加工过程中产生的现象及解决方法详见下表1——1。 表1——1绞刀铰孔加工问题产生的原因及解决办法 问题现象问题原因解决办法 孔径增大,误差大1、铰刀外径尺寸设计值偏大或铰刀刃口有毛刺 2、切削速度过高 3、进给量不当或加工余量过大 4、铰刀主偏角过大 5、铰刀弯曲 6、铰刀刃口上粘附着切屑瘤 7、刃磨时铰刀刃口摆差超差 8、切削液选择不合适 9、安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤 10、锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉 11、主轴弯曲或主轴轴承过松或损坏 12、铰刀浮动不灵活 13、与工件不同轴 14、手铰孔时两手用力不均匀,使铰刀左右晃动 1、根据具体情况适当减小铰刀外径 2、降低切削速度 3、适当调整进给量或减少加工余量

4、适当减小主偏角 5、校直或报废弯曲的不能用的铰刀 6、用油石仔细修整到合格 7、控制摆差在允许的范围内 8、选择冷却性能较好的切削液 9、安装铰刀前必须将铰刀锥柄及机床主轴锥孔内部油污擦净,锥面有磕碰处用油石修光 10、修磨铰刀扁尾 11、调整或更换主轴轴承 12、重新调整浮动卡头 13、并调整同轴度 14、注意正确操作 孔径缩小1、铰刀外径尺寸设计值偏小 2、切削速度过低 3、进给量过大 4、铰刀主偏角过小 5、切削液选择不合适 6、刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小 7、铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小 8、内孔不圆,孔径不合格 1、更换铰刀外径尺寸 2、适当提高切削速度 3、适当降低进给量 4、适当增大主偏角

学位论文-—变速箱壳体孔系加工专用机床设计(左主轴箱)

毕业设计(论文) 题目变速箱壳体孔系加工专用机床设计(左主轴箱) 2014年6月 5 日

变速箱壳体孔系加工专用机床设计(左主轴箱) 摘要 组合机床是一种专用高效自动化技术装备,因而被广泛应用于汽车、拖拉机、内燃机和压缩机等许多工业生产领域。本次设计的是钻变速箱体左端面孔组合机床,主要完成组合机床的多轴箱设计。通过分析比较,确定了选用卧式单工位组合机床以加工零件左端面孔系;为确保加工精度,采用一面两销的定位方式;为实现无极调速,安全可靠,选择液压组合滑台;根据零件的大小及被加工孔位置确定主轴箱的轮廓尺寸;通过计算确定主轴和传动轴的直径;齿轮模数是通过类比法确定;齿轮齿数和中间传动轴的位置是由计算、作图和多次试凑相结合的办法确定;计算主轴、传动轴的坐标并进行中心距的验算,确定部分轴上采用变位齿轮;轴上的齿轮套、键等零件按轴号选择相应的标准件。 关键词:组合机床;多轴箱;主轴;传动轴;齿轮

Abstract Combination machine tools is a kind of special high automation technology and equipment, and therefore is widely used in automobiles, tractors, internal combustion engines and compressors many industrial production field. This design is to drill the left side face of gear case combination machine tools, the main spindle box of modular machine tool design. Through analysis and comparison, to determine the selection of horizontal simplex bit left side face of combination machine tools for machining parts is; In order to ensure the machining accuracy, using a two pin positioning way; In order to achieve the infinite speed, safe and reliable, choose hydraulic combination sliding table; According to the size of the parts and processed hole location to determine the outline of the spindle box size; Through the calculate and determine the main shaft and the diameter of the shaft; Gear modulus is determined by analogy method; The gear teeth and the position of the intermediate shaft is by calculating, drawing and the combination of trial and error method to determine many times; Calculate the coordinates of main shaft, the shaft and calculating the center distance, determined in the light of the deflection of shaft gear; Shaft of the gear set, key parts such as press shaft, select the corresponding standard. Key words: combination machine tools; Spindle box; Main shaft; Transmission shaft; gear

提高孔加工的精度的方法

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。? 一、钳工孔加工实习课题训练中容易出现的问题:? 1、钻孔时孔径超出尺寸要求,一般是孔径过大;? 2、孔的表面粗糙度超出规定的技术要求;? 3、孔的垂直度超出位置公差要求;? 4、孔距(包括边心距和孔距)超出尺寸公差的要求;? 二、孔加工中出现问题的主要原因分析:? 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力;? 2、对钻削的切削速度选择不当;? 3、钻削时工件未与钻头保持垂直;?

4、未对孔距尺寸公差进行跟踪控制;? 三、提高孔加工精度的方法:? 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。? 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从

行星轮架孔系加工

33 echnique T 工 艺 行星轮减速器(见图1)是大型装载机行走驱动重要部件,具有结构紧凑,承载能力大,传动精度和效率高的特点,可以实现运动的合成与分解。由于行星轮架制造技术要求极高,严重制约其发展和国产化,是公认的技术难题。轮架(见图2)为铸造合金钢;轮盘、弧板 为球墨铸铁。几何精度和位置精度要求颇高,加工难度大。 图2 轮架结构 1.轮盘 2.轮架 3.弧板 1. 重要加工要素分析 (1)基准圆A 、电动机座孔和中部齿轮孔尺寸要求高,是行星轮架的关键要素,为确保其加工尺寸以及形位公差等要求,机床的回转精度、几何精度要求高,而且工件装夹找正要尽量减少人为误差,加工过程必须按粗加工、半精加工、精加工三步进行。 (2)该行星轮架为组合体,轮架上基准圆A 与轮盘上基准圆B 同轴度是该工件的又一关键特 征,其同轴度要求高,如果将轮架上基准圆A 与轮盘上基准圆B 分别加工到位,装配后是很难达到同轴度要求的;因此,在加工轮盘B 基准圆时应留余量0.5mm ,待装配后,再以基准圆A 找正,基准圆 A 的台阶面找平,将基准圆 B 加工到位。 (3)三组齿轮轴承孔是行星轮架的又一关键要素,尺寸精度及形位公差要求特别高。而且轮架上三个齿轮轴承定位孔与轮盘上三个相对应的齿轮 轴承定位孔的同轴度要求高,在轮架加工时,如果将该孔精加工到位,再精加工轮盘上三个轴承定位孔时,由于机床主轴Z 轴的运动误差与机床X 轴、 Y 轴的重复定位误差的累积,加工出来的孔很难同时既满足形状公差又满足与轮架上轴承孔相对应的 同轴度公差。通过分析改变加工方式:采用精加工轮架上三个轴承定位孔时,先预留0.5mm ,待装配 后,与轮盘上轴承定位孔同时进行精加工,减少加工过程中误差。 2. 误差分析 (1)机床精度对孔系位置度影响:当机床几何轴X 、Y 轴运动时,3个孔中心半径R 的实际尺寸增加或减少ΔR =±0.02m m ,在计算中,取 R =0.02mm ,假想圆心角为120°不变,则三个孔中心距相应的增量为 ΔL =2(R +ΔR )sin(θ/2)-L =2×(254+0.02)×sin(120/2)- 439.94 =0.035mm 当三个孔圆心角θ的实际角度增加或减少Δθ=±1'时,半径R =254mm ,则3个中心距相应增加量为 ΔL =2R sin(θ/2+Δθ)-L 五粮液普什模具有限公司 (四川宜宾 644007) 余正江 行星轮架孔系加工 图1 行星轮减速器总成 2 3 1 A -A

平行孔系的加工方法

平行孔系的加工方法 平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。生产中常采用以下几种方 法。 1.找正法 找正法是在通用机床上,借助辅助工具来找正要加工孔的正确位置的加工方法。这种方法加工效率低,一般只适用于单件小批生产。 根据找正方法的不同。找正法又可分为以下几种: (l) 划线找正法加工前按照零件图在毛坯上划出各孔的位置轮廓线,然后按划线一一进行加工。划线和找正时间较长,生产率低,而且加工出来的孔距精度也低,一般在±0.5mm左右。为提高划线找正的精度,往往结合试切法进行。即先按划线找正镗出一孔,再按线将主轴调至第二孔中心,试镗出一个比图样要小的孔,若不符合图样要求,则根据测量结果更新调整主轴的位置,再进行试镗、测量、调整,如此反复几次,直至达到要求的孔距尺寸。此法虽比单纯的按线找正所得到的孔距精度高,但孔距精度仍然较低,且操作的难度较大,生产效率低,适用于单件小批生产。 (2) 心轴和块规找正法镗第一排孔时将心轴插入主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,如图8-36。校正时用塞尺测定块规与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。镗第二排孔

时,分别在机床主轴和加工孔中插入心轴,采用同样的方法来校正主轴线的位置,以保证孔心距的精度。这种找正法的孔心距精度可达±0.3mm。 (3) 样板找正法用10~20mm厚的钢板制造样板,装在垂直于各孔的端面上(或固定于机床工作台上),如图8-37。样板上的孔距精度较箱体孔系的孔距精度高(一般为±0.1mm~±0.3mm),样板上的孔径较工件孔径大,以便于镗杆通过。样板上孔径尺寸精度要求不高,但要有较高的形状精度和较细的表面粗糙度。当样板准确地装到工件上后,在机床主轴上装一千分表,按样板找正机床主轴,找正后,即换上镗刀加工。此法加工孔系不易出差错,找正方便,孔距精度可达±0.05mm。这种样板成本低,仅为镗模成本的1/7~1/9,单件小批的大型箱体加工常用此法。

铰孔工艺

6. 6铰孔工艺、编程 材料:45#钢,正火处理 图6-6-1圆周均布孔加工零件 6. 6 . 1铰孔加工工艺 1 ?铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔 一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰 刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精 加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前 的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9?IT7级,表面粗糙度一般达Ra1.6?0.8呵。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在 镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6XQ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径 0.05?0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工 工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和

孔25的加工说明

7、1 问题的提出 本夹具要用于钻Φ25孔,钻Φ25孔之前我们其他孔系都还没有加工,所以定位比较困难,又因为我们的孔和其他面没有位置度要求,因此我们采用已经加工好的底面和侧面定位即可满足要求,在本道工序加工时,我们应首先考虑保证各面的各加工精度,提高生产效率,降低劳动强度。 7、2 夹具设计 1.定位基准的选择 拟定加工路线的第一步是选择定位基准。定位基准的选择必须合理,否则将直接影响所制定的零件加工工艺规程和最终加工出的零件质量。基准选择不当往往会增加工序或使工艺路线不合理,或是使夹具设计更加困难甚至达不到零件的加工精度(特别是位置精度)要求。因此我们应该根据零件图的技术要求,从保证零件的加工精度要求出发,合理选择定位基准。此零件图没有较高的技术要求,也没有较高的平行度和对称度要求,所以我们应考虑如何提高劳动效率,降低劳动强度,提高加工精度。由零件图可知,用Φ 60 圆弧一端面定位并用压板夹紧,再用两可调螺钉组成的 v 形上定位限制六个自由度。 为了提高加工效率,缩短辅助时间,决定用简单的钩型压板作为夹紧机构。 7、3 切削力及夹紧力的计算 切削刀具:高速钢麻花钻头,则 7、4 定位误差分析定位元件尺寸及公差确定。 (1) 夹具的主要定位元件为一平面和两 v 形块,面与面配合。(2)工件的工序基准为端

面和圆柱面,故端面的平面度和圆柱面的援助度对定位误差影响最大.则其定位误差为:Td=Dmax-Dmin 本工序采用一平面,两 v 形块,工件始终平面,而定位块的偏角会使工件自重带来一定的平行于夹具体底版的水平力,因此,工件在定位块正上方呦倾斜,进而使加工位置有一定转角误差。但是,由于加工是自由公差,故应当能满足定位要求。 7、5夹具设计及简要操作说明 如前所述,在设计夹具时,应该注意提高劳动生产率避免干涉。应使夹具结构简单,便于操作,降低成本。提高夹具性价比。本道工序为钻床夹具选择了压板和压紧螺钉夹紧方式。本工序为钻Φ25mm 孔,切削力大,所以选用夹紧力大一些装置就能达到本工序的要求。本夹具的最大优点就是结构紧凑,承受较大的夹紧力。

箱体类零件孔系的精加工方法

箱体类零件孔系的精加工方法 摘要:本文介绍了箱体类零件孔系精加工的一种新方法,解决了在普通卧式镗床上加工高精度同轴和垂直孔系的问题,并在生产中取得了良好效果。 关键词:孔系精加工垂直度同轴度 0 引言 箱体类零件是机械零件中的典型零件,是机械设备重要的基础件之一。箱体上轴承孔的尺寸精度和几何形状精度超差,会使轴承与箱体孔配合不好,引起振动和噪声。支承孔之间的孔距尺寸精度和相互位置精度超差,会影响装配和齿轮的啮合精度,产生噪声和振动。箱体上这样一系列的有相互位置精度要求的孔的组合,称为孔系。在普通卧式镗床上加工这些有垂直度和同轴度要求的孔系时,由于工作台回转精度较低,很难满足图纸的精度要求,我们采用了一种简单且容易操作的加工方法,解决了由回转精度低而引起的误差影响。 1 零件的分析 本文以某机械产品支承件(见图1零件示意图)为例,介绍孔系精加工时工艺方法。 1.1. 零件图纸的简要分析 图示典型的箱体类零件,结构复杂、尺寸精度要求高,并且属于单件小批量生产零件,材料为HT200铸铁。这些标出的较高精度要求的孔系成为加工中的重点和难点。需精镗加工孔系的精度主要有: 1、φ115H6孔与基准A面的平行度0.015 2、φ100H6孔与基准B(φ115H6孔轴线)的同轴度0.015 3、φ60 H6孔与基准B-C(φ115H6孔和φ100H6孔公共轴线)的垂直度0.015 4、φ50H6孔与基准D(φ60H6孔轴线)的同轴度0.015 5、各孔与相对应孔口端面及孔底面垂直度要求(图中未标出) 6、各孔及端面的表面粗糙度Ra1.6 经过对该零件图纸的分析,针对零件的批量、图纸精度要求和现有设备,我们选择在普通卧式镗床上,使用工作台进给镗削加工各孔及孔系。

铰孔加工问题产生的原因及解决措施

在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值 高等诸多问题。 问题产生的原因 1.孔径增大,误差大 铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过 高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯 曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差; 切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥 面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干 涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与 工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。 2.孔径缩小 铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰 刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未 磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不 锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合 格。 3.铰出的内孔不圆 铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小; 铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表 面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向 套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。 4.孔的内表面有明显的棱面 铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工 件表面有气孔、砂眼;主轴摆差过大。 5.内孔表面粗糙度值高 切削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀 刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太 小,局部表面未铰到;铰刀切削部分摆差超差、刃口不锋利, 表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损; 铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料 关系,不适用于零度前角或负前角铰刀。 6.铰刀的使用寿命低 铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。 7.铰出的孔位置精度超差 导向套磨损;导向套底端距工件太远;导向套长度短、精度差;主轴轴承松动。 8.铰刀刀齿崩刃 铰孔余量过大;工件材料硬度过高;切削刃摆差过大,切削负荷不均匀;铰刀主偏角太小,使切削宽度增大;铰深孔或盲孔时,切屑太多,又未及时清除;刃磨时刀齿已磨裂。 9.铰刀柄部折断 铰孔余量过大;铰锥孔时,粗精铰削余量分配及切削用量选择不合适;铰刀刀齿容屑空间小,切屑堵塞。

孔加工方法概述

孔加工方法 A.目的 B.熟悉常见孔加工工艺 C.对孔加工用刀具有大概印象 了解部分新的加工方法 D.概念 实体上的空腔称作孔。可能是圆的,方的,六角的等等。这里只讨论金属切削加工的范畴内的孔加工,即通过旋转的刀具(或工件)来获得孔的方法,所以讨论的对象局限于圆孔。 可用于孔加工的通用机床设备:车床、铣床、镗床、钻床。根据加工工件的外形,所需孔的直径,公差等级,孔深(通孔或圆孔),选择合适的设备和加工方法。 E.实体开孔 1.麻花钻

Φ20以下规格可以选择莫氏柄或者直柄,Φ20以上一般均为莫氏锥柄。 直柄可以选用钻夹头来夹持,三爪钻夹头本身可以在一定范围内调节,可以 适应不同规格的直柄钻头,但是夹持精度比较低。 装夹。

麻花钻材质有普通高速钢、钒高速钢、钴高速钢、粉末冶金高速钢、硬质合金等。高速钢类价格相对比较便宜,韧性好,可用于跳动比较大的场合。硬质合金切削速度快,效率高,但对装夹、冷却和断屑排屑要求很高,一般整体硬质合金装夹后跳动不能超过,否则钻尖容易折断,此外对于长铁屑材料,一般要求内冷,且冷却液压力在10bar以上。 钴高速钢是介于普通高速钢钻头和整体硬质合金钻头之间的一个比较好的解决方案,由于比普通钻头硬度高,更耐磨,所以刃口更耐用,不容易折断;同时与硬质合金钻头相比,又有很好的韧性,不需要保证严格的跳动。 PVD涂层也能提高高速钢钻头的切削速度和寿命,但是一旦重磨,涂层就不起作用。 由于普通钻头容易产生钻偏、钻斜的现象,所以很多时候需要用中心钻预钻引导孔。因为方便计算,所以一般选用90o锥角的中心钻。预钻的深度根据孔径计算,要求引导孔口部直径小于钻头直径,这样钻头的刃口先开始切削,而不是钻尖或外刃。 整体硬质合金的钻头不能使用预钻孔,因为整硬钻头均为自定心设计,预钻孔会导致孔质量下降甚至钻头损坏。 2.板钻

铰刀及铰孔加工

铰刀按使用方式分为手用铰刀和机用铰刀;按铰孔形状分为圆柱铰刀和圆锥铰刀,(标准锥铰刀有1:50锥度销子铰刀和莫氏锥度铰刀两种类型).铰刀的容屑槽方向,有直槽和螺旋槽.常用的材质为高速钢.硬质合金镶片. 一.手工铰孔一般注意事项:1.工件要夹正.2.铰削过程中,两手用力要平衡.3.铰刀退出时,不能反转,因铰刀有后角,铰刀反转会使切屑塞在铰刀刀齿后面和孔壁之间,将孔壁划伤;同时,铰刀易磨损.4.铰刀使用完毕,要清擦干净,涂上机油,装盒以免碰伤刃口. 二.机铰时注意铰削速度和走刀量(查金属切削手册) 三.铰削中,必须采用合理的冷却润滑液. 在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。 问题产生的原因 孔径增大,误差大 铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。 孔径缩小

铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合格。 铰出的内孔不圆 铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。 孔的内表面有明显的棱面 铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工件表面有气孔、砂眼;主轴摆差过大。 内孔表面粗糙度值高 切削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太小,局部表面未铰到;铰刀切削部分摆差超差、刃口不锋利,表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损;铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料关系,不适用于零度前角或负前角铰刀。 铰刀的使用寿命低 铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。

孔的加工及其达到的精度

孔的加工及其达到的精度 孔的加工及其达到的精度 一、钻孔 1. 工艺特点 1)钻孔是孔的粗加工方法; 2)可加工直径0.05~125mm的孔; 3)孔的尺寸精度在IT10以下; 4)孔的表面粗糙度一般只能控制在Ra12.5μm。 对于精度要求不高的孔,如螺栓的贯穿孔、油孔以及螺纹底孔,可直接采用钻孔。 二、扩孔 工艺特点 1)扩孔是孔的半精加工方法; 2)一般加工精度为IT10~IT9; 3)孔的表面粗糙度可控制在Ra6.3 ~3.2μm。 当钻削dw>30mm直径的孔时,为了减小钻削力及扭矩,提高孔的质量,一般先用(0.5~0.7)dw大小的钻头钻出底孔,再用扩孔钻进行扩孔,则可较好地保证孔的精度和控制表面粗糙度,且生产率比直接用大钻头一次钻出时还要高。 三、铰孔 铰削过程的实质

铰削过程不完全是一个切削过程,而是包括切削、刮削、挤压、熨平和摩擦等效应的一个综合作用过程。 铰削用量 1)铰削余量粗铰余量为0.10mm~0.35 mm;精铰余量为0.04mm~0.06mm。 2)切削速度和进给量铰削速度为1.5m/min ~5m/min;铰削钢件时,进给量为0.3mm/r ~2mm/r;铰削铸铁件时,进给量为0.5mm/r ~3mm/r。 工艺特点 1)铰孔是孔的精加工方法; 2)可加工精度为IT7、IT8、IT9的孔; 3)孔的表面粗糙度可控制在Ra3.2 ~0.2μm; 4)铰刀是定尺寸刀具; 5)切削液在铰削过程中起着重要的作用。 四、镗孔 工艺特点 1)镗孔可不同孔径的孔进行粗、半精和精加工; 2)加工精度可达为IT7~IT6; 3)孔的表面粗糙度可控制在Ra6.3 ~0.8μm。 4)能修正前工序造成的孔轴线的弯曲、偏斜等形状位置误差; 五、拉孔

12、孔加工--铰孔

生产实习教学教案首页

课题五孔加工 任务三铰孔 授课安排: (一)工艺及专业理论知识(90分钟) (二)学生训练、教师巡回指导(2小时) (三)结束指导(15分钟) 注:由于受钻床等设备限制,孔加工练习可与定距板外形锉削穿插进行。【实习准备】 1.铰刀、铰手、示范用工具、教具等。 2.图纸等。 【组织教学】 1.点名,检查着装、劳保用品及安全措施等。 2.进行安全文明生产教育。 3.检查学生的实习准备工作是否到位。 【课前指导】

【示范操作】 示范一:铰孔方法。【实习安排】

一、实习步骤 1.在工件上按图纸要求划出钻孔加工线。 2.按照铰孔余量,确定各预钻孔的钻头直径进行钻孔,并对孔口进行0.5×45°倒角。 3.铰各圆柱孔,并用H8塞规进行检测。 4.铰圆锥孔,用锥销试配检验,达到要求。由于锥孔具有自锁性,因此进给量不能太大,防止铰刀卡死或折断。 二、注意事项 1.铰刀是精加工刀具,要保护好刃口,避免碰撞,刀刃上如有毛刺或切屑粘附,可用油石小心磨去。 2.铰刀排屑功能差,须经常取出清屑,以免铰刀被卡住。 3.铰圆锥孔时,因锥度有自锁性,其进给量不能太大,以免铰刀卡死或折断。 【巡回指导】 1.检查学生对钻头的选择是否合理(铰孔余量)。 2.指导学生的起铰及铰孔方法,注意执行安全操作规程。 【结束指导】 1.强调铰削用量对铰孔质量的影响。 2.讲评当天实习情况:纪律方面、进度方面、存在问题 3. 完成当天实训工作页 【教学后记】 一、教学方法: 1.采用教师示范、学生模仿的直观教学和现场教学方法,让学生理解孔加工方法; 2.钻孔特别要注意安全操作,示范时以个别辅导、小组辅导为主; 3.加强巡回指导,及时发现、处理安全隐患; 二、课题小结: 1.成绩分析 班级平均:最高分:最低分:合格率: 2.课题完成情况 3.存在问题与不足

(完整版)铰孔加工方法

铰孔加工方法 1.铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9~IT7级,表面粗糙度一般达Ra1.6~0.8μm。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6×φ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径0.05~0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和位置公差有较高要求的孔,首先使用中心钻或点钻加工,然后钻孔,接着是粗镗,最后才由铰刀完成加工。另外铰孔前,孔的表面粗糙度应小于Ra3.2μm。 铰孔操作需要使用冷却液,以得到较好的表面质量并在加工中帮助排屑。切削中并不会产生大量的热,所以选用标准的冷却液即可。 2.铰刀及选用 ⑴铰刀结构 在加工中心上铰孔时,多采用通用的标准机用铰刀。通用标准铰刀,有直柄、锥柄和套式三种。直柄铰刀直径为φ6mm~φ20mm,小孔直柄铰刀直径为φ1 mm~φ6mm,锥柄铰刀直径为φ10mm~φ32mm,套式铰刀直径为φ25mm~φ80mm。分H7、H8、H9三种精度等级 如图6-6-2(a),整体式铰刀工作部分包括切削部分与校准部分。

相关主题
文本预览
相关文档 最新文档