当前位置:文档之家› 剪力墙结构分析

剪力墙结构分析

剪力墙结构分析
剪力墙结构分析

一、框架-剪力墙结构的特征

1、概念:框架-剪力墙结构,简称框剪结构,它是由框架和剪力墙组成的

结构体系。

2、适用范围:适用于需要灵活大空间的多层和高层建筑。

3、水平荷载作用下的变形特征:

4、水平荷载作用下的受力特征:

5、是一抗震性能较好的结构体系—协同工作:

在协同工作时,剪力墙单元的刚度比框架大得多,往往由剪力墙担负大部分外荷载,其次,两者分担荷载的比例上、下是变化的,由他们的变形特点可知,剪力墙下部变形将增大,框架下部变形却减小了,这使得下部剪力墙担负更多剪力,而框架担负的剪力较小。上部则相反,剪力墙变形减小,因而卸载,框架上部变形加大,担负的剪力将增大,因此框架上部下部所受剪力趋于均匀化。

6、是一种延性较好的结构体系—延性好的框架:

抗侧力刚度较大并带有边框的剪力墙和有良好耗能性能的连梁所组成具有多道抗震设防。

二、框架-剪力墙结构中的梁

1)普通框架梁C

2)剪力墙之间的连梁A

3)一端与墙肢相连,另一端与框架柱相连B

1、类型:

2、设计方法

1)普通框架梁C-按框架梁设计

2)剪力墙之间的连梁A-双肢或多肢剪力墙的连梁设计

3)一端与墙肢相连,另一端与框架柱相连B-特殊考虑

三、框架-剪力墙适用高度及高宽比

高宽比限值:P12表2.3、2.4

适用高度:P11 表2.1、2.2

注意:高宽比及高度限制的目的

四、剪力墙的布置

1、剪力墙的数量

通过多次地震中实际震害的情况表明:在钢筋混凝土结构中,剪力墙数量越多,地震震害减轻得越多。框架结构在强震中大量破坏、倒塌,而剪力墙结构震害轻微。

因此,一般来说,多设剪力墙对抗震是有利的。但是,剪力墙超过了必要的限度,是不经济的。剪力墙太多,虽然有较强的抗震能力,但由于刚度太大,周期太短,地震作用要加大,不仅使上部结构材料增加,而且带来基础设计的困难。另外,框剪结构中,框架的设计水平剪力有最低限值,剪力墙再增多,框架的材料消耗也不会再减少。所以,单从抗展的角度来说,剪力墙数量以多为好;从经济性来说,剪力墙则不宜讨多,因此,有一个剪力墙的合理数量问题。在结构设计中剪力墙的合理数量可参考表 1 决定.

2、剪力墙的布置

(1)、框架-剪力墙结构应设计成双向抗侧力体系。抗震设计时,结构

两主轴方向均应布置剪力墙。

(2)、框架-剪力墙结构中,主体结构构件之间除个别节点外不应采用铰接.

(3)、梁与柱或柱与剪力墙的中线宜重合.

(4)、框架-剪力墙结构中剪力墙的布置宜符合下列要求:

1 )剪力墙宜均匀布置在建筑物的周边附近、楼梯间、电梯间、平面形状变化及恒载较大的部位,

剪力墙间距不宜过大;

2 )平面形状凹凸较大时,宜在凸出部分的端部附近布置剪力墙;

3 )纵、横剪力墙宜组成L形、T形和[形等型式;

4 )单片剪力墙底部承担的水平剪力不宜超过结构底部总水平剪力的40 %;

5 )剪力墙宜贯通建筑物的全高,宜避免刚度突变;剪力墙开洞时,洞口宜上下对齐;

6 )楼、电梯间等竖井宜尽量与靠近的抗侧力结构结合布置;

7 )抗震设计时,剪力墙的布置宜使结构各主轴方向的侧向刚度接近。

(5)、长矩形平面或平面有一部分较长的建筑中,其剪力墙的布置尚宜符合

下列要求:

1)横向剪力墙沿长方向的间距宜满足P114表6.3的要求,当这些剪力墙之间的楼盖有较大开洞时,剪力墙的间距应适当减小;

2)纵向剪力墙不宜集中布置在房屋的两尽端

(6)、框粱-剪力墙结构可采用下列形式:

1)框架与剪力墙(单片墙、联肢墙或较小井筒)分开布置;

2)在框架结构的若干跨内嵌入剪力墙(带边框剪力墙);

3)在单片抗侧力结构内连续分别布置框架和剪力墙;

4)上述两种或三种形式的混合。

6.2框架-剪力墙结构的内力计算

一、框架-剪力墙结构的简化计算模型

1、基本假定

1)楼板在自身平面内刚度无限大。

2)水平荷载的合力通过结构的抗侧刚度中心。

3)框架与剪力墙的刚度特征值沿结构高度为常量。

在上述假定的基础上:

1)框架与剪力墙承担的剪力与其抗侧刚度成正比,而与平面位置无关。

2)可将框架等效为综合框架、剪力墙等效为综合剪力墙,放于同一平

面内分析。

3)综合框架、综合剪力墙之间用轴向刚度无限大的综合连杆连接。

框架和剪力墙是通过楼板的作用连接在一起

横向:被连接的总剪力墙包含4片墙,总框架包含5榀框架;总连杆中包含2根连梁,每梁有两端与墙相连,即2根连梁的4个刚结端对墙肢有约束弯矩作用

纵向:总剪力墙包含4片墙,总框架包含2片

框架和6根柱子(也起框架作用),总连杆中包含8根一端刚接、一端铰接的连梁,即8个刚接端对墙肢有约束弯矩作用

总结:计算简图取法——平移协同工作计算方法

把所有剪力墙合并为总剪力墙,所有框架合并为总框架,协同工作计算主要解决荷载在总剪力墙和总框架之间地分配,得到总剪力

墙和总框架的内力,并计算侧向位移。每片剪力墙的内力,按各片墙等效抗弯刚度进行再分配,各个柱子的水平剪力也将按每个柱

子的D值进行再分配。

2、总剪力墙刚度的计算

3、框架的剪切刚度计算:

框架对剪力墙的弹性反力与框架的剪切刚度(侧移刚度)有关。

用D值法:由前面所学,D值的物理意义是杆端有单位相对水平位移时所需的剪力。

框架抗推刚度:

当为任意变形时(转角)框架所受的剪力:

就是框架所受的力,也就是框架给剪力墙的弹性反力。

二、框架-剪力墙铰接体系的基本方程及内力计算

1、基本假定

1)框架与剪力墙之间没有弯矩传递,仅传递轴力

2)综合连杆沿高度方向连续,其作用以等代分布力Pf代替2、计算简图

P117 公式6.12令:

(6.12)

解:

倒三角形水平荷载

均布水平荷载

顶部集中荷载F

用弯矩系数、剪力系数、位移系数来表示:

三、框架-剪力墙刚接体系的基本方程及内力计算

1、基本假定

1)综合连梁既包括框架与剪力墙之间的联系梁,也包括墙肢之间的联系梁

2)综合连梁连续化后,除有轴向分布力Pf外,还有分布剪力引起的约束弯矩3)为简化计算,将约束弯矩全部作用在综合剪力墙上,沿竖向分布的力矩m(x) 2、计算简图

3、连梁约束弯矩的计算

连梁的种类

连杆对剪力墙墙肢的

约束弯矩m(x)的计算:

P125 公式6.31

(6.31)

5、刚接体系内力计算步骤:

(1)由体系的λ及ξ查表求得y、MW、V’W (2)计算框架广义剪力

(3)计算总框架的总剪力和连梁的总约束弯矩

(4)总剪力墙的剪力

第三节框架——剪力墙结构协同工作性能

1、:反映综合框架与综合剪力墙刚度之比的参数,称为框架-剪力墙结构刚度特征值。是影响框架-剪力墙结构的受力、变形

性能的主要参数。

系数称为框架结构的刚度特征值,即纯剪结构,

即相当于纯框架结构。

2、位移曲线:

很小时,剪力墙变形呈弯曲型,墙起主要作用;很大时,框架的作用愈来愈大,结构位移曲线逐渐变成剪切型,

当时,位移曲线介于两者之间,下部略带弯曲型,而上部略带剪切型,呈反S型,称为弯剪型变形,此时上下层间

变形较为均匀。

框剪结构变形曲线

3、荷载与剪力分布特征:

剪力墙下部剪力PW大于外荷载P,上部荷载逐渐减小,顶部有反向的集中力。框架下部作用着负荷载,上部变为正荷载,顶部有集中力。由变形协调产生的相互作用的顶部集中力是剪力墙及框架顶部剪力不为零的原因。

4、框——剪结构剪力分配:

纯框架结构中,每片框架的剪力都是下大上小,顶部为零。而在框架——剪力墙结构中,框架所受的剪力却是底部为零,下小上大。

纯框架结构的控制部位在下部楼层。而框剪结构中的框架,控制部位在结构中部( x=0.3~0.6间)甚至是顶层,两者的内力分布规律完全相反。因此,纯框架结构设计完毕后,如果又增加了一些剪力墙,就必须按框—剪结构进行内力计算,否则不能保证框架部分的上部楼层的安全。

6.4框架-剪力墙结构构件的截面设计及构造要求

1、框架-剪力墙结构、板柱-剪力墙结构中,剪力墙竖向和水平分布钢筋的配筋率,抗震设计

时均不应小于0.25%,非抗震设计时均不应小于0.20%,并应至少双排布置。各排分布钢筋

之间应设置拉筋,拉筋直径不应小于6mm,间距不应大于600mm。

2、带边框剪力墙的构造应符合下列要求:

1)带边框剪力墙的截面厚度应符合下列规定:

(1)抗震设计时,一、二级剪力墙的底部加强部位均不应小于200mm,且不应小于层高

的1/16;

(2)除第1项以外的其他情况下不应小于160mm,且不应小于层高的1/20;

2)剪力墙的水平钢筋应全部锚入边框柱内,锚固长度不应小于la(非抗震设计)或laE(抗

震设计);

3)带边框剪力墙的混凝土强度等级宜与边框柱相同;

4)与剪力墙重合的框架梁可保留,亦可做成宽度与墙厚相同的暗梁,暗梁截面高度可取墙

厚的2倍或与该片框架梁截面等高,暗梁的配筋可按构造配置且应符合一般框架梁相应抗震

等级的最小配筋要求;

5)剪力墙截面宜按工字形设计,其端部的纵向受力钢筋应配置在边框柱截面内;

6)边框柱截面宜与该榀框架其他柱的截面相同,边框柱应符合本有关框架柱构造配筋规定;剪力墙底部加强部位边框柱的箍筋宜沿全高加密;当带边框剪力墙上的洞口紧邻边框柱时,

边框柱的箍筋宜沿全高加密。

3、板柱-剪力墙结构中,沿两个主轴方向均应布置通过柱截面的板底连续钢筋,且钢筋的总截面面积应符合下式要求:

部分框支剪力墙结构

部分框支剪力墙结构 一、结构布置 1. 底部转换层的设置高度 研究得出,底部转换层位置越高,转换层上、下刚度突变越大,转换层上、下内力传递途径的突变越加剧,落地剪力墙或筒体易出现受弯裂缝,而使框支柱内力增大,转换层上部附近墙体易破坏,因此,转换层越高,对抗震越不利,因此规定9度区不应采用此结构。 “高规”第10.2.2条规定:对部分框支剪力墙结构,转换层设置高度8度时不宜超过3层,7度时不宜超过5层,6度时可适当提高。 对于底部带核心筒的转换层框架核心筒结构和外框为密柱框架的筒中筒结构,由于其转换层上、下的刚度突变不明显,转换层上、下层内力传递途径突变的程度也小于框支剪力墙结构,转换层的高度对这两种结构影响不如框支剪力墙结构严重,因此,对这两种结构的转换层位置,可比框支剪力墙结构适当提高。但当底部带转换层的筒中筒结构外筒由剪力墙组成的壁式框架时,其转换层上、下层的刚度突变及内力传递途径程度与框支剪力墙结构相近,因此,其设置高度限制同框支剪力墙结构。 2. 转换层上、下刚度突变的控制 带转换层结构应使转换层下部结构的抗侧刚度接近转换层上部邻近结构的抗侧刚度,不发生明显的刚度突变,不应使转换层下部结构成为柔软层,因底部柔软层房屋在大地震中的倒塌十分普遍。 转换层上部结构的侧向刚度与下部结构的侧向刚度比应符合下列规定: 1) 底部大空间为1层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2,γ可按下列公式计算 2 11122h h A G A G ?=γ……………………………………(1) ci i wi i A C A A += (i=1.2)……………………(2) 2)(5.2i ci i h h C = (i=1.2)……………………(3) 式中:1G 、2G ——底层和转换层上层的混凝土剪变模量 1A 、2A ——底层和转换层上层的折算抗剪截面面积,可按(2)式计算。

浅谈剪力墙结构在建筑结构设计中的应用 段力廷

浅谈剪力墙结构在建筑结构设计中的应用段力廷 发表时间:2019-07-19T16:03:33.147Z 来源:《基层建设》2019年第12期作者:段力廷 [导读] 摘要:当前建筑业发展迅速,剪力墙应用也很普遍,但是在结构设计过程中还存在一些问题,会造成一定的浪费或结构安全性不够。 身份证号:13052319861029XXXX 摘要:当前建筑业发展迅速,剪力墙应用也很普遍,但是在结构设计过程中还存在一些问题,会造成一定的浪费或结构安全性不够。据此,本文对剪力墙结构在建筑结构设计中的应用进行了分析。 关键词:剪力墙结构;结构设计;优化措施; 1剪力墙墙肢的分类、结构布置及墙肢厚度的选取问题 1.1墙肢的分类 剪力墙根据墙肢的高厚比分为一般剪力墙和短肢剪力墙。一般剪力墙是指墙肢截面高度与厚度之比大于8的剪力墙,短肢剪力墙是指墙肢截面高度与厚度之比为5—8的剪力墙。剪力墙根据墙面开洞大小的情况,还可分为整截面墙、整体小开口墙、联肢墙和壁式框架。当剪力墙的墙肢截面高度hw与厚度bw之比小于5时均称为小墙肢。其中,当hw/bw不大于3时,宜按框架柱进行截面设计,轴压比、剪压比和箍筋体积率按相应抗震等级框架柱。 1.2剪力墙的结构布置 多高层建筑应有较好的空间工作性能,剪力墙结构应双向布置形成空间结构,特别是在抗震设防区,应避免单向布置剪力墙,并宜使两个方向刚度接近。剪力墙平面上分布要力求均匀,使其刚度中心和建筑物中心尽量接近,以减小扭转效应,必要时通过改变墙肢长度和连梁高度调整刚心位置。剪力墙抗侧刚度大结构自振周期短,所受水平地震作用较大,对结构不利,可充分利用剪力墙的抗侧刚度及承载力均较大的能力,尽量减薄纵横墙体的厚度,或采用“主次结构”,加大墙体的间距,减少墙体数量,以降低结构的抗侧移刚度,减轻结构重量,减少墙体的水平地震剪力和弯矩。剪力墙的特点是平面内刚度及承载力大,而平面外刚度及承载力都相对很小。当剪力墙与平面外方向的梁连接时,会造成墙肢平面外弯矩;当梁高大于2倍墙厚时,梁端弯矩对墙平面外的安全不利,因此应采取措施,以保证剪力墙平面外的安全,对截面较小的楼面梁可设计为铰接或半刚接,减少墙肢平面外变矩。 1.3墙肢厚度的选取 高层建筑混凝土结构技术规程,规定了剪力墙的最小厚度,其主要目的是保证剪力墙出平面的刚度和稳定性能。对于住宅建筑,填充墙厚一般为200mm,相应剪力墙厚也取为200mm。住宅层高一般为2.8—3.0m,故墙厚取200mm,除底层加强区的一字形短肢剪力墙外,均能满足规范要求。对于无地下室的高层住宅,因其基础埋深一般在2.5m以上,则底层墙体高度会到5.0m以上,若按层高的1/6确定墙厚,将超过300mm,大于填充墙厚度。为避免出现此种情况,在布置剪力墙时,应结合建筑平面,尽量不用一字形剪力墙,而采用L、T、Z、十字形等截面形式,且使翼缘长度大于其厚度的3倍,这样一方面墙体抗震性能更好,另一方面墙厚也可取为剪力墙无支长度的1/16,。由于住宅建筑中剪力墙肢长一般小于3.0m,故厚度采用200mm满足构造要求。 2对剪力墙中连梁设计 2.1连梁的作用 在剪力墙结构中,连接墙肢与墙肢的梁称为连梁。在水平荷载作用下,墙肢发生弯曲变形,使连梁端部产生转角,从而使连梁产生内力,同时连梁端部的内力又反过来减小与之相连的墙肢的内力和变形,对墙肢起到一定的约束作用,改善墙肢的受力状态。因此,连梁对于剪力墙结构尤为重要,在起到连接墙肢作用的同时,还对所连接的墙肢起到一定的约束作用。 2.2对连梁设计的处理方法 在带连梁的剪力墙设计中,连梁的跨高比和截面尺寸受到许多因素的影响,设计不当经常出现连梁承载力超限或连梁截面不符合设计要求的情况,设计时可从以下方面考虑。 2.2.1对连梁的刚度进行折减 连梁由于跨高比较小,与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,连梁屈服时表现为梁端出现裂缝、刚度减小、内力重分布。因此,在开始进行结构整体计算时,就需对连梁刚度进行折减,《高规》中解释说高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大,配筋设计困难。因此可考虑在不影响其承受竖向荷载能力的前提下,允许其适当开裂(刚度降低),而把内力转移到墙体上。通常,设防裂度低时可少折减一些(6、7度时可取0.7),设防裂度高时可多折减一些(8.9度时可取0.5)。但折减系数不宜小于0.5,以保证连梁承受竖向荷载的能力。 2.2.2增加剪力墙洞口的宽度,减小连梁高度 增加剪力墙洞口的宽度,即增加连梁跨度,减小连梁高度。其目的是减小连梁刚度,同时由于减小了结构的整体刚度,也就减小了地震作用的影响,使连梁的承载力有可能不超限。 2.2.3增加剪力墙的厚度 增加剪力墙的厚度,即增加连梁的截面宽度,其结果一方面由于结构整体刚度加大,地震作用产生的内力增加;另一方面连梁的抗剪承载力与连梁宽度的增加成正比,由于剪力墙的厚度增加后,地震作用所产生的内力并不按墙厚增加的比例分配给剪力墙,而是小于这个比例,因此有可能使连梁抗剪承载力不超限。 2.2.4提高混凝土等级 提高剪力墙的混凝土等级,其弹性模量增加的比例远小于混凝土抗剪承载力提高的比例,因此也有可能使连梁的抗剪承载力不超限。 3剪力墙结构设计和计算的优化的措施 3.1剪力墙结构设计方面的优化 3.1.1在剪力墙结构中,剪力墙宜沿主轴方向或其他方向双向布置,形成空间结构,抗震设计的剪力墙结构,应避免仅单向布置剪力墙,并宜使两个受力方向的抗侧刚度接近,以使其具有较好的空间工作性能。剪力墙的抗侧刚度及承载力均较大,为充分利用剪力墙的能力,减轻结构重量,增大剪力墙结构的可利用空间,墙不宜布置太密,使其结构具有适宜的侧向刚度。

剪力墙结构特点

高层剪力墙异形柱随着人们对住宅,特别是高层住宅平面与空间的要求越来越高,原来普通框架结构的露梁露柱、普通剪力墙结构对建筑空间的严格限定与分隔已不能满足人们对住宅空间的要求。于是在原有剪力墙的基础上,吸收了框架结构的优点,逐步发展形成了能适应人们新的住宅观念的高层住宅结构型式,即“短肢剪力墙结构”和“异形柱框架结构”型式。这两种新的结构由于在很大程度上克服了普通框架与普通剪力墙结构的缺点,受到了建筑师的肯定,更得到了住户与房开商的欢迎,为此,本文对这两种新的高层住宅结构型式的受力特点、结构分析及构造要求进行阐述。 1 短肢剪力墙结构 短肢剪力墙结构是指墙肢的长度为厚度的5-8倍剪力墙结构,常用的有“T”字型、“L”型、“十”字型、“Z”字型、折线型、“一”字型。 这种结构型式的特点是: ①结合建筑平面,利用间隔墙位置来布置竖向构件,基本上不与建筑使用功能发生矛盾; ②墙的数量可多可少,肢长可长可短,主要视抗侧力的需要而定,还可通过不同的尺寸和布置来调整刚度中心的位置; ③能灵活布置,可选择的方案较多,楼盖方案简单; ④连接各墙的梁,随墙肢位置而设于间隔墙竖平面内,可隐蔽; ⑤根据建筑平面的抗侧刚度的需要,利用中心剪力墙,形成主要的抗侧力构件,较易满足刚度和强度要求。 对短肢剪力墙结构的设计计算,因其是剪力墙大开口而成,所以基本上与普通剪力墙结构分析相同,可采用三维杆-系簿壁柱空间分析方法或空间杆-墙组元分析方法,前者如建研院的TBSA、TAT,广东省建筑设计院的广厦CAD的SS模块,后者如建研院的TBSSAP、SATWE,清华大学的TUS,广东省建院的SSW 等。其中空间杆墙组元分析方法计算模型更符合实际情况,精度较高。虽然三维杆系-簿壁柱空间分析程序使用较早、应用较广,但对墙肢较长的短肢剪力墙,应该用空间杆-墙组元程序进行校核。

框架、框剪、框支的区别

框架-剪力墙结构也称框剪结构,这种结构是在框架结构中布置一定数量的剪力墙,构成灵活自由的使用空间,满足不同建筑功能的要求,同样又有足够的剪力墙,有相当大的刚度,框剪结构的受力特点,是由框架和剪力墙结构两种不同的抗侧力结构组成的新的受力形式,所以它的框架不同于纯框架结构中的框架,剪力墙在框剪结构中也不同于剪力墙结构中的剪力墙。因为,在下部楼层,剪力墙的位移较小,它拉着框架按弯曲型曲线变形,剪力墙承受大部分水平力,上部楼层则相反,剪力墙位移越来越大,有外侧的趋势,而框架则有内收的趋势,框架拉剪力墙按剪切型曲线变形,框架除了负担外荷载产生的水平力外,还额外负担了把剪力拉回来的附加水平力,剪力墙不但不承受荷载产生的水平力,还因为给框架一个附加水平力而承受负剪力,所以,上部楼层即使外荷载产生的楼层剪力很小,框架中也出现相当大的剪力。 框支剪力墙是指在框架剪力墙结构(在转换层的位置)上部布置剪力墙体系.部分剪力墙应落地. 一般多用于下部要求大开间,上部住宅、酒店且房间内不能出现柱角的综合高层房屋。 框支-剪力墙结构抗震性能差,造价高,应尽量避免采用。但它能满足现代建筑不同功能组合的需要,有时结构设计又不可避免此种结构型式,对此应采取措施积极改善其抗震性能,尽可能减少材料消耗,以降低工程造价。 剪力墙结构

目录 编辑本段 剪力墙结构(shearwall structure)是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。这种结构在高层房屋中被大量运用,所以,购房户大可不必为其专业术语所蒙蔽。 编辑本段 原理 剪力墙结构。钢筋混凝土的墙体构成的承重体系。剪力墙结构指的是竖向的钢筋凝土墙板,水平方向仍然是钢筋混凝土的大楼板搭载墙上,这样构成的一个体系,叫剪力墙结构。为什么叫剪力墙结构,其实楼越高,风荷载对它的推动越大,那么风的推动叫水平方向的推动,如房子,下面的是有约束的,上面的风一

剪力墙结构设计注意要点

剪力墙结构设计要点 整体规定 ◆A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用 A级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用 9度抗震时,应专门研究 (说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度) ◆B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100m B级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用 8度抗震时,应专门研究 ◆结构的最大高宽比: A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4 B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6 ◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响; 其他情况,应计算单向水平地震作用的扭转影响

◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0 ◆平面规则检查,需满足: 扭转:A级高度—— B级高度、混合结构高层、复杂高层—— 楼板:有效楼板宽≥该层楼板典型宽度的50% 开洞面积≤该层楼面面积的30% 无较大的楼层错层 凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30% ◆竖向规则检查,需满足: 侧向刚度: 除顶层外,局部收进的水平向尺寸≤相邻下一层的25% 楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80% 薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65% B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75% (说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和) 竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力不得由水平转换构件(梁等)向下传递 ◆水平位移验算: 多遇地震作用下的最大层间位移角≤ 罕遇地震作用下的薄弱层层间弹塑性位移角≤1/120 ◆舒适度要求: 高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的最

剪力墙类型及受力特点

剪力墙类型及受力特点 剪力墙结构是由一系列纵向、横向剪力墙及楼盖所组成的空间结构,承受竖向荷载和水平荷载,是高层建筑中常用的结构形式。由于纵、横向剪力墙在其自身平面内的刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易 满足,适宜于建造层数较多的高层建筑。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、剪力墙的分类及受力特点 为满足使用要求,剪力墙常开有门窗洞口。理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。 1.整体剪力墙 无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。整体剪力墙的受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算,应力图如图1(a) 所示,变形属弯曲型。 2.小开口整体剪力墙 当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,通过洞口的正应力分布已不再成一直线,而是在洞口两侧的部分横截面上,其正应力分布各成一直线,如图1(b)所示。这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布的应力之上叠加局部弯矩应力。但由于洞口还不很大,局部弯矩不超过水平荷载的悬臂弯矩的15%。因此,可以认为剪力墙截面变形大体上仍符合平面假定,且大部分楼层上墙肢没有反弯点。内力和变形仍按材料力学计算,然后适当修正。 在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为 小开口整体剪力墙。 3.联肢剪力墙 洞口开得比较大,截面的整体性已经破坏,横截面上正应力的分布远不是遵循沿一根直线的规律,如图1(c)所示。但墙肢的线刚度比同列两孔间所形成的连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较为显著,但仅在个别或少数层内,墙肢出现

框架剪力墙和框支剪力墙

框架剪力墙和框支剪力墙,还有纯剪力墙结构、框架结构,这些都是设计上为了表现不同的建筑形式而灵活采用的结构。一般来说,是由于抗侧向力的不同而采用不同的形式,抗侧向力由大到小一般为剪力墙结构、框支剪力墙、框架剪力墙、框架结构。从另一方面来说,即从房间分割的灵活布置方面,框架结构更灵活,而剪力墙结构不好分割房间,框架剪力墙和框支剪力墙正处于两者之间。框支剪力墙就是为了利用下部几层的空间,能够灵活分割,或者是采用大空间,而采用框架的形式,然后采用转换层将框架结构转换成剪力墙结构,以使建筑能够抵抗水平侧向力,从而突破高度的限制;而框架剪力墙从下到上都是框架和剪力墙两种形式的结合,一般是利用电梯井或楼梯井作为剪力墙,外部采用框架形式。如果再变换一下,外墙也采用剪力墙的形式,就成了筒体结构了。 框架结构:以混凝土梁柱组成的框架来作为抗侧力体系并承担竖向荷载的结构。 剪力墙结构:以混凝土剪力墙来作为抗侧力体系并承担竖向荷载的结构。 框架-剪力墙结构:以混凝土梁柱组成的框架及剪力墙共同工作来作为抗侧力体系并承担竖向荷载的结构。 框架-核心筒结构:以内部设置混凝土筒体,外围周圈设置框架,来作为抗侧力体系并承担竖向荷载的结构。(筒体其实是剪力墙的一种特殊形式) 筒中筒结构:以内部外部设置双重混凝土筒体,来作为抗侧力体系并承担竖向荷载的结构。板柱-剪力墙结构:以混凝土柱和楼板(即无梁楼盖体系)组成的框架及剪力墙共同工作来作为抗侧力体系并承担竖向荷载的结构。 部分框支剪力墙结构:剪力墙结构的一种。其中部分剪力墙不落地,通过转换梁(也叫框支梁)把荷载传至框支柱(框架柱的一种特殊形式)。 “汶川5.12”地震灾后重建之建筑物结构形式浅析 2009年9月(上)89期 犹爽黄明恨邓正清李天和 (四川大学水电学院) “汶川5.12·特大地震造成了灾区相当一部分建筑物的破坏与倒塌。为了避免重建的建筑物在再次遭受地震时不至因建筑物结构形式设计不合理等种种原因而遭受严重破坏,对重建建筑物的结构型式等方面进行相关的探究和改进是很有必要的。本文作者团队在地震之后先后到过映秀、都江堰、虹口、彭州等地震灾区进行了实地考察,通过总结分析,就灾区灾后重建建筑物结构型式的选择提出一些参考性的建议。 1、砖混结构 砖混结构是本次检测中遇到最多的结构形式,建造的时间跨度也很长,从70年代一直到21世纪,故震害的差别也较大。砖混结构很多墙体是承重结构、地震时能抗剪,所以具有很高的抗剪刚度,且水平圈梁和构造柱相连形成钢筋骨架结构,具有很好的整体性,抗震性能很好,此次地震中该结构形式的建筑物受到的破坏都不是特别严重。但此次地震中还是发现了一些因为刚度不匹配等原因而致使房屋遭受破坏的实例,应当引起注意。 “六层楼”位于映秀镇西北端,地震烈度Ⅺ度。该楼是刚刚封顶的六层砖混结构楼房,其底层是商铺,其纵向与断裂带基本垂直。该楼的地基、建材和施工都没问题,其破坏的特征是二层完全被剪坏,底层和三楼以上的部分都没明显的破坏,三楼和一楼的纵向错位为120mm 左右。 2、框剪结构 框剪结构又称为框架—剪力墙结构,它是框架结构和剪力墙结构两种体系的结合,既能为建筑平面布置提供较大的使用空间,又具有良好的抗侧力性能 体现这种结构的优越性能的典型例子是彭州市的白鹿中学勤学楼,勤学楼共有三层,每层5间教室,纵向每隔三米左右设钢筋混凝土立柱,立柱与圈梁、横梁相连,纵横墙为砖砌剪力

高层建筑工程的框支剪力墙结构设计

高层建筑工程的框支剪力墙结构设计 发表时间:2019-06-26T10:49:24.790Z 来源:《防护工程》2019年第6期作者:樊越 [导读] 本文对高层建筑工程的框支剪力墙结构进行设计上的解析,采用分析建筑实例的方式增加结构设计的论述合理性。 方舟国际设计有限公司 摘要:本文对高层建筑工程的框支剪力墙结构进行设计上的解析,采用分析建筑实例的方式增加结构设计的论述合理性。其次对框支剪力墙的设计以及措施要点进行重点论述,主要集中在各项设计指标的规格确定上。最后解析了结构上的措施落实方法与相关要求,仅供专业人士的参考与借鉴。 关键词:高层建筑;框支剪力墙;结构设计 我国经济社会的不断发展,让建筑行业的建设水平要求不断增长。因此为了让这些要求得到更为良好的满足,建筑结构上设计方法应得到更为实际的优化,或是依据建设工程的实际情况对采用的设计方式进行甄选。当前建筑行业中经常出现现象是上下空间布置上的转换,与常规的建筑结构设计存在较大不同,因此延伸出了结构转换层的设计。 1 工程概况介绍 某高层建筑工程的建筑面积大概为 25000m2,建筑高度为 93m 左右,共 30 层,其中地下 2 层,地上 28 层。地下每层 4m,地上 1~3层是作为商业建筑,高度为 4.1m,其余为住宅建筑,高度为每层 3m。为能够同时商业区和住宅区的要求,采用的是部分框支剪力墙结构,在三层的顶部使用的是梁板式转换构件来进行非落地式剪力墙内力的传递。此处的抗震设防烈度是Ⅵ度第一组,拟建Ⅱ类场地,特征周期是 0.35s,基本地震加速度 0.05g。根据相关规定的要求:框支梁抗震等级一级,框支柱的抗震等级为一级,非底部加强区剪力墙的抗震等级三级,底部加强区剪力墙抗震等级一级。其中,底部加强区的范围是地下室的地板到转换层上两层。 2 结构的概念设计以及布置 2.1确定结构相关指数规格 在此项工程中,地下室的顶板的厚度是 200mm,使用的是双层双向的配筋,对于每层每个方向的配筋率控制在 0.25%以上。因为此工程中地下室整体的刚度在相邻的上部楼层刚度的两倍以上,达到了其作为上部结构的嵌固位置的要求。另外,为加强地下室顶板的刚度,所采用的是现浇梁板的结构,转换层使用梁板式结构,厚度为 200mm,每层每方向的配筋率在 0.25%以上。在楼板里的钢筋需要锚固在墙体活着边梁里。筒体外围的楼板和落地式的剪力墙应该减少开洞数量,在比较大的洞口和楼板的边缘都应该设置边梁,此处边梁的截面应该至少为板厚的两倍,全截面的纵向的钢筋的配筋率应该在 1.0%以上。除此之外,以转换层为标准,其上下两层的楼板也都应该进行加强处理,大概板厚 150mm,且为双层双向配筋。 2.2 确定转换层的措施力度 带转换层的结构比较复杂,因此在此采用的是梁板式的转换构件,其传力途径和受力都比较明确。转换层的楼板厚度取 200mm。每层每方向的配筋率在 0.25%以上以提高达到非落地式剪力墙的内力传递的可靠性的目的和效果。相关规定显示,楼层的侧向刚度和等效侧向刚度二者共同决定了转换层的上下刚度比。其楼层的侧向刚度应比相邻的上部楼层的此项数值的 60% 还要大。此数值若是太小,那么转换层的上层的墙体比较容易被破坏;若是太大,则转换层形成薄弱层的概率就会增大很多。其等效侧向刚度最好无限的趋向于1。 3建筑工程之中设计剪力墙结构中应该关注的重点 3.1合理设计剪重比 在抗震设计比中,剪重比是一个非常重要的参数,在高层建筑框支剪力墙结构的设计中更是如此。剪重比是否合理、规范,对剪力墙来说具有十分重要的意义。如果剪力墙结构的设计周期比较长,它将会受到地面位移及加速度变化的破坏,而传统的振型分解法又难以作出准确的计算。由于地震影响系数往往波动很大而且下降较快,在长期的作用下给选值增加了难度,由此计算出来的结构效应可能不符合实际情况。因此,在建筑框支剪力墙结构设计中,必须要与各楼层水平地震力确定其最小值,满足了该最小值才能符合安全方面的要求。如果满足不了,则应进行及时的调整。 3.2刚重比设计 刚重比设计与剪力墙结构的整体稳定性息息相关,刚重比是结构刚度与重力荷载之比,也是重力二阶效的主要参数。在建筑框支剪力墙结构设计中必须要重视刚重比的设计,使其满足建筑结构设计的相关要求。如果出现设计不合格的情况,有可能会引起结构失稳甚至倒塌。此外,在计算建筑框支剪力墙结构的时候应符合相关规定,结合工程实际对每层刚重比进行设计。 4结构计算和分析 计算环节开始之前,应对框支剪力墙结构设计上的相关指数要求进行了解,然后再依据建筑的实际状况对部分框支剪力墙的机构内力进行设计,首先是将一级框的支柱地震作用产生乘以1.5倍系数,然后将一级框支柱的上部与底层柱的剪力与弯矩设计值乘1.1倍系数;与转换层相连接的一级框支柱上部与底层柱的下截面弯矩组合数值乘1.5倍系数;框支和框架的地震倾覆力矩应设置应低于总构造承受的二分之一。 为了保障楼层之间的稳定性,应在每个楼层都设置10根或是10根以上的楼层框支柱,转换层数量超过2层时,每一层的框支柱剪力应为结构基底与剪力的30%,一级落地的剪力墙底部加强区弯矩设计数值应得到专业人士的注意,应是墙底截面地震作用组合的弯矩数值的1.5倍。 此次工程的结构分析软件使用的是PMSAP2 和 SATWE,先计算建筑的整体内力位移,然后对受力情况较为复杂的转换梁进行无限元应力进行分析,校正核算配筋的使用数量。其次是进行一系列的计算与校验,让结构中的弹性时程结果得到分析,发现楼层的位移曲线平缓且没有发现突变问题,也就是说整体结构较为稳固,不存在薄弱的地方。此工程对于抗侧移的刚度方法使用正确,并且较为有效。 5加强结构抗震措施 高层建筑中的转换层构成都较为复杂,因此为了加强转换层的稳定性,针对关键部位,专业技术人士都会采用一些技术措施进行加强处理。底部的加强层与相邻的上层设约束边缘的构件等部位应得到严格的箍筋、拉筋、纵筋控制,同时让这些节点的最小配筋率可以达到

第三章 剪力墙结构体系 建筑结构选型

第三章剪力墙结构体系

第三章剪力墙结构体系 3-1剪力墙的概念和结构效能 3-2剪力墙结构体系的类型、特点和适用范围3-3剪力墙的形状和位置 3-4剪力墙的主要构造要求 3-5装配式大板结构与盒子结构简介 3-6装配式的活动板房 3-7保证楼面结构整体性的构造要求 3-8 变形缝

3.1 剪力墙的概念和结构效能 1 剪力墙结构体系的概念 剪力墙结构:利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构。 剪力墙结构较之框架结构,采用剪力墙来提供很大的抗剪强度和侧向刚度,从而提高整体结构的抗侧移刚度 ?剪力墙就是以承受水平荷载为主要目的而设置的现浇钢筋混凝土成片墙体,在钢结构建筑中也可采用钢板剪力墙

3-2 剪力墙结构体系的类型、特点和适用范围一、框架-剪力墙结构 ?框架-剪力墙结构,简称框剪结构,是在框架结构的基础上增设一定数量的横向和纵向剪力墙所构成的双重受力体系 ?在整个体系中,框架仍占主体、以承担竖向荷载为主,剪力墙承担绝大部分的水平荷载,两者协同工作、扬长避短 ?建筑结构相当于基础上的悬臂梁,剪力墙使得该悬臂梁在此位置形成深梁,加强了侧向刚度

框架-剪力墙结构变形特点 ?在水平荷载作用下,框架的变形总体来说属于剪切型,剪力墙的变形则属于弯曲型 ?楼面处刚度可视为无穷大,因此此处框架和剪力墙变形协调,框架-剪力墙的变形总体来说属于弯剪型 ?对于层间位移角,框架自上而下逐层增大、底层最大,而剪力墙相反、顶层最大,这样,框架-剪力墙结构下部是剪力墙制约框架变形,结构上部是框架制约剪力墙变形,从而整体结构各层的层间位移角较为均匀,减少了地震作用下非结构构件的破坏

框架剪力墙结构变形和剪力分配特点①变形特点

1.框架剪力墙结构变形和剪力分配特点①变形特点:在结构底部框架侧移减小,在结构上部,剪力墙侧移减小,侧移曲线呈弯剪型,层间位移沿建筑高度比较均匀.②剪力分配特点:结构顶部框架,剪力墙两者剪力都不为零且大小相对等,方向相反 2.剪力滞后及影响:倾覆力矩使框筒的一侧翼缘框架柱受拉,另一侧翼缘框架柱受压,而腹板框架柱有压有拉.翼缘框架中各柱轴力分布不均匀,角柱的轴力大于平均值,中部柱轴力小于平均值,腹板框架各住轴力也不是线性分布的现象。影响:剪力滞后越严重,框筒空间作用越小 3.抗震房屋建筑体型和结构布置原则①采用规则结构②应具有明确的计算筒图和合理的传力途径③应具备必要的刚度和承载力,抗震结构还应具有良好的弹塑性变形能力和消耗地震能量的能力④部分结构或构件破坏不应导致结构倒塌⑤设置多道抗震防线 4.延性剪力墙抗震设计①强墙弱梁②强剪弱弯③限制墙肢的轴压比和墙肢设置边缘构件④加强重点部位⑤连梁特殊措施 5.剪力墙钢筋分布:剪力墙的墙肢除在端部配置竖向抗弯钢筋外,还在端部以外配置竖向和横向分布的钢筋,竖向分布钢筋参与抵抗弯矩,横向分布钢筋抵抗剪力,计算承载力时应包括分布钢筋的作用,分布钢筋一般比较细容易压弯,为简化计算,验算压弯承载力时不考虑受压竖向分布钢筋的作用 6.连梁设计①降低连梁弯矩设计值的方法,使连梁先于墙肢屈服和实现弯曲屈服,即实现强墙弱梁②采取限制连梁名义剪应力等措施推迟连梁的剪力破坏,即实现强剪弱弯 7.连梁弯矩调幅①在小地震作用下的内力和位移计算时,通过折减连梁刚度,使连梁的弯矩剪力值减小②按连梁弹性的刚度计算内力和位移,将弯矩组合值乘以折减系数 8.实现高层延性①合理选择结构体系②合理布置结构③对构件及其连接采取各种构造措施 ④施工质量的好坏对结构延性也有影响 9.框架近似计算假定①一片框架可以抵抗在自身平面内的侧向力,而在平面外刚度很小,可忽略②楼板在其自身平面刚度无限大,楼板平面外刚度很小,可忽略③忽略梁柱轴向变形和剪切变形④杆件为等截面,以杆件轴线作为框架计算轴线⑤在竖向荷载下结构的侧移很小,因此在作竖向荷载下计算时,假定结构无侧移 10.影响柱约束刚度/反弯点位置因素①结构总层数及该层所在位置②梁柱线刚度比③荷载形式④上层梁与下层梁刚度比⑤上层层高与本层层高比⑥下层层高与本层层高比 11.钢筋混框架抗震性能①梁铰机制优于柱铰机制②弯曲破坏优于剪切破坏③大偏压破坏优于小偏压破坏④不允许核心区破坏及纵筋在核心区的锚固破坏 12.延性耗能框架设计①强柱弱梁②强剪弱弯③强核心区强锚固④局部加强,加强柱根以及角柱框支柱等受力不利部位⑤限制柱轴压比加强箍筋对混凝土约束 13.调整柱弯矩设计值因素①按强柱弱梁要求调整柱弯矩设计值②框架结构柱固端弯矩增大 ③框支柱:部分框支剪力墙结构的框支柱设计内力需要调整④角柱:按上述调整后,组合弯矩设计值再乘以不小于1.0的增大系数 14.框架内力调整:原因:在地震作用下,通常都是剪力墙先开裂,剪力墙刚度降低后框架内力会增加.方法:①框架总剪力Vf>0.2V o的楼层可不调整,按计算得到的楼层剪力进行设计②规则建筑中,若框架承受的总剪力Vf≤0.2V o则每个楼层的框架总剪力应增大,每个楼层的总剪力取下列两式中较小值Vf=0.2V o,Vf=1.5Vf,max 15.偏向抗震优于中心:偏心支撑的刚度与中心支撑框架接近,消能梁段越短其刚度越大,经过合理设计的偏心支撑框架,在大震作用下,消能梁段腹板剪切屈服,通过腹板塑性变形耗散地震能量.支撑斜杆保持弹性,不会出现受拉屈服和受压区服的现象.偏心支撑框架的柱和消能梁段以外的梁也保持弹性,消能梁段的腹板剪切屈服,具有塑性变形大,屈服后承载力继续提高,滞回耗能稳定特点,所以偏心支撑框架抗震性能优于中心支撑框架 16.剪力墙底部加强设计要求:范围:剪力墙底部加强部位的高度可取墙肢总高度的1/8和底

建筑结构分类

剪力墙结构 剪力墙结构 (shearwall structure )是用钢筋混凝土墙板来代替框架结构 中 的梁柱,能承担各类荷载引起 的内力,并能有效控制结构 的水平力,这 种用钢筋混凝土墙板来承受竖向和水平力 的结构称为剪力墙结构。这种结 构在高层房屋中被大量运用,所以,购房户大可不必为其专业术语所蒙蔽。 原理 剪力墙结构。钢筋混凝土墙体构成 的承重体系。剪力墙结构指 的是竖 向 的钢筋混凝土墙板,水平方向仍然是钢筋混凝土 的大楼板搭载墙上,这 样构成 的一个体系,叫剪力墙结构。为什么叫剪力墙结构,其实楼越高, 风荷载对它 的推动越大,那么风 的推动叫水平方向 的推动,如房子,下面 的是有约束 的,上面 的风一吹应该产生一定 的摇摆 的浮动,摇摆 的浮动限 制 的非常小,靠竖向墙板去抵抗,风吹过来,板对它有一个对顶 的力,使 得楼不产生摇摆或者是产生摇摆 的浮度特别小,在结构允许 的范围之内, 比如:风从一面来,那么板有一个相当 的力与它顶着,沿着整个竖向墙板 的高度上相当于一对 的力,正好像一种剪切,相当于用剪子剪楼而且剪楼 的力越往下剪力越大,因此,把这样 的墙板叫剪力墙板,也说明竖向 的墙 板不仅仅承重竖向 的力还应该承担水平方向 的风荷载,包括水平方向 的地 震力和风对它 的一个推动。 特点 1、剪力墙 的主要作用是承担竖向荷载(重力)、抵抗水平荷载(风、 地震等); 2、剪力墙结构中墙与楼板组成受力体系,缺点是剪力墙不能拆除或破 坏,不利于形成大空间,住户无法对室内布局自行改造; 3、短肢剪力墙结构应用越来越广泛,它采用宽度(肢厚比)较小 的剪 力墙,住户可以一定范围内改造室内布局,增加了灵活性,但这是以整个 结构受力性能 的降低为代价 的(虽然有试验和研究表明这种降低幅度较 小)。

框支剪力墙优缺点分析

某高层建筑结构优缺点分析 摘要:针对某项目的一栋框支剪力墙结构的单体建筑进行结构分析,主要通过对结构层转换和提高结构的抗扭承载力及采用空间有限元法和时程分析计算手段的描述,阐述了框支剪力墙这样一种结构的适用范围和优缺点。 关键词:框支剪力墙;刚度变化;结构转换;扭转效应 1.工程概况 我所选择的工程项目位于长沙市雨花区,由7栋高层组成,地下有两个相互连通的一层地下室。其中1号栋地上27层,地下1层,由A、B、C三个单体组成,单体之间设260mm宽的缝彼此脱开。针对其中的B座的结构进行具体的分析。 2.上部结构设计 该工程上部结构具体设计指标如下: 工程抗震设防烈度为6度,设计基本地震加速度值为0.05g,设计地震分组为第一组,场地土的类型为中硬场地土,建筑场地类别为(类,设计地震特征周期值为0.35S。B座为框支剪力墙结构。框支框架抗震等级为二级,底部加强部位剪力墙抗震等级为二级,非底部加强部位剪力墙抗震等级为三级。 B座上部剪力墙不允许落地,为实现底层用作商店或停车场而需要的大空间,因而采用底层为框架的剪力墙结构,即框支剪力墙体系。这种体系刚度比全剪力墙体系差,比框架-剪力墙墙体系好。 这种体系既有框架结构布置灵活、使用方便的特点,又有较好的抗侧能力,在实际工程中应用较为广泛。在整个体系中,框-剪同时存在,剪力墙负担大部分的水平荷载,而框架则以负担竖向荷载为主,两者共同受力、合理分工,各尽所能。 由于框支剪力墙体系结构中的局部,部分剪力墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传至框支梁、框支柱上。这样的做法通常是通过设置转换层来实现的。

2.1结构转换 由于该类型结构由于竖向构件不连续,结构竖向刚度会产生变化。转换层上部的刚度大于下部的刚度,转换层上下楼层构件内力、位移容易发生突变,转换层位置较高时,内力和位移的突变更剧烈,并易形成薄弱层。有核心筒的框支短肢剪力墙结构由于上部墙肢较短,侧向刚度较小,上部结构较柔,使转换层上、下的刚度比较普通的框支剪力墙结构更容易控制,只要适当加大落地剪力墙厚度和提高下部大空间层的混凝土强度等级,上下层刚度比就很接近1了,因而这种结构体系的抗震性能优于普通的框支。 该工程层3以上为剪力墙小户型住宅,层1、2为商业、娱乐用房,需要较大开间及空间,上部的短肢剪力墙无法落地,因此存在结构转换问题。针对工程实际情况,并考虑到造价的因素,在转换层设置转换大梁,以承托上部短肢剪力墙。由于转换梁承托着上部24层的剪力墙,受力很大,因此需要很大的截面和配筋,即需要转换层下层有较大的层高。 按照抗震规范表3.4.2-2对于侧向刚度不规则的定义,尽量使层2与层3的侧向刚度比大于70%。经与建筑专业人员协商,在转换层以下部分山墙两端及房间开间两侧设置剪力墙,加大房屋的整体刚度及抗扭刚度。同时转换层以下不设管道层,在3米标高处设置管道通廊,将设备管道由此引出室外,从而将转换层下层的层高由5.4米降到4.8米。经过计算,满足了侧向刚度规则的要求,该转换层结构方案传力途径明确,受力状况相对简单,对框支构件另采用平面有限元的程序进行单独分析,并与总体计算结果对比,以保证关键构体的抗震安全。值得注意的是,转换层大梁不是框支梁。框支梁上部承托完整的剪力墙需满足高规规定的条件,框支梁整截面受拉。转换梁和普通梁一样单面受压或受拉,在构造要求上与框支梁不同。高规对框支梁的构造有非常详细的要求,对转换梁的规定很少。结合以往的工程经验,转换梁在满足框支梁混凝土强度等级、开洞构造要求、纵向钢筋、箍筋构造要求以外,还需要满足已下两点。 (1)转换梁断面宜由剪压比控制计算确定,以避免脆性破坏和具有合适的含箍率,适宜剪压比限值在有地震作用组合时,不大于0.15。 (2)转换梁腰筋构造以梁高中点为分界,下部腰筋间距100,上部腰筋间距200,直径不小于18。

框支梁 框支柱 框支剪力墙 关于楼活荷载值

框支梁 因为建筑功能的要求,下部大空间,上部部分竖向构件不能直接连续贯通落地,而通过水平转换结构与下部竖向构件连接。当布置的转换梁支撑上部的结构为剪力墙的时候,转换梁叫框支梁。 框支柱 框支柱的由来:因为建筑功能要求,下部大空间,上部部分竖向构件不能直接连续贯通落地,而通过水平转换结构与下部竖向构件连接,当布置的转换梁支撑上部的剪力墙的时候,转换梁叫框支梁,框支柱就是支撑框支梁的. 框支剪力墙结构 框支剪力墙是指在框架剪力墙结构(在转换层的位置)上部布置剪力墙体系.部分剪力墙应落地. 一般多用于下部要求大开间,上部住宅、酒店且房间内不能出现柱角的综合高层房屋。 框支-剪力墙结构抗震性能差,造价高,应尽量避免采用。但它能满足现代建筑不同功能组合的需要,有时结构设计又不可避免此种结构型式,对此应采取措施积极改善其抗震性能,尽可能减少材料消耗,以降低工程造价。 框支结构,是指结构中较多的竖向抗侧力构件(如砼墙、柱等),因为建筑方面的要求,不能落地,或者在竖向不连续,这就需要通过转换构件来把竖向力转换为水平力并向下传递。转换构件较多的是采用转换梁,上部的柱、墙直接落于转换梁上,从而形成底部的大空间。这种结构就是框支结构,这种梁就是框支梁。框支梁两端支撑于下部的柱上,下部的柱就叫框支柱。 框支剪力墙指的是结构中的局部,部分剪力墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传至框架柱上,这样的梁就叫框支梁,柱就叫框支柱,上面的墙就叫框支剪力墙。这是一个局部的概念,因为结构中一般只有部分剪力墙会是框支剪力墙,大部分剪力墙一般都会落地的。 向阳律师回复:剪力墙结构是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。框架结构住宅是指以钢筋混凝土浇捣成承重梁柱,再用预制的加气混凝土、膨胀珍珠岩、浮石、蛭石等轻质板材隔墙分户装配而成的住宅。 当布置的转换梁支撑上部的结构为剪力墙的时候,转换梁叫框支梁,支撑框支梁的就是框支柱。一般来讲,当上部结构中有些墙(柱)不能落地时,需要用一定的结构构件来支承上部的墙(柱),如果这个构件用的是“梁”,那么这根梁就是框支梁(有些书上将支承上部柱的梁称为转换梁,道理是一样的);而支承这些转换构件的柱就是框支柱。这种结构体系就称为部分框支剪力墙结构。至于怎么算的话,和一般的梁的算法应该没有区别,就是根据荷载

剪力墙结构和框架结构的区别完整版

剪力墙结构和框架结构 的区别 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

剪力墙结构 是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。这种结构在高层房屋中被大量运用,所以,购房户大可不必为其专业术语所蒙蔽。 剪力墙结构。钢筋混凝土的墙体构成的承重体系。剪力墙结构指的是竖向的钢筋凝土墙板,水平方向仍然是钢筋混凝土的大楼板,大载墙上,这样构成的一个体系,叫剪力墙结构。为什么叫剪力墙结构,其实楼越高,风和载对它的推动越大,那么风的推动叫水平方向的推动,如房子,下面的是有约束的,上面的风一吹应该产生一定的摇摆的浮动,摇摆的浮动限制的非常小,靠竖向墙板去抵抗,风吹过来,板对它有一个对顶的力,使得楼不产生摇摆或者是产生摇摆的浮度特别小,在结构允许的范围之内,比如:风从一面来,那么板有一个相当的力与它顶着,沿着整个竖向墙板的高度上相当于一对的力,正好相当于一种剪切,相当于用剪子剪楼而且剪楼的力越往上剪力越大,因此,把这样的墙板叫剪力墙板,也说明竖向的墙板不仅仅承重竖向的力还应该承担水平方向的风和载,包括水平方向的地震力和风对它的一个推动。 框架结构? 框架结构住宅是指以钢筋混凝土浇捣成承重梁柱,再用预制的加气混凝土、膨胀珍珠岩、浮石、蛭石、陶烂等轻质板材隔墙分户装配成而的住宅。适合大规模工业化施工,效率较高,工程质量较好。 框架结构由梁柱构成,构件截面较小,因此框架结构的承载力和刚度都较低,它的受力特点类似于竖向悬臂剪切梁,楼层越高,水平位移越慢,高层框架在纵横两个方向都承受很大的水平力,这时,现浇楼面也作为梁共同工作的,装配整体式楼面的作用则不考虑,框架结构的墙体是填充墙,起围护和分隔作用,框架结构的特点是能为建筑提供灵活的使用空间,但抗震性能差。

框支剪力墙结构的弹性时程分析

框支剪力墙结构的弹性时程分析 摘要:框支剪力墙结构需要在下部商业柱网和上部小开间之间设置水平转换层 实现荷载的传递。框支剪力墙结构属于竖向不规则体系,结构的刚度的发生突变,属于较为薄弱的部位,因而采用多遇地震下的时程分析对结构设计进行复核。 关键词:框支剪力墙结构时程分析结构抗震 1 弹性时程分析法的介绍 结构的地震动响应分析在复杂高层的设计中时常用的一个方法,它通过选取 合理的地震波,利用峰值反映出地区烈度,频谱组成反映待建工程场地的特征周 期和动力特性。弹性时程分析是考察结构在多遇地震烈度下工作性能和地震反应 有效手段。它是在结构基本运动方程输入地面加速度记录进行积分求解,以求得 整个时间历程的地震反应的方法。此方法在进行时程积分时引入了一系列假设, 此外其理论基础没有任何的限制,精确考虑结构与土、基础的相互作用,处理非 线性、线性等相关问题。结构多自由度体系的动力方程可表示为: [M]{ü}+[C]{ù}+[K]{u}=_[M]{a};式中:[M],[C]和[[K]分别为结构的的质量、阻尼和 弹性刚度矩阵;{ü}、{ù}、{u}分别表示结构体系的加速度、速度、位移反应;都 是时间t的函数;{a}为地面运动加速度,都是时间t的函数。在时程分析时经常 假定阻尼矩阵[C]与质量矩阵[M]成正比,阻尼矩阵[C]与刚度矩阵[M]成正比,则阻 尼矩阵计算如下: [C]:α1[M]+ α2[K] α1=[2(λiωj-λiωi)ωiωj]/(ωi+ωj) α2=[2((λiωj-λiωi)]/(ωi+ωj)(ωj-ωi) 式中λi、λj和ωiωj分别为第i、j振型的阻尼比和频率结构计算的力学模型可 以划分为杆模型和层模型。杆模型以杆件作为计算的基本单元,按照静力计算方 法建立杆件单元刚度矩阵及总刚度矩阵,得到杆件内力和变形随时间变化的全过程,从而得出其最大变形和内力。层模型视整体结构为一根悬臂杆,各个楼层质 量集中为一个质点,其自身的刚度作用于一悬臂根杆中,称为层刚度。杆模型和 层模型作为两种不同的计算方式,各有优缺点。杆模型计算准确,可以输出最大 变形和内力,因而在弹性分析时选用,层模型的结果以层剪力、层位移、层间位 移角和薄弱层输出,在弹塑性变形时采用。 2地震波的选择 地震的产生可以看做是震源释放的地震波的作用下而引起的地表附近土层的 振动性。结构在地震作用下的反应、是否破坏与否,既与其自身的三要素(动力 特性、变形能力、弹塑性变形性质)相关,也与地震动的三个特性(幅值、频谱 特性和持时)有密切关联。 地震动输入是进行结构地震响应分析的依据,不同的地震对结构的地震反应 影响很大。地震动的幅值可以是地震动加速度、速度、位移、三者之一的峰值、 最大值和某种意义的有效值。当以地震烈度为设防标准时,往往对不同的烈度给 出相应的峰值加速度和地震系数。建筑场地的多遇烈度、罕遇烈度、设防烈度与 选取用典型地震波主振型的加速度峰值相对应,对同一结构进行不同烈度下的时 程分析,需调整加速度峰值,使选出的地震记录的最大加速度与地震烈度的统计 最大加速度相等引。

相关主题
文本预览
相关文档 最新文档