当前位置:文档之家› 2电子束法与脉冲电晕放电法处理VOC

2电子束法与脉冲电晕放电法处理VOC

2电子束法与脉冲电晕放电法处理VOC
2电子束法与脉冲电晕放电法处理VOC

电子束法和脉冲电晕放电法处理VOC

一、电子束法处理VOC

来源:《电子束辐照处理挥友性有机化合物研究进展》环保技术,2005,中国工程物理研究院环保工程研究中心毛本将等人。

通常定义挥发性有机化合物,是指在常压下,沸点低于260℃或室温时饱和蒸汽压大于71Pa的有机化合物。也有学者把常温下,沸点低于100℃或25℃时饱和蒸汽压大于133Pa的有机化合物称为VOCs。其主要成分为烃类、卤代烃、氮烃、含氧烃、硫烃及低沸点的多环芳烃(含有一个苯环以上的芳香化合物,产生于工业生产、有机物热解或不完全燃烧,其中有许多被证明具有致癌毒性,是分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等150余种化合物。)等。

大气中的VOC主要来源于汽车尾气、食品加工、石油化工的生产过程等;房屋装修中使用的木材、油漆、涂料、地板蜡等是重要的室内VOC 污染源。VOC可以引起光化学烟雾,还会造成臭氧层的损耗,有些VOC 具有致癌、致畸作用,对人体的危害相当大。美国《清洁生产法》修正案列举的189种有毒有害物质中70%属VOC类。VOC的治理已经刻不容缓。

目前有机气体污染物的净化方法主要有:直接燃烧、催化氧化、冷凝吸附法等以上方法存在控制难度大、能耗高、要求气体纯度高等缺点;现在应用较多的燃烧法适用于成分复杂、高浓度的VOC气体,具有效率高、处理彻底等优点,但是对于大规模处理低浓度VOC,其处理费用就要高很多。因为900℃的高温是开始其链反应所必需的温度,虽然在TiO2等催化剂的情况下,此温度可以降至500℃,但是由于含氯高分子化合物,如聚

氯乙烯氯代苯、五氯代苯酚等是潜在的产生二恶英类物质的先驱,VOC的不完全燃烧能产生比VOC更有害的尾气从经济环保的角度来讲焚烧方法对于大规模处理低浓度VOC废气也不适合。

电子束辐照分解VOC是新兴的比较有前途的处理低浓度VOC技术。这种方法可以在短时间内分解低温低浓度的VOC,其主要优点是低能量消耗,只有燃烧方法的0.2~l%,国外一系列的实验研究已经证明电子束处理有机废气可以达到较好的去除效果,显现出良好的技术优势而国内对于这方面的研究还鲜有报道。

电子束处理气态VOC的实验研究始于上世纪九十年代,主要集中在危害较严重的三大类挥发性有机物:氯代烃,苯系物和多环芳烃类(PAHs)。当含有VOC的烟气在电子束的照射下,气体分子将发生电离和激发。

H.Matzing的研究表明,烟气接受电子束的辐照后,有99%以上的电子能量通常被烟气中的N2、O2、水蒸气和CO2等主要成分吸收,直接产生或通过电离分解产生主要初级活性自由基OH、N、H2O、O和H等。初级活性粒子和次级电子与VOC反应,破坏CH、C=C或CC等化学键,发生一系列的链式反应。由于自由基O、OH等具有强氧化能力(特别是OH自由基,它的氧化性更强),可以使碳氢化合物分解氧化,最终生成CO2和H2O。影响电子束法处理VOC效率的因素主要括:吸收剂量、VOC初始浓度、水蒸气浓度(湿度) 等。

二、脉冲电晕放电降解气态污染物VOCs

《脉冲电晕放电降解气态污染物v0Cs的实验研究》大连理工大学,刘江江,硕士毕业论文

VOC处理方法都有哪些

对于VOC相关的知识,大家知道多少呢,尤其是关于其具体的处理方法,更是需要我们去熟悉掌握。为此,接下来我们就有必要来具体看看都有哪些方法吧。 1、吸附法 吸附法利用某些具有吸附能力的物质如活性炭、硅胶、沸石分子筛、活性氧化铝等具有多孔材料吸附有害成分而达到消除有害污染的目的。吸附法的优点在于去除效率高、能耗低、工艺成熟、脱附后溶剂可回收。 此外,吸附法其吸附效果主要取决于吸附剂性质、气相污染物种和吸附系统工艺条件(如操作温度、湿度等因素),因而吸附法的关键问题就在于对吸附剂的选择。 2、溶剂吸收法 以液体溶剂作为吸收剂,使废气中的有害成分被液体吸收,从而达到净化的目的,其吸收过程是根据有机物相似相溶原理,常采用沸点较高、蒸气压较低的柴油、煤油作为溶剂,使VOC从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的VOC,同时使溶剂得以再生。该法不仅能消除气态污染物,还能回收一些有用的物质,可用来处理气体流量一般为3000~15000 m3/h、浓

度为0、05%~0、5%(体积分数)的VOC,去除率可达到95%~98%。 3、热氧化法 热氧化法分为直接燃烧法、催化燃烧法和浓缩燃烧法。其破坏机理是氧化、热裂解和热分解,从而达到治理VOCs的目的。热破坏法适合小风量,高浓度的气体处理,对于连续排放气体的场合,使用设备简单,投资少,操作方便,占地面积少,另外可以回收利用热能,气体净化彻底。由于热破坏法是催化燃烧,所以要求的起燃温度低,大部分有机物在250~400℃即可完成反应,故辅助燃料消耗少,而且大量地减少了氮化物的产生,适用于较多场合。但热破坏法有燃烧爆炸危险,热力燃烧需消耗燃料,不能回收溶剂。而热催化氧化法中不允许废气中含有影响催化剂寿命和处理效率的尘粒和雾滴,也不允许有使催化剂中毒的物质,以防催化剂中毒,因此采用催化燃烧技术处理有机废气必须对废气作前处理。 4、生物处理法 生物处理技术应用于有机废气的净化处理是近几年才开始的,是一项新兴的技术。常见的生物处理工艺包括生物过滤法、生物滴滤法、生物洗涤法、膜生物反应器和转盘式生物过滤反应器法。 综上所述,就是关于VOC的一些具体的处理方法,希望能帮助到大家。

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

各类voc处理方案优缺点

各类voc处理方案优缺点

各类VOC治理方案及其优缺点 一、国内外研究现状和发展趋势 有机废气种类繁多,来源广泛,治理难度大,一次性投资和操作费用高,基本上无回收利用价值。成分复杂的有机废气则更加难以净化、分离和回收。 挥发性有机化合物(VOCs)作为有机化合物主要分支,是指在常温下饱和蒸气压大于70Pa、常压下沸点在260℃以内的有机化合物。从环境监测角度来讲,指以氢焰离子检测器测出的非甲烷烃类检出物的总称,包括烃类、氧烃类、含卤烃类、氮烃及硫烃类化合物。VOCs种类繁多,分布面广,根据部分国外主要环境优先污染物名录,VOCs占80%以上。日本1974-l985年环境普查表明,在检出的化学毒物中,卤代烃类最多共52种,一般烃类次之共43种,含氮有机物(主要是硝基苯和苯胺类化合物)共40种,以上三类占总检出毒物的70%。VOCs污染严重,与NOx、CnHm在阳光作用下发生光化学反应,吸收地表红外辐射引起温室效应;破坏臭氧层形成臭氧空洞,引起人体致癌和动植物中毒。 随着VOCs污染范围的不断扩大和人们对其危害的逐步认识,1979年联合国欧洲经济委员会在日内瓦召开跨国大气污染会议,重点讨论了VOCs控制问题,1991年11月通过了《VOCs跨国大气污染议定书》,要求签字国以1988年VOCs排放量为基准,到1999年每年削减30%;1990年,美国修订了清洁空气法(CAA),要求到2000年将VOCs的排放量减少70%。为此,开发VOCs替代产品,寻找VOCs控制最优技术已成为解决 VOCs污染的必由之路。 随着世界各国对VOC污染的日益重视和环保法规不断严格VOC的排放标准,其治理技术亦在逐渐改进和完善。 (一)有机废气治理技术 早在1925年欧洲就开发出固定床活性碳吸附装置,1958年日本也开始使用该项技术。这是一种非常经典、成熟的方法,可用于治理任何浓度的常温有机废气,但处理低浓度、大风量有机废气时,设备庞大,不经济。对于排气温度较高的高浓度有机废气的治理,首先由美国于1950年开发成功以天然气为燃料的直接燃烧技术。1965年日本与美国合作,将该项技术引入日本。该法需将有机废气加热到760℃,方可将有机溶剂氧化分解为无害的CO2和H2O,其缺点是燃料费高,故在欧美等天然气便宜的地区应用广泛。后来人们开发出催化燃烧技术,由于催化剂的作用可在300—350℃的低温下将有机溶剂氧化分解,因此大大降低了燃料费并且产生的NOx 量非常少。其缺点是需对废气中易引起催化剂中毒的物质和粉尘进行前处理,另外,在催化燃烧装置中使用的热交换器换热效率较低,约在50%。为了提高热效率,降低运行成本,美国于1975年开发出换热效率在90%以上的蓄热式燃烧装置。由于其运行费用的降低,因此,可用于

脉冲电流综述---PPT

综述 外场在材料加工中的应用; 1.外场;在材料加工中引入外场以改善材料的微观组织,从而改变材料性能 在材料加工中引入的外场中,主要有; 电流、磁场、重力(微重力和超重力)、超声波等, 1重力 2超声波 在金属凝固过程中引入超声振动,凝固组织从粗大的柱状晶变为均匀细等轴品,金属的宏观及微观偏析均得到改善。国外关于超声波对金属凝固组织影响的研究已有应用于生产的报道15],但是国内这一领域的研究很少。 高能超声处理合金熔体时,起主要作用的是声空化作用和声流作用。当台金熔体导入超声波以后,将产生声空化现象。在声空化泡形成长大过程中,其尺寸迅速增大,导致内部的液体蒸发。空化泡的增大和内部液体的蒸发会从周围吸收热量。这烤导致空化泡表面的金属液温度降低,造成局部过冷,因此在空化泡的附近形成晶核,使晶核的形核率增加。在空化泡崩溃过程中产生的强烈冲击波又会击碎正在长大的晶体,使之成为新的晶体质点。在声流的搅拌作用下,又使其弥散地分布于熔池熔体中。因此超声处理可显著细化金属凝固组织。 图1表明,超声波可显著细化sn-sb合金凝固组织,并使具有立方体结构的小平面相B相呈球化趋势,彻底消除比重偏析口。 图8表明,超声波可显著细化镁合金凝固组织。图9表明,超声波可使铸铁石墨组织变为粒状,这无疑将极大提高铸铁的力学性能。

为将超声波应用于钢的连铸生产中,见图2。研究表明,该方法可阻有效细化不锈钢凝固组织。 图5为翟启杰等研究结果,表明超声波可细化T10钢凝固组织。在金属凝固过程中引入超声振动,凝固组织从粗大的柱状晶变为均匀细等轴晶,金属的宏观及微观偏析均得到改善。 3磁场在材料加工 磁场,与其它外场比较,有一个最大特点,即其非接触性,由于各相磁化率及介电常数不同,相变中施加磁场,会影响各相稳定性,从而改变不同相的形貌,材料在磁场中的引入,最先从普通磁场开始,并已进行了广泛的研究,目前,侧重于都材料在强磁场作用下的研究,外加磁场包括稳恒、交变和脉冲磁场。用于细化金属凝固组织的方法主要包括外加交变磁场和脉冲磁场。外加交变磁场即电磁搅拌,大量实践证明,电磁搅拌能细化金属凝固组织闭, 磁场对金属凝固的影响 将金属熔体置于强磁场下,将改变体系的能量状态,从而改变其溶质传输和结晶过程。如果

局部放电检测方法之电检测法(介质损耗分析法)

局部放电检测方法之电检测法(介质损耗分析法) 电检测法包括脉冲电流法、无线电干扰电压法、超高频UHF 局部放电检 测技术、介质损耗分析法1.电检测法局部放电最直接的现象即引起电极间的电 荷移,动每一次局部放电都伴有一定数量的电荷通过电。介质引起试样外部电 极上的电压变化另外每,次放电过程持续时间很短在气隙中一次放电过程在10 ns 量级在油隙中一次放电时间也只有1ms 根据Maxwell 电磁理论如此短持续时间的放电脉,冲会产生高频的电磁信号向外辐射局部放电电检测法即是基 于这两个原理常见的检测方法有脉冲电流法无线电干扰电压法介质损耗分析法 等等特别是20 世纪80 年代由S. A. Boggs 博士和G. C. Stone 博士提出的超高频检测法近年来得到广泛关注。并逐渐有实用化的产品问世 2.1.1 脉冲电流法 2.介质损耗分析法DLA 局部放电对绝缘材料的破坏作用是与局部放电,消 耗的能量直接相关的因此对放电消耗功率的测量很早就引起人们的重视在大多 数绝缘结构中,随着电压的升高绝缘中气隙或气泡的数目将增加此外局部放电 的现象将导致介质的损坏从,而使得tgd 大大增加因此可以通过测量tgd 的值来测量局部放电能量从而判断绝缘材料和结构的性能情况。 介质损耗分析法特别适用于测量低气压中存在,的辉光或者亚辉光放电由于 辉光放电不产生放电脉冲信号而亚辉光放电的脉冲上升沿时间太长,普通的脉 冲电流法检测装置中难以检测出来但这种放电消耗的能量很大使得Dtgd 很大 故只有采用电桥法检测Dtgd 才能判断这种放电的状态和带。来的危害。 但是。DLA 方法只能定性的测量局部放电是否发生基本不能检测局部放电 量的大小这限制了。DLA 方法的运用目前关于用DLA 方法测局部放,电的报 道还很少。

常用的VOC处理方法和处理装置介绍

有机废气种类繁多,来源广泛,治理难度大,一次性投资和操作费用高,基本上无回收利用价值。成分复杂的有机废气则更加难以净化、分离和回收。其中挥发性有机化合物(VOCs)作为有机化合物主要分支,是指在常温下饱和蒸气压大于70Pa、常压下沸点在260℃以内的有机化合物。 下文就给大家具体介绍一下常用的VOC废气处理方法以及装置。 1、炭吸附法 炭吸附是目前最广泛使用的回收技术,其原理是利用吸附剂(粒状活性炭和活性炭纤维)的多孔结构,将废气中的VOC捕获。将含VOC的有机废气通过活性炭床,其中的VOC被吸附剂吸附,废气得到净化,而排入大气。 炭吸附技术主要用于废气中组分比较简单、有机物回收利用价值较高的情况,其废气处理设备的尺寸和费用正比于气体中VOC的数量,却相对独立于废气流量;因此,炭吸附床更倾向于稀的大气量物流,一般用于VOC浓度小于5000PPM的情况。适于喷漆、印刷和粘合剂等温度不高,湿度不大,排气量较大的场合,尤其对含卤化物的净化回收更为有效。

2、催化燃烧 催化燃烧是一种类似热氧化的方式来处理VOC的,它净化有机物是用铂、钯等贵金属催化剂及过渡金属氧化物催化剂来代替火焰,操作温度较热氧化低一半,通常为250℃-500℃。由于温度降低,允许使用标准材料来代替昂贵的特殊材料,大大地降低设备费用和操作费用。与热氧化相似,系统仍可分为间壁式和蓄热式两类热量回收方式。 间壁式催化燃烧是在催化床后设一个换热器,该换热器在降低排放气温度的同时,也预热含VOC的有机废气,其热回收达60%—75%。该类氧化器早已用于工业过程。 蓄热催化燃烧(简称为RCO)是一种新的催化技术。它具有RTO高效回收能量的特点和催化反应的低温操作及能量有效性的优点,将催化剂置于蓄热材料的顶部,来使净化达到最优,其热回收率高达95%-98%。 3、热氧化 热氧化系统在700℃-1000℃下操作,适于流量为2000-50,000m3/h,VOC浓度为100-2000PPM的情况。

脉冲电流故障测距法

https://www.doczj.com/doc/735815473.html, 脉冲电流故障测距法 脉冲电流故障测距法 本章主要分析了脉冲电流法存在的问题,并对传统脉冲电流测试回路提出了改进,解决了使用传统脉冲电流法测量电缆故障距离时存在的波形叠加、不易识别的问题。详细介绍了该方法的工作原理,以及各参数的选择。结合小波分析技术,实现对脉冲电流波形的自动处理,达到了精确、自动测距的目的,进一步推一了脉冲电流测距方法的应用。 脉冲电流法存在的问题 本节主要对传统脉冲电流测试过程中,测试电路中各个主要元件对测试波形的影响进行了深入的分析,总结了影响脉冲电流法测试波形的各种因素,得出测试电路对测试波形的作用规律。井在此基础上提出了对脉冲电流测试方法的改进。

https://www.doczj.com/doc/735815473.html, 电流波形全过程扩散开的电流波形输出 脉冲电流测试法是钊·对电缆的高阻与闪络性故障而采用的方法,对电缆的故障测距法的改进点施加高压使之击穿,同时使用仪器采集击穿产生的电流行波信号,通过电流行波信号在测量端与故障点往返一趟的时间来计一算故障趾离。图3一1为脉冲电流神闪测试时的典型波形图。 从冲闪测试过程及波形可以看出,脉冲电流法所测故障波形具有以下特点,同时也是影响脉冲电流故障测距精度的主要因素由于行波在电缆中存在传播损耗,电流波形以及线性电流藕合器的输出,随时间的增长越来越平滑,幅值也越来越小。

https://www.doczj.com/doc/735815473.html, 电缆中的电流会随着时间的增加逐渐趋近于。,故障波形的全貌表现为幅值衰减的余弦振荡,这是由于故障点击穿后电缆与电容中存在的能量消耗完毕的缘故。故障点反射脉冲有一个小的正脉冲出现,这是由于高压电容及测试导线存在的杂散电感的影响。 入射波与反射波之间易产生混叠现象,如图一所示。当在测量点附近发生故障时,由于入射波与反射波之间的重叠,使第一个反射波无从识别。严重时可淹没放电脉冲与反射脉冲的起始点,给故障定位带来误差。其中,两种因素是不可避免的,因为能量消耗是自然规律因素中杂散电感是客观存在的,但是应该可以通过适当的改进措施来利用或者消除它的影响对于因素,虽然提高采样频率可以减小叠加范围,但是无论采样频率如何提高,都不可能完全消除线路测量端存在的波形混叠问题。因此深入研究新型电缆故障检测方法具有非常重要的意义。 我们可以主要从两个方面解决脉冲电流法测距所存在的波形不易识别的问题,一是对信号分析方法的研究,二是行波测距方法原理的改进。对于信号的分析方法,利用小波分析原理,通过小波变换对信号进行分解与重构,可以准确测得发射波的到达时间,大大减少了测距误差。本文主要从行波测趾方法的原理上做了进一步研究,利用电感和电阻元件对线路中电压电流的影响,提出一种比较优化的方法。该方法所测得的波形明显易分析,提高了测距精度。

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

各类voc处理方案优缺点

各类VOC治理方案及其优缺点 一、国内外研究现状和发展趋势 有机废气种类繁多,来源广泛,治理难度大,一次性投资和操作费用高,基本上无回收利用价值。成分复杂的有机废气则更加难以净化、分离和回收。 挥发性有机化合物(VOCs)作为有机化合物主要分支,是指在常温下饱和蒸气压大于70Pa、常压下沸点在260℃以内的有机化合物。从环境监测角度来讲,指以氢焰离子检测器测出的非 甲烷烃类检出物的总称,包括烃类、氧烃类、含卤烃类、氮烃及硫烃类化合物。VOCs种类繁多,分布面广,根据部分国外主要环境优先污染物名录,VOCs占80%以上。日本1974- l985年环境普查表明,在检出的化学毒物中,卤代烃类最多共52种,一般烃类次之共43种,含氮有机物(主要是硝基苯和苯胺类化合物)共40种,以上三类占总检出毒物的70%。VOCs污染严重,与NOx、CnHm在阳光作用下发生光化学反应,吸收地表红外辐射引起温室效应;破坏臭氧层形成臭氧空洞,引起人体致癌和动植物中毒。 随着VOCs污染范围的不断扩大和人们对其危害的逐步认识,1979年联合国欧洲经济委员会在日内瓦召开跨国大气污染会议,重点讨论了VOCs控制问题,1991年11月通过了《VOCs 跨国大气污染议定书》,要求签字国以1988年VOCs排放量为基准,到1999年每年削减30%;1990年,美国修订了清洁空气法(CAA),要求到2000年将VOCs的排放量减少70%。为此,开发VOCs替代产品,寻找VOCs控制最优技术已成为解决VOCs污染的必由之路。 随着世界各国对VOC污染的日益重视和环保法规不断严格VOC的排放标准,其治理技术 亦在逐渐改进和完善。

基于B-Dot的kA级短脉冲电流测量方法

第13卷 第6期 太赫兹科学与电子信息学报Vo1.13,No.6 2015年12月 Journal of Terahertz Science and Electronic Information Technology Dec.,2015 文章编号:2095-4980(2015)06-0990-06 基于B-Dot的kA级短脉冲电流测量方法 谭榕容,冉汉政,程 刚 (中国工程物理研究院电子工程研究所,四川绵阳 621999) 摘 要:高压脉冲电流的测量方式主要是Rogowski线圈。B-Dot是一种非侵入式脉冲电流测量探针,但由于B-Dot测量模型的建立以及应用标定等过程与实际应用环境密切相关,且对待测电流 强度有严格的要求,目前还未见其在实际kA级短脉冲方面的应用研究。本文在对B-Dot的kA级 短脉冲测量方法进行理论研究的基础上,设计了微型B-Dot探针,并利用B-Dot探针对kA级短脉 冲电流进行试验。试验结果表明,B-Dot探针适用于kA级脉冲电流的测量,且与理论研究 结论一致。 关键词:Rogowski线圈;脉冲电流;B-Dot探针;非侵入式 中图分类号:TN248 文献标识码:A doi:10.11805/TKYDA201506.0990 Measurement of kA-level short pulse current based on B-Dot TAN Rongrong,RAN Hanzheng,CHENG Gang (Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China) Abstract:Taking measurement by using Rogowski coil is the main method for high voltage pulse. B-Dot is a non-invasive measurement probe of pulse current, which bears many advantages in the measurement on the discharge circuit with compact structure and strictly specified parameters compared with general Rogowski coils. Nevertheless,the modeling of B-Dot and its calibration process are closely related to the practical application environments,and there are also strict requirements on the current intensity, the researches on its applications in kA level short pulse current measurement are seldom reported. This work aims to the preliminary exploration research on application of B-Dot in kA short pulse current. Based on analyzing the principle of kA level short pulse current measurement by using B-Dot, micro B-Dot probes are designed and tested on kA-μs level pulse current. The test results accord well to the theory analysis. Key words:Rogowski coil;pulse current;B-Dot probes;non-invasive 由于高新技术和国防建设的需求,脉冲功率技术应运而生。脉冲功率技术在技术上的特征是:高脉冲功率(>106 W),短脉冲持续时间(10–10 s~10–3 s),高电压(103 V~107 V)和大电流(103 A ~107 A)。测量是脉冲功率装置调试运行、改造和提高不可或缺的重要手段[1]。因此,随着脉冲功率的发展,脉冲功率技术领域的测量技术发展显得尤为迫切,而由于脉冲功率的技术特点,对测量技术提出了很高的要求。脉冲电流是脉冲功率装置的核心参数之一。目前,脉冲电流的测量方式主要有:分流器法、Rogowski线圈法和磁光效应法。Rogowski线圈由于精确度高、频率响应特性好的特点,在目前脉冲电流测量方面应用最为广泛[2]。然而,在利用Rogowski线圈进行脉冲电流测量时,被测电流回路必须穿过线圈,而Rogowski线圈体积较大,对待测回路面积有一定的要求,不仅要求增加装置体积,而且引入较大的分布参数,这在体积和回路参数要求严格的脉冲功率装置的电流测量方面并不大适用。 B-Dot是一种结构特殊的Rogowski线圈,主要用于测量变化的磁场,也可通过测量变化的电流建立的变化磁场达到间接测量电流的目的。B-Dot结构简单,放置方式灵活,进行脉冲电流测量时,不需要将线圈穿过被测回路,与脉冲电流回路没有直接的电气连接关系,不会改变待测电流回路的设计,不会引入额外的分布参数, 收稿日期:2014-10-17;修回日期:2014-11-16 基金项目:中国工程物理研究院电子工程研究所创新基金资助项目(S2*******)

脉冲电流法测试电缆局部放电的分析方法

脉冲电流法测试电缆局部放电的分析方法 陈冠豪,王宇斌,何文 (广东电网公司东莞供电局,广东省东莞市,523000) 摘要:作为电缆局部放电的有效监测手段,脉冲电流法进行局部放电测试的经验及方法日益被深化和掌握。本文在实际测试分析层面上对如何使用脉冲电流法进行局部放电测试进行了介绍,为局部放电的分析判断提供了典型的判断方法和依据。 关键词:电缆;局部放电;脉冲电流法;波形;频谱;相位图谱;定位 The means of analysis on using pulse current method to test cable partial discharge CHEN Guanhao,WANG Yubin,HE Wen (Guangdong Grid Dongguan Power Supply Bureau, Dongguan 523000, China) Abstract:As an effective means of monitoring the cable partial discharge, the experiences and approaches of pulse current method of partial discharge test are increasingly deepening and in the hand. This paper introduces how to use the method of pulse current to do the partial discharge test in the actual test analysis level, and provides typical judgment method and basis for analyzing and judging partial discharge. Keywords: Cable; Partial Discharge; Pulse Current Method; Waveform; Frequency Spectrum; Phase Spectrum; Positioning 1 前言 电气设备检修技术的发展大致可以分为三个阶段,即故障检修、定期检修和状态检修,状态检修以可靠性为主,它是根据设备的状态而执行的预防性作业。作为电力系统运行的首要要求,供电可靠性日益凸显其重要性,因此状态检修逐步取代了以往的定期预防性检修。状态检修通过对设备关键参数的测量来识别其已有的或潜在的劣化迹象,可在设备不停运的情况下对其进行状态评估。而在线监测作为状态检修发展的大趋势,正处于起步和快速发展的重要时期。其中,电缆局部放电在线监测技术的产生更是具有革命性的意义。 电缆局部放电现象对电缆的绝缘和电能的传输产生着巨大的有害作用,局部放电的长期发展会导致电气设备产生严重的缺陷,并且由于局放的形成多在终端内部或电缆本体内部,而且过程细微发展缓慢,不易被发现,因此局部放电成为困扰着电缆安全可靠运行的一大难题。利用在线监测技术对可能存在局部放电现象的电缆进行跟踪观察,能够有效地监测局放的发展趋势,便于制定相应的解决方案对隐患进行消除。 2内部局放的产生机理 当电缆本体、接头或终端中的主绝缘存在空穴、气泡、杂质等不纯的物质时,相当于主绝缘中存在一个杂质电容,在电缆线芯通过高压交流电的情况下,会对杂质电容进行充电,当电压达到介质的击穿电压时,杂质电容间便进行一次击穿放电。如此反复地进行充电和击穿放电,产生的热量使主绝缘碳化,长期下去主绝缘便会不断

什么是脉冲电流

什么是脉冲电流 那究竟什么是脉冲?从字面上理解——脉搏的跳动所产生的冲击波。脉冲 的定义其实是这样的:电压(V)或电流(A)的波形象心电图上的脉搏跳动的 波形但现在听到的什么电源脉冲、声脉冲……又作何解释呢——脉冲的原意被延伸出来得:隔一段相同的时间发出的波等机械形式,学术上把脉冲定义为:在短时间内突变,随后又迅速返回其初始值的物理量称之为脉冲。从 脉冲的定义内我们不难看出,脉冲有间隔性的特征,因此我们可以把脉冲作为 一种信号。脉冲信号的定义由此产生:相对于连续信号在整个信号周期内短时间发生的信号,大部分信号周期内没有信号。就象人的脉搏一样。现在 一般指数字信号,它已经是一个周期内有一半时间(甚至更长时间)有信号。 计算机内的信号就是脉冲信号,又叫数字信号。 脉冲信号:瞬间突然变化,作用时间极短的电压或电流称为脉冲信号.它可以 是周期性重复的,也可以是非周期性的或单次的。脉冲反应堆pulse reactor :能在很短时间间隔内达到超临界状态,从而产生很高脉冲功率和很强中子通量,并能安全可靠地多次重复运行的反应堆。它分为热中子脉冲堆和快中子脉 冲堆两类。中国建成了一座铀氢锆脉冲反应堆,这是以铀氢锆作燃料的反应堆。它主要以氢作为慢化剂,当功率升高时,温度就会提高,氢的慢化作用减弱, 反应性立即降低,反应堆有很大的瞬发负温度系数,因而呈脉冲运行。脉冲反 应堆除了用来培训人员、从事研究工作和生产短寿命放射性同位素外,还可用 来治疗癌症、中子照相、活化分析及辐照燃料和材料。脉冲电源:用户的负载需要断续加电,即按照一定的时间规律,向负载加电一定的时间,然后 又断电一定的时间,通断一次形成一个周期。如此反复执行,便构成脉冲电源。

第4章-局部放电测量的基本原理

第4章 局部放电测量的基本原理 脉冲电流法的基本原理可用图4.1所示电路阐述:当试品C X 产生一次局部放电时,脉冲电流经过耦合电容C k 在检测阻抗两端产生一个瞬时的电压变化,即脉冲电压 U ,脉冲电压经传输、放大和显示等处理,可以测量局部放电的基本参量。脉冲电流法是对局部放电频谱中的较低频段(一般为数千赫兹至数百千赫兹或至多数兆赫兹,局部放电信号能量主要集中在该段频带内)成分进行测量,以避免无线电干扰。传统的测量仪器一般配有脉冲峰值表指示脉冲峰值,并有示波管显示脉冲大小、个数和相位。放大器增益很大,其测试灵敏度相当高,而且可以用已知电荷量的脉冲注入校正定量,从而测出放电量q 。 图4.1 脉冲电流法基本原理示意图 4.1 脉冲电流法的基本测量线路 (a)并联法测量回路 (b )串联法测量回路 (c )平衡法测量回路 图4.2 脉冲电流法的基本试验测量线路示意图 脉冲电流法的基本试验测量线路有三种,如图4.2所示,其中图4.1(a )、(b)统称为直接法测量回路,(c )称为平衡法测量回路。每种测量回路应包括以下基本部分: (1)试验电压u ; (2)检测阻抗Zd ,将局部放电产生的脉冲电流转化为脉冲电压; (3)耦合电容C k ,与试品C x 构成使脉冲电流流通回路,并具有隔离工频高电压直接加在检测阻 抗上Z d 的作用; (4)高压滤波器Zm ,一方面阻塞放电电流进入试验变压器,另一方面抑制从高压电源进入的 谐波干扰。 (5)测量及显示检测阻抗输出电压的装置M 。 e

并联法多用于试品电容较大或试品有可能被击穿的情况下,过大的工频电流不会流入检测阻抗Z d而将Zd烧损并在测试仪器上出现过电压的危险。另外,某些试品在正常测量中无法与地分开,只能采用并联法测量线路。 串联法多用于试品电容较小情况下,耦合电容具有滤波作用,能够抑制外部干扰,而且测量灵敏度随C k /C x 的增大而提高。在相同的条件下,串联法比并联法具有更高的灵敏度,这是因为高压引线的杂散电容及试验变压器入口电容(无电源滤波器时)也被利用充当耦合电容。另外,C k 可利用高压引线杂散电容来充当,线路更简单,可以避免过多的高压引线以降低电晕干扰,在220kV 及更高电压等级的产品试验中多被采用。 平衡法需要两个相似的试品,其中一个充当耦合电容。它是利用电桥平衡的原理将外来的干扰消除掉,因而抗干扰能力强。电桥平衡的条件与频率有关,只有当C x 1与Cx 2的电容量和介质损失角δtg 完全相等,才有可能完全平衡消除掉各种频率的外来干扰;否则,只能消除掉某一固定频率的干扰。在实际测量中,试品电容的变化范围很大,若要找到与每个试品有相同条件的电容是困难的。因而,往往采用两个同类试品作为电桥的两个高压臂以满足平衡条件。 4.2 检测阻抗 检测阻抗,也称为输入单元,其主要作用是取得局部放电所产生的高频脉冲电流信号,并对试验电源的工频及其谐波低频信号则予以抑制。检测阻抗是连接试品与仪器主体部分的关键部件,对仪器的频率特性与灵敏度有直接关系。检测阻抗可分为RC 型及LCR 型两大类,如图 4.3所示,图中电容C d主要由至仪器主体连接电缆的电容、放大器输人电容等组成。 4.2.1 RC 型检测阻抗 图4.3表示接有RC 型检测阻抗时的等效局部放电检测电路。当试品C x 产生局部放电时,视在放电量为q ,C x 两端会产生一个脉冲电压u ?,理想情况下u ?是一个直角脉冲波,但在实际情况中u ?具有一定的上升时间并具有以下的形式 )1(t m f e U u α--=? (4.1) 式中脉冲电压幅值)]/(/[d k d k x m C C C C C q U ++=,f α为放电衰减常数。 对于理想情况,在放电瞬间,电荷q 引起的C k 和C d 上响应的脉冲电压可认为按电容反比例分配,则C d 上的脉冲电压幅值为 图4.3 检测阻抗 图4.4 接RC 检测阻抗的测试回路

脉冲电流法-电力电缆故障测试仪

第四章脉冲电流法 §4-1 脉冲电流法与线性电流耦合器 电缆的高阻与闪络性故障由于故障点电阻较大(大于10倍的电缆波阻抗),低压脉冲在故障点没有明显的反射(反射脉冲幅度小于5%),故不能用低压脉冲反射法测距。脉冲电流法是将电缆故障点用高电压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。 图4.1 线性电流耦合器应用示意图 图4.1是冲击高压闪络测试的接线示意图,线性电流耦合器L放置在储能电容C接电缆外皮的接地引线旁。L实际上是一个空心线圈,与地线中电流产生的磁场相匝链。设时间t2与t1时电流分别为i2与i1,t1小于t2但接近t2,根据电磁感应定律求出线圈的输出电压: V=K(i2-i1)/(t2-t1)=KΔi/Δt (4.1) 其中参数K是一取决于线圈匝数、形状及与地线相对位置的常数,电流变化量: 47

Δi=i2-i1, 时间变化量: Δt=t2-t1。 式(4.1)说明,线性电流耦合器的输出电压与地线电流的变化率成正比,而不是与地线中电流本身成正比。 (a) (b) 图4.2 a.地线中的电流 b. 线性电流耦合器的输出 图4.2给出了地线中的电流与对应的线性电流耦合器的输出,可以看出线性电流耦合器在地线中电流开始上升时,输出是一个尖脉冲,而在地线中电流趋于平稳后,输出为零。因此,在故障点击穿产生的电流行波到达后,线性电流耦合器输出一脉冲信号,可以从线性电流耦合器有无脉冲信号输出,判断测量点是否有电流行波出现。 与脉冲电压法使用电阻、电容分压器进行电压取样 48

浅谈脉冲电流法局部放电测试的分析方法

浅谈使用脉冲电流法测试电缆局部放电的 分析方法 陈冠豪王宇斌何文 (广东电网公司东莞供电局,东莞,523000) 摘要:作为电缆局部放电的有效监测手段,脉冲电流法进行局部放电测试的经验及方法日益被深化和掌握。本文在实际测试分析层面上对如何使用脉冲电流法进行局部放电测试进行了介绍,为局部放电的分析判断提供了典型的判断方法和依据。 关键词:电缆;局部放电;脉冲电流法;波形;频谱;相位谱图;定位 一.前言 电气设备检修技术的发展大致可以分为三个阶段,即故障检修、定期检修、状态检修,状态检修是以可靠性为中心的检修,它是根据设备的状态而执行的预防性作业。作为电力系统运行的首要要求,供电可靠性日益凸显其重要性,因此状态检修逐步取代了以往的定期预防性检修。状态检修通过对设备关键参数的测量来识别其已有的或潜在的劣化迹象,可在设备不停运的情况下对其进行状态评估。而在线监测作为状态检修发展的大趋势,正处于起步和快速发展的重要时期。其中,电缆局部放电在线监测技术的产生更是具有革命性的意义。 电缆局部放电现象对电缆的绝缘和电能的传输产生着巨大的有害作用,局部放电的长期发展会导致电气设备产生严重的缺陷,并且由于局放的形成多在终端内部或电缆本体内部,而且过程细微发展缓慢,不易被发现,因此局部放电成为困扰着电缆安全可靠运行的一大难题。利用在线监测技术对可能存在局部放电现象的电缆进行跟踪观察,能够有效地监察局放的发展趋势,便于制定相应的解决方案对隐患进行消除。 二. 内部局放的产生机理 当电缆本体、接头或终端中的主绝缘存在空穴、气泡、杂质等不纯的物质时,相当于主绝缘中存在一个杂质电容,在电缆线芯通过高压交流电的情况下,会对杂质电容进行充电,当电压达到介质的击穿电压时,杂质电容间便进行一次击穿放电。如此反复地进行充电和击穿放电,产生的热量使主绝缘碳化,长期下去主绝缘便会不断碳化变薄,从而导致主绝缘容易被击穿,产生接地故障。

目前常用的VOC处理方法和处理装置介绍

目前常用的VOC处理方法和处理装置介绍 继SO2、NOX和氟里昂后,挥发性有机化合物(Volatile Organic Compounds,以下简称VOC)废气的污染成为世界各国关注的又一焦点。 挥发性有机化合物指的是挥发性的碳氢化合物及其衍生物,它包括烃类、芳烃类、醇类、醛类、酮类、酯类、胺类、有机酸等。其危害主要有以下几方面: (1) 在阳光照射下,NOX与大气中的VOC发生光化学反应,生成臭氧、过氧硝基酰(PAN)、醛类等光化学烟雾,造成二次污染,刺激人的眼睛和呼吸系统,危害人的身体健康。如长期生活在这种环境中(几天或几星期),会对人造成生命危险。同时会危害农作物的生长,甚至导致农作物的死亡。美国洛杉矶、我国北京市燕山区、兰州市西固区等都曾出现过光化学污染。 (2) 大多数VOC有毒、有恶臭,会使人患积累性的呼吸道疾病。在高浓度突然作用下,有时会造成急性中毒,甚至死亡。有些VOC(,4-苯并芘、氯乙烯)能致癌; (3) 大多数VOC都易燃易爆,在高浓度排放时易酿成火灾和爆炸。近年来由于VOC造成的火灾和爆炸时有发生。 (4) 部分VOC可破坏臭氧层。 所以,VOC已成为世界性的公害。发达国家不断修改法律,一再降低VOC的排放浓度。 VOC的处理技术和应用领域 目前常用的处理方法有吸收法、冷凝法、吸附法、生物法、热氧化法、等离子体法等,正在开发的有电化学法、膜分离法、光催化法、电子床加热法等。 欲选择合适的一种处理方法(或几种方法组合),必须综合考虑以下因素,最终得到最佳的处理方案: (1)废气的性质; (2)废气的浓度; (3)生产的具体情况; (4)净化要求(达到何种排放标准); (5)经济性。 目前常用的VOC处理方法和处理装置: 1、处理方法 1.吸收法 吸收法是利用某一VOC易溶于特殊的溶剂(或添加化学药剂的溶液)的特性进行处理的一种方法。最经济、最常见的溶剂是水。为了增大VOC与溶剂的吸收率和接触面积,这个过程通常都在装有填料的吸收塔中完成。 2.冷凝法 对于高浓度VOC,可以使其通过冷凝器,气态的VOC降低到沸点以下,凝结成液滴,再靠重力作用落到凝结区下部的贮罐中,从贮罐中抽出液态VOC,就可以回收再利用。这种方法对于高浓度、须回收的VOC具有较好的经济效益。 3.吸附法 吸附法是利用某些具有从气相混合物中有选择地吸附某些组分能力的多孔性固体(吸附剂)来去除VOC的一种方法。目前用以处理VOC最常用的吸附剂有活性炭和活性碳纤维,所用的装置为阀门切换式两床(或多床)吸附器。这种方法对于各种浓度、须回收的溶剂类VOC具有显著的经济效益。 4.生物法

VOC废气处理工艺汇总

目录 1.生物除臭工艺 (2) 2.低温等离子体技术 (3) 3.有机废气处理工艺 (5) 4.高能离子技术 (8) 5.吸附催化燃烧 (10) 6.RTO蓄热式氧化炉 (10) 7.光催化氧化工艺 (12) 8.化学吸收工艺 (14) 9.植物液除臭工艺 (14)

1.生物除臭工艺 BCE 系列生物除臭设备适用行业 楚天科技BCE 系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯 乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO 32— 、SO 42— 。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH 4+ 、NO 2— 、NO 3— ,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H 2S 时,专性的自养型硫氧化菌会在一定的条件下将H 2S 氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H 2S,然后H 2S 再由自养型微生物氧化成硫酸根。 H 2S+O 2+自养硫化细菌+CO 2 → 合成细胞物质+SO 42— +H 2O CH 3SH→CH 4+H 2S→CO 2+H 2O+SO 4 2— 当恶臭气体为NH 3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化: NH 3+O 2→HNO 2+H 2O HNO 2+O 2→HNO 3+H 2O 反硝化:HNO 3→HNO 2→HNO→N 2O→N 2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)

相关主题
文本预览
相关文档 最新文档