当前位置:文档之家› 论电弧炉的发展和设计

论电弧炉的发展和设计

论电弧炉的发展和设计
论电弧炉的发展和设计

论电弧炉的发展与设计

一、电弧炉简介及其发展趋势

电弧炉是炼钢电炉的一种,也是目前世界上熔炼优质钢、特殊用途钢种的主要设备。电弧炉炼钢技术已有100年的历史,第二次世界大战后电炉炼钢才有较大发展,在最近的20年,电弧炉炼钢技术发展尤为迅速,电弧炉的应用带来了炼钢技术的革命。尽管全球粗钢年产总量的增长速度很缓慢,但以废钢为主要原料的电弧炉炼钢的产量所占的比重却在逐年上升。2001年,电弧炉炼钢占世界钢产量的40%,成为最重要的炼钢方法之一。与高炉铁水炼钢相比,其竞争优势在于投资费用和运行成本。自60年代中期提出电弧炉超高功率概念以来,电弧炉建造趋于大型化、高功率化,出现现了多种新型式的电弧炉。在发展大型电弧炉的过程中,美国曾用六支电极,由两台变压器供电,电弧炉为椭圆形。

发展大容量电炉和提高电炉自动化水平,采用大功率静止式动态补偿技术,用水冷构件代替耐火材料,炉盖第四孔直接排烟与电炉周围密封罩相连接的烟尘净化系统,炉盖第五孔机械化自动化加料系统,电炉使用还原铁比例逐渐扩大,炉外废钢预热,炉内燃料助燃,强化熔池用氧,开发底气搅拌系统和泡沫渣覆盖下的冶炼工艺,从冷却水和废气中回收热能,采用全连铸,发展纤维石墨电极和采用优质高效碱性镁碳炉衬等。

电弧炉炼钢得到迅速发展的主要原因:

(1)废钢日益增多

(2)钢铁工业迅速增长。由于发电设备大型化和技术不断改进,可利煤用部分劣质粉发电,电的供应和价格比较稳定,使电炉炼钢有了比较可靠的基础。此外,电炉用废钢比高炉——转炉炼钢的能耗低。

(3)电炉趋向大型化、超高功率化,冶炼工艺化。

(4)投资少,基建速度快,基金回收速度。

(5)钢液温度、成份容易控制,品种适应性大,可冶炼多种牌号的钢,同时还能间断性生产。

电炉炼钢是世界各国生产特殊钢的主要方法,它具有一系列的优点:

(1)电炉炼钢的设备投资少、基建速度快;

(2)炼钢的热源来自于电弧,温度高达4000~6000℃,并直接作用于炉料,热效率较高,一般在65%以上。此外,还冶炼含有难熔元素W、Mo等高合金钢;

(3)电炉炼钢可去除钢中的有害气体与夹杂物,以及脱氧、去硫、合会化等,故能冶炼出高质量的特殊钢;

(4)电炉炼钢可采用冷装或热装,不受炉料的限制;

(5)适应性强,可连续生产也可间断生产。

目前,由于炼钢电炉的大型化、超高功率化及冶炼工艺的强化,并与不断发展完善的二次精炼和连铸连轧技术相配套,已形成了自动化、机械化水平高、能耗低的专业生产体系,使得它在钢的生产中更具有竞争能力。

电弧炼钢的缺点有:

(1)电弧是点热源,炉内温度分布的不均匀,熔池各部位的温差较大;

(2)炉气或水分,在电弧的作用下,能解离出大量的H、N,而使钢中的气体含量增高。

随着电弧炉技术的发展和完善以及废钢代用品的开发与应用,电弧炉流程己可使用废钢、废铁的代用品,甚至可以用相当数量的生铁进行生产操作。因此,从全球角度看,以电弧炉炼钢技术为代表的短流程钢厂生产的前景十分广阔。

二、电弧炉的设计(炉型尺寸计算及变压器功率确定)

1、电弧炉设计要求

电弧炉的整体设计是包括机械、电气、热工、冶炼、耐火材料等多门专业的工程。随着钢质量不断的提高,熔炼工艺在革新,也向炉子结构(包括耐火材料砌衬)提出了更高的要求。

正确设计电弧炉应保证炉子生产率高,电能、耐火材料和电极的单位消耗低,同时应满足多品种的钢冶炼时冶金反应的顺利进行。

为此必须考虑如下几个方面:

(1)选定大功率变压器;

(2)提高热效率和电效率,即保证少的热损失和电损失;

(3)采用高质量耐火材料砌筑炉衬;

(4)炉子各部分的形状、尺寸和结构设计合理,钢与渣接触面积适当增大,以保证熔池中冶金反应顺利进行,提高钢质量;

(5)炉子熔炼室容积应能一次装入中等堆比重的全部炉料;

(6)炉子倾动30°~45°能保证全部钢液顺利流出。

计算参数要求:

1)求出炉内钢液和熔渣的体积,一般常以炉容量的公称吨位来进行计算;

2)计算熔池直径和熔池深度;

3)确定熔炼室直径和熔炼室高度;

4)确定炉顶拱高和炉盖厚度;

5)决定各部分炉衬尺寸和炉壳直径;

6)决定变压器功率与电压级数和大小;

7)求出电极直径;

8)确定电极分布圆直径即三级心圆直径。

2、电弧炉炉型计算

电弧炉的内部可分为两大部分,在炉壁下缘以下容纳钢水和熔渣的部分称作炉缸,或部分炉缸以上的空间可容纳全炉或部分冷钢铁料并在此进行熔化,称作熔化室。

熔池最好的形状是由截头圆锥和球缺组成的锥球型内型,炉坡倾角为45°。这样的形状可保证炉料加速熔化,且易砌筑和修补方便,以及易于保持熔池形状。

2.1炉缸尺寸计算

确定钢液面的直径是由下面的经验公式计算的

钢液的体积 :V=GV 。 (1-1)

式中 G ——炉子额定容量,t

V 。——一吨钢液的体积,m3/t ,V 。=0.14m3/t 。

钢液面直径: D=2.0C 3V m (1-2)

式中 C=0.875+0.042H

D (1-3) 钢液面直径D 和钢液深度H 的比值

H D 是确定炉型尺寸的基本参数,通常H

D =3.5~5。次比值愈大则增大渣——钢接触面积,有利于钢水精炼,所以,炉

中还原精炼期较长的工艺宜取

H

D≈5,较短的精炼期取 3.5~4,此处选取H

D=5。

炉渣的质量为钢水量的7-8%,体积可取钢液的体积的10-15%,由此即可计

算渣层厚度。炉门坎平面应高于渣液面20-40mm,炉缸与炉壁连接面应高于炉门坎面30-70mm,减轻炉渣对炉坡连接缝处的侵蚀。所以炉缸上缘直径(或熔化室

直径)D

B

为:

D

B

=D+0.1~0.2 (1-4)

球缺弦长 d=D-2*(H-h

1

)(1-5)为更清楚的表述设计过程,下面以公称容量40吨的电弧炉设计为例进行示范设计计算:

根据式(1-1)到(1-5)可求出40吨电弧炉

钢液面直径 D=3.8535m≈3850mm

钢液深度 H=0.7707m≈770mm

熔化室直径(下部) D

B

=4.0035m≈4000mm

球缺高度 h

1

=154.14mm

球缺弦长 d=2621mm

渣层厚度 75mm

2.2熔化池尺寸

1、炉壁高度

熔化室的高度即为炉壁的高度,可按下表所列范围选取。

由于电炉容量为40吨,所以选取炉壁高度:

H 1=0.40D

B

(1-6)

则H

1

=1.6014m≈1600mm

熔化室的容积加上炉缸的容积应能容纳一炉所需废钢铁料,在合理的配料比

其中重型、中型废钢占有较大比例时,按上表所定熔化室容积是合适的。但使用轻型废钢较多时,必须二次或三次装料才能完成,势必加长熔化时间,增加熔化电耗。

2、熔化室上部直径

采用耐火材料炉壁,特别是散装料与粘结剂打结炉壁时,一般用大块打结砖,内壁作成向外倾斜,这样,炉壁上部的厚度减薄,耐火材料消耗减少,炉壁稳定且易于修补,同时使熔化室容积增大,可多装比重轻的炉料。

将炉壁做成倾斜式的,倾角?≈6°。从而可得熔化室上部直径;

D 1=D B +2H 1tan ? (1-7)

则D 1=4.3401m ≈4340mm

2.3炉顶

1、炉顶拱高h 3

炉顶拱高h 3与熔化室直径D 1的关系:

13D h =7

1~91(因炉顶砖材质不同而异) 电炉炉顶用砖多为高铝质专用型砖,

则取h 3=91D 1=9

4340≈482 mm (1-8) 2、炉顶厚度δR 是按耐火材料的热阻计算和实际经验决定的,推荐如下:

对20t 以下的炉子 δR =230mm

对20t 及20吨以上的炉子 δR =300mm

对40吨以上的炉子 δR =350mm

砌炉顶时,砖缝小于2mm ,砖与砖高低凹凸差小于5mm ,以“人字形”砌法最为普遍。

所以这里采用炉顶厚度δR =300mm 。

2.4炉壳直径和炉衬厚度

1、炉壁

炉壁厚度是指D ,平面上的厚度,即炉壁的最大厚度。该厚度通常可按耐火材料的热阻计算而定。计算所依据的条件是炉子在操作末期炉壳被加热的温度不

得超过1500~200°C,以免炉壳变形。计算指出,炉衬厚度对热损失的影响只在一定范围内是显著的。

在用砖砌筑炉壁时必须考虑标准砖尺寸。通常,对于10~40t的炉子,炉衬耐火砖层厚度为345mm,绝热层厚度为75mm。

对于所设计的炉子,耐火砖层厚度取为345mm,绝热层厚度取为75mm,于是可求出炉壳内经为:

D h1==D

B

+2δ

h1

=4003.5+2*(345+75)=4840mm

炉壳钢板厚度:

δ

h =

200

1

D

h1

=

200

4840

=24.2≈25mm

则炉壳外径为:

D h2=D

h1

+2δ

h

=4840+2*25=4890mm

2、炉底

(1)对炉底结构的要求

能耐温度的急剧变化;具有高温度下抗冲击的性能和抵抗炉渣冲刷的作用;有足够的热阻,使熔池内上下温度比较均匀。为满足以上的要求,炉底应由砌砖层和打结层组成,砌砖层下部要有较低的导热性。

(2)炉底各层的厚度

炉底的总厚度应由热量计算来确定,近似等于熔池深度。可采用下表推荐的数据。

应减薄10~15%。

2.5加料门及出钢口的尺寸

1、加料门尺寸

中小型电炉只有一个加料门和一个出钢口,它们处于相对的位置。大于80t 的炉子最好装两个加料门,有正门(对出钢口)和侧门,一般正门和侧门成90

度布置。

加料门尺寸应便于观察炉况、修补炉底和炉坡,应能使加料机的料斗自由地伸入炉内面碰不到炉门柱和炉门拱的衬砖,应能顺利地取出破断的电极,同时应能方便吹氧。

加料门宽度近似等于熔炼室直径的0.3倍,对于炉顶装料的炉子可以将炉门宽度减小为熔炼室直径的0.1倍。工作台至炉门距离一般为700mm 。有的资料介绍,炉门宽B=(0.2~0.3)D B=,炉门高h=(0.75~0.85)B,可作参考。

对所设计的炉子设一个加料门,其尺寸为:

炉门宽度 4000*0.25=1000mm

炉门高度 1000*0.8 =800mm

2、出钢口,出钢槽

炉子的出钢口是一个圆形洞孔或修砌成方形(或长方形),直径为120~150mm (有的资料介绍,直径150~200mm )。出钢槽采用角钢或棉板作成,断面为槽形,固定在炉壳上,且上倾10°~12°。槽内用高铝砖或用沥青浸煮过粘土砖砌成,目前大多数采用预制整块的流钢槽砖,衬质有用高铝砖、铝镁质、高温水泥质捣打成型。在保证出钢到包中的情况下出钢槽应短一些好,通常为1~2m ,最长不超过2.5m 。

3、炉子的变压器功率及电极参数确定

3.1 炉子的变压器功率

在电弧炉的整个熔炼过程中,各个阶段所需要的能量不同,应根据炉内的温度情况,即热负荷的程度,以及熔炼操作对电能的要求来供给。

确定变压器功率,应考虑两个方面:每日的生产率最大,单位炉料电能消耗应最小。目前通常是以每1000KVA 变压器功率每昼夜的合格产量定为炉子的生产率标准。下面是对已知装入量的电炉根据熔化时间要求来计算所需供电功率,即变压器容容量: P=N

t qG m cos (2-1) 式中 P ————炉用变压器额定容量,KVA ;

q ————熔化每吨废钢料及熔化相应的渣料并升温所需要的电

量,KWh/t, q ≈410kWh/t ;

G ————电炉装入量,t ;

t m ________预期熔化时间,h ;当决定变压器功率时,熔化期时间

应采取 1~1.5h 。较小的数值适用于小容量电炉。

cos φ————熔化期平均功率因数,一般功率电炉取0.82~0.85,

超高功率电炉取0.70;

η————变压器有功功率的热效率,η=0.75~0.80;

N ————熔化期变压器功率平均利用系数,N=1.0~1.2。 则对于所设计的炉子,所需变压器的功率为: P=1

.1*8.0*85.0*140*410=21925KVA 可选用25000KVA 变压器

3.2电压级数

为了熔炼的正常进行,应在熔炼的各个时期使用不同的电力及不同长度的电弧,以满足工艺的要求。在功率一定时,工作电压提高可以减小电流,因而可提高ηe l 及Cos ψ。

选择最高一级二次电压,有如下经验公式:

对碱性电炉 U=15·P r a t 1/3;

对酸性电炉 U=70+15·P r a t 1/3

熔炼过程还原期用较低级的二次电压,一般不高于120~180V ,因电压高则电弧长,从而造成炉顶炉墙上热负荷加大,对炉衬寿命和钢的质量有不利影响。

电压级数决定与最高一级电压和各个冶炼期对炉子供给电能的不同要求,一般为:

最高级电压(V ) 200~250 250~300 320~400 >400 二次电压级数 2~4 4~6 6~8 8~18 电压级数的一半用高压绕组三角形联接获得,另一半用星形联接获得。

对40t 炉子,其最高级工作电压为:

U=15·250001/3=438V

采用8级电压,中间各级电压为:

三角形联接

1级438V

2级(438×0.85)372V

3级(372×0.85)316V

4级(316×0.85)268V

星形联接

5级(438/31/2)252V

6级(372/31/2)214V

7级(316/31/2)182V

8级(268/31/2)154V

3.3电极直径

电弧炉多半采用直径600mm以下、长2500mm以下的圆形截面石墨电极。石墨电极是用石油焦或沥青焦和煤焦油制成的。每根电极之间采用石墨端头联接,以保证接合处紧密。每相电极一般由2-3根组成然后把它安装到炉上。

电极具有很大的比电阻,当电流流经电极时发热,此时约有8%的电能损失。一般采用大直径的电极,以降低电极上的电流密度,从而减少电能损失。但当电极直径增大时,电极表面积增大,又会散失更多的热量。因此电极直径应有合适的值,以保证电极上的电流密度在一定范围内。另外为减少每吨钢的电极消耗,露出炉顶的部分对石墨电极其温度不允许超过500℃,而对碳素电极则不允许超过400℃。

电极直径可按如下公式决定:

d

e d

=[(0.406·I2ρe d)/K e d]1/3 cm

式中:I为电极上的电流密度,A;

ρe d为石墨电极500℃时的电阻系数,Ω·cm。即ρe d=10Ω·mm2/m;

K

e d 为系数对石墨电极K

e d

=2.1W/cm3。

对变压器功率为25000KVA,二次电压为438V的条件下,电流密度为:

I=(103P

r a t

)/(31/2U)=(1000×25000)/(31/2×438)=32953A

则电极直径为:

d

e d

=[(0.406×329532×10)/(2.1×104)]1/3≈500mm 于是,可以校核此电极电流密度为:

32953/[(π/4)×54.02]=14.3A/cm3

石墨电极的电流密度允许值,依直径不同而有所变化:

电流直径,mm 100 200 300 400 500 600

电流密度,A/cm2 28 20 17 15 14 12

上述校核的电流密度显然是在允许范围内,因此可行。

3.4电极分布

电弧炉是以三个电极圆心构成的圆的直径D

P

来表示电极在炉内的分布。比

值D

P /D

B

决定电极在炉中取得位置,同时也决定炉内热量的分布。

考虑到炉壁热负荷的均匀和电极夹持器的布置。电极分布圆直径与D

B

有如

下关系:

D P /D

B

≤0.25~0.35

则D

P==0.3D

B

=0.3*4000=1200mm

三、电弧炉耐火材料的损毁机理及选择

炼钢电炉系由炉顶、炉墙和炉底等部分组成的。过去一般采硅砖砌筑,现在普遍使用高铝砖、碱性砖和耐火浇注料或耐火捣打料,也有采用水冷炉衬的

电炉炼钢主要是使用电弧辐射加热,有时用重油或吹氧加速熔炼,以降低电耗,提高产量。电炉炉内温度高,气氛变化大,冶炼周期短,同时进炉料一般为冷态的。因此,电炉炉衬经常处于高温、熔渣侵蚀和急冷急热的状态下,工作条件是苛刻的。电炉炉衬因部位不同,采用的耐火材料及其损毁机理也是有差异的。

电炉炉顶(即炉盖)是带有电极孔和排烟孔的球面形结构外环部分称为主炉顶,中间部分叫作小炉顶。炉顶能吊起成旋转,以便装炉料

主炉顶的损毁主要是受高温和熔渣飞溅物的作用造成的。当采用硅砖炉顶进行强化冶炼时,飞溅物中的CaO、SiO2和氧化铁等氧化物

与其反应,形成低熔点物质而发生熔流,损毁严重。为此,改用抗熔蚀性好的高铝砖和镁铬砖等材料作炉顶。对于镁铬砖来说,受到高温和飞溅物的作用,产生熔流的现象较少,只是在工作面上形成变质层而导致热剥落。同时,该砖易产生体积膨胀,如结构上不采取相应的措施,也会降低使用寿命。

小炉顶衬体的损毁除上述情况外,还受电极弧的高温辐射作用,以及留设电极孔而带来的结构上的不利影响。另外,炉顶排烟孔除受高温和飞溅物的作用外,还受高速气流和炉尘的冲刷磨损作用。上述两个部位也是炉顶的薄弱环节之一。

炉墙按使用条件不同可分为一般炉墙、渣线区和热点部位,其损毁的共同因素是承受高温、熔渣和钢液的侵蚀,以及装废钢时的机械磨损。所谓热点就是炉壁距离电极弧辐射的最近点。该部位炉壁除受上述因素作用外,还要承受电极弧高温的直接辐射,有时温度可接近2000℃,致使炉衬损毁速度增大,特别是超高功率电炉冶炼操作时,热点部位炉壁的损毁尤为厉害。

炉底和炉坡共同构成了熔池,其衬体损毁主要是钢水和熔渣的侵蚀、废钢料的机械冲击等。

另外,电炉冶炼钢种、操作方法、炉子设计与施工等因素,也对炉衬寿命有较大的影响。

2、炉顶用耐火材料

电炉炉顶内衬是整个炉体的薄弱环节,其材质的选择、砌筑和使用十分重要。所谓电炉炉龄就是指电炉炉顶衬体的使用寿命。

硅砖是电炉炉顶的传统耐火材料。30吨普通电炉硅砖炉顶的

使用寿命为70-80炉次,100吨普通电炉炉龄为25-35炉次。

随着现代超高功率电炉的发展,炉顶衬体工作面的温度可超过1700~1800℃,使用条件苛刻,炉衬损毁加剧,特别是小炉顶区域尤甚。在这种情况下,电炉炉顶普遍采用综合炉衬,获得了较好的使用效果。

综合炉衬:主炉顶和小炉顶均用铁皮不烧镁铬砖,易损部位炉衬加厚80mm。电极孔周围和排烟孔两种砖接茬处则用高铝质耐火捣打

料捣制。排烟孔周围因采取强化除尘措施,磨损较重,故用高温烧成直接结合镁铬砖砌筑。该砖性能如下:体积密度为3.04克/立方厘米,显气孔率为15.4%,耐压强度为784公斤/平方厘米,1400℃高温抗折强度为129公斤/平方厘米。

化学成分:MgO83.2%,Cr2O37.3%,Fe2O3 2.2%, Al2O36.2%,CaO0.2%,SiO20.7%。

目前,电炉经常采用超高功率强化冶炼,有时还喷油或吹氧进行操作,因此熔炼温度高,周期短,急冷急热频繁,加剧了炉衬的损毁速度。为此,曾向硅砖中掺加少量的氧化铬或用焦油进行浸渍,以延缓硅砖炉顶的熔损,但始终未能彻底解决问题。同时,硅砖与飞溅物作用产生熔流,不仅加速了本身的损毁,而且还降低了熔渣碱度,致使炉墙破坏严重,也影响精炼效果。在这种情况下,现在的电炉护顶主要采用高铝砖、碱性砖和相应的耐火浇注料或耐火捣打料作衬体,使用效果较好。

电炉炉墙一般采用碱性砖砌筑。通常采用不烧镁铬砖、直接结合或再结合镁铬砖、电熔镁铬砖、浸渍烧成镁砖、镁碳砖或碳砖等,砌筑成综合炉墙,使用效果较好;除此之外,也可广泛使用方镁石砖,或用焦油结合白云石砖或沥青浸渍烧成白云石砖。

普通电炉炉墙主要采用镁砖、白云石砖和方镁石砖砌筑,生产中损毁较少,使用寿命较长,基木上不影响生产;超高功率或冶炼特殊钢的电炉炉墙,则用镁铬砖和优质镁砖砌筑,使用效果较好电炉炉墙渣线区和热点部位是整个炉墙的薄弱环节,主要采用高级碱性砖及镁碳砖,或者采用水冷炉壁。

最近十年来,在电炉炉墙渣线区和热点部位广泛采用镁碳砖砌筑,使用寿命成倍的提高,显示了该砖的耐高温和抗渣蚀两大优点。

目前,在电炉炉墙上除采用镁碳砖以提高寿命外,还可采用水冷炉壁或进行热喷补,使炉墙损毁趋于均衡,延长使用寿命。

电炉用水冷躺或水冷套系采用铸钢件或钢板制作的。在使用时,水冷箱或水冷套的内表而喷涂一层耐火喷涂料,以便挂渣形成保护层。该种炉墙使用寿命为300-400炉次,其寿命主要取决于渣线区未

冷却炉墙的损毁程度,耐火材料单耗能降低50-90%;另一办法是在水冷系统内侧砌层镁碳砖以保护水冷件,这种炉墙在无中修的情况下,能使用400炉次以上。

电炉用耐火喷涂料一般用磷酸盐作结合剂,使用效果较好。同时,镁质耐火喷涂料的使用效果比白云石质要好,前者喷补一次能冶炼4炉钢,每吨钢耐火材料消耗为 4.67公斤,后者是每炼一炉钢必须喷补一次,耐火材料单耗高达14公斤每吨钢左右。

4、炉底和出钢槽用耐火材料

炉底和炉坡组成熔池,是装炉料或盛钢水的地方。损毁主要是化学侵蚀和机械冲击造成的,此外,炉坡还受到电弧高温的作用。因此,该部位用耐火材料应具有耐高温、抗侵蚀和组织结构稳定的特点,以便提高其使用寿命。

炉底和炉坡的永久衬一般采用烧成镁砖砌筑,也可用高纯镁砖;工作衬用镁砖或白云石砖砌筑,使用寿命约为6个月。多数采用不定形耐火材料制作炉底工作衬。主要采用镁砂或高纯镁砂配制耐火捣打料或耐火浇注料,进行捣制或浇灌;欧洲多数国家则用白云石砂、镁砂或两者的混合物配制耐火捣打料,捣制炉底。

过去,炉底工作衬普遍采用湿法捣打,结合剂为卤水或水玻璃溶液,每次铺料80-100毫米厚,用风镐或捣固机捣打结实。工作衬的使用效果较好,缺点是料中含有2-5%的水,干燥时间长,此外施工效率低,劳功强度大。因此,现在逐渐改用干法捣制或振动浇注成型。干法捣打炉底工作衬的特点是:施工时间较短,不需要干燥,烧结后致密度高,抗侵蚀性能好。其缺点是粉尘较大,污染环境。

电炉炉底和炉坡的工作衬损毁后,也可以采用喷补或投补的方法进行修理,以延长使用寿命。在大型电炉炉底上,也可采用水冷系统,以提高工作衬的使用寿命,降低耐火材料消耗。

电炉炼钢一般为侧出钢,出钢槽衬体普遍采用镁质、高铝质、蜡石质、碳质或碳化硅质等材料,可以用砖砌筑,也可以捣打或振动浇注施工。

出钢槽衬体采用小砖砌筑时,砖缝熔损严重,也易渗钢粘液,难

以清理。电炉出钢槽衬体普遍采用不定形耐火材料制作,整体性好,使用寿命高,成本也低。施工方法分为捣打、振动浇注和预制三种。目前,后两种施工方法使用较多,特别是预制成整体出钢槽,能机械化吊装,更有发展前途。

耐火捣打料采用酚醛树脂作结合剂,耐火浇注料则用非水泥类材料作结合剂,一般在现场配制和施工。耐火浇注料可在耐火厂制成预制品,并经过烘干,运到现场吊装后,即可使用。

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

普通电弧炉设计与电极升降控制

普通电弧炉的一般设计与电极升降控制

摘要: 为了提高所熔炼速度和钢水的质量、减少电能及电极的消耗量、保证维持规定的电气工作条件,使设备获得较高的生产率。从电弧炉的一般设计概况,到电弧炉电极的升降控制。系统了解电弧炉中存在的缺点与不足。通过分析,更好的提高电气控制的稳定性,提高电网提高熔炼速度。 关键词:电弧炉、短网电流、电极升降。

目录 一、电弧炉的简介及特点 1.电弧炉简介 2.电弧炉特点 二、电弧炉的一般设计 1.电弧炉组成部分 2.炉体设计 3.变压器设计 4.短网电流的计算 5.电极直径计算 6.电极升降计算 7.其他相关参数 三、电极升降自动控制 1.调节器的组成及工作原理 2.调节器的结构原理 四、小结 五、参考文献

一、电弧炉的简介及特点 1.电弧炉简介 电弧炉是利用电极间电弧产生的热能冶炼金属的一种设备。电弧炉炼钢就是靠电极与炉料之间放电产生的电弧,使电能在弧光中转变为热能,并借助辐射和电弧的直接作用加热并熔化金属和炉渣,冶炼出各种成分的钢和合金。 现代化炼钢电弧炉均为直接加热、炉底不导电式电炉。该电炉按直接加热金属的原理工作,电弧发生在每一电极与炉料之间,

己熔化的金属则形成负荷的中心点。 2.电弧炉的特点 电弧炉进行冶炼,电弧炉是一个多变量、非线性、大滞后、强藕合、时变、随机干扰较强的系统,使得系统电极位置、电弧长度、电弧电流以及系统功率很难保持最佳工作状态。电极升降调节系统是电弧炉的重要组成部分,其工作性能的好坏直接影响钢的产量、质量和能源消耗。在电弧炉冶炼过程中,三相交流电弧炉的电力负载是不稳定的、不对称的;无功冲击及闪变;产生谐波电流。 电弧炉的整个炼钢过程一般分为熔化期、氧化期、还原期三个时期,由于各个时期所完成的任务不同,因而相应地对冶炼温度和功率的要求也不同。 (熔化期)开始熔化阶段,固体炉料熔化,能量需求最大。 (氧化期)初精炼及加热阶段。 (还原期)精炼期,此阶段输入能量只需平衡热损耗。 在废钢冶炼时电弧炉的工作特性为:

转炉炼钢与电炉炼钢发展趋势

转炉炼钢与电炉炼钢的发展趋势 随着科学技术的发展,我国的炼钢技术也在不断的提高,目前我国主要的炼钢设备有转炉炼钢和电炉炼钢这两种。转炉炼钢是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程。电炉炼钢是指在电炉中以废钢、合金料为原料,或以初炼钢制成的电极为原料,用电加热方法使炉中原料熔化、精炼制成的钢,但是到底那个炼钢技术发展趋势能够更好一些,炼钢效率跟高,我们更进一步去了解它们。 一.转炉炼钢趋势 1.提高钢水洁净度,即大大降低吹炼终点时的各种夹杂物含量,要求S低于0.005%,P低于0.005%,N低于20PPm。 2.提高化学成分及温度给定范围的命中精度,为此采用复合吹炼、对熔池进行高水平搅拌并采用现代检测手段及控制模型。减少补吹炉次比例,降低吨钢耐材消耗。 3.铁水预处理对改进转炉操作指标及提高钢的质量有着十分重要的作用。美国及西欧各国铁水预处理只限于脱硫,而日本铁水预处理则包括脱硫、脱硅及脱磷。 4.在转炉上都装有检测用的副枪,在预定的吹炼时间结束前的几分钟内正确使用此枪可保证极高的含碳量及钢水温度命中率,使90%-95%的炉次都能在停吹后立即出钢,即无需再检验化学成分,当然也就无需补吹。此外,这也使产量提高,使炉衬磨损大大减少。复合吹炼能促进各项冶炼参数稳定,因而在许多国家得到推广。奥地利、澳大利亚、比利时、意大利、加拿大、卢森堡、葡萄牙、法国、瑞士、韩国等这些国家全部或几乎全部转炉都采用复合吹炼。 5.还有一些方法是从炉底输人一氧化碳、二氧化碳、氧气。单纯底吹的氧气炼钢法未能推广。日本采用所谓的吹洗法,即在炉顶吹氧结束时,接着从炉底吹氛,使钢水中碳含量达到0.01%。这对汽车用钢、薄板用钢及电工用钢的冶炼尤为重要。日本正在开发复合吹

高阻抗电弧炉的设计特点和应用

高阻抗电弧炉的设计特点和应用 引言高阻抗电弧炉是一种高效率的新型炼钢炉,它具有一系列突出的优点:能大幅度地降低电能和电极消耗、能显著地减少对供电电网的短路冲击和谐波污染。 高阻抗电弧炉吸取了近25年来出现的所有电弧炉炼钢新技术,再加上泡沫渣的成功应用,使得一直发展缓慢的交流电弧炉在电弧稳定性、效率和对电网短路冲击减少方面均可同直流电弧炉相媲美。 本文介绍了带饱和电抗器和固定电抗器的高阻抗电弧炉。前者具有高超的伏安特性,使短路电流很小,基本上达到了恒电流电弧炉特性。 1 高阻抗电弧炉的供电电源1.1 对供电可靠性的要求电弧炉属于热加工设备,如果中途停电,会造成很大的损失:使电耗和原材料增加,使产品质量下降,甚至造成整炉钢水报废,炉子越大损失越大。根据有关规范规定,电弧炉属于二级负荷。 对于炉子容量在50t及以上的电弧炉通常由两路独立高压电源供电,炉容较小的可由一路高压电源供电。 1.2 公共供电点的确定电弧炉的公共供电点系指其与电力系统相连接的供电点,并接有其他用户负荷。对公共供电点的要求主要考虑以下因素: 1)供电变压器容量要能适应电弧炉负荷特性的要求; 2)由电弧炉负荷引起的公共供电点的电压波动和电压闪变值、以及谐波电流值不得超过国标GBl4549-93中的允许值; 3)由电弧炉负荷引起的公共供电点的电压不对称度不得超过2%。 电弧炉的公共供电点有两种情况,其一是电弧炉系统直接与电力系统相连接;其二是电弧炉系统通过企业总变电所与电力系统相连接。电弧炉一般不由车间变电所供电。 当电弧炉由企业总变电所母线供电时,为了防止对其他负荷供电质量产生不良影响,一般要求供电变压器的容量为电炉变压器容量的2.5倍以上。当不能满足此要求时,或增大供电变压器容量;或采用专用中间变压器供电,这需要经过技术经济比较来确定。 当采用专用中间变压器供电时,该变压器容量的选择,应与电炉变压器经常过负荷运行状

150T直流电弧炉炼钢工艺

摘要 改革开放以来,我国电弧炉炼钢技术紧跟世界电炉炼钢工业的发展趋势,得到了快速发展。特别是冶金工艺流程的革命性变换,如电炉从三期操作发展到只提供初炼钢水的两期操作,从模铸到连铸,从出钢槽到偏心底出钢,以及为了满足连铸生产的快节奏提高炉子生产率而采用多能源的综合利用等等,所有这些改变都是促使为冶金工艺服务的电炉装备也取得了突破性的发展。近十年,我国从国外先后引进了交流超高功率电弧炉、直流电弧炉、高阻抗电弧炉、双壳炉和竖炉。通过这些设备的调试、操作、维护以及备品的制造,提高了我国电炉制造的设计制造水平。在消化吸收与创新的基础上,我国大容量电弧炉的国产化奠定了基础。当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。 当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。电炉的主要产品是钢材,而钢的质量取决于电炉冶炼技术和工艺,目前我国钢铁产业大量整合趋向于集中,整合资源优化升级。本设计根据指导老师的课题范围,查阅相关资料,结合南京地区实际条件,优化设计150t直流电弧炉炼钢车间。 本次设计查阅国内大型电炉车间设计的相关内容和文献资料,明确本次设计的目的、方法,并向老师请教可行性方案。结合《炼钢设备及车间设计.》、《炼钢设计原理》、《炼钢设计原理》等资料进行设计提纲的书写。对电炉进行配料计算,计算出电炉炼钢的原料配比。对电炉电气设备、炉外精炼、连铸系统、车间烟气净化系统、炼钢车间布局,结合国内大型电炉进行设定并向苏老师探讨可行的方法和数据。绘制电炉炼钢车间平面布置图。 关键字:电弧炉,车间设计,连铸,炉外精炼

3电弧炉控制系统方案

五矿<湖南)铁合金有限责任公司103#硅锰合金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

一、开发背景 五矿<湖南)铁合金集团有限公司103#10000KV A矿热炉主要用于熔炼硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 针对五矿<湖南)铁合金集团有限公司103#矿热炉熔炼过程控制自动水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结合生产的实际需要,搭建103#矿热炉优化控制系统,以达到如下目标:1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉控制系统的运行监视、事故报警与记录、统计分析和报表打印、日常生产

100吨交流电弧炉炼钢车间设计

毕业设计说明书 设计题目:100吨交流电弧炉炼钢车间设计 学 号:_________________________ 姓 名:_________________________ 专 业 班 级:_________________________ 李龙 冶金技术2班 0929302245 2012 年 05月20号

毕业设计说明书................................................................................................................... - 1 -文献综述. (2) 1.3现代电弧炉炼钢技术 (5) 1.4电弧炉炼钢的发展趋势 (6) 1.5电弧炉装备技术未来的创新发展 (6) 1.5.2我国正进人电炉炼钢高速发展时期 (7) 3.4.1、炉料入炉 (13) 第四章建设所选电弧炉炼钢工程的必要性和可行性分析 (13) 电弧炉车间设计 (18) 1.1电炉车间计算 (18) 11..1电炉容量和座数的确定 (18) 1.1.2电炉车间生产技术指标 (18) 参考文献.................................................................................................................................................. 致谢..........................................................................................................................................................

中国电弧炉炼钢的现状及发展趋势

专题 中国电弧炉炼钢的现状及发展趋势 (,,) 摘要:本文阐述了中国电弧炉炼钢技术的现状,并在阐述中国近年电弧炉炼钢的发展变化及存在的问题的基础上,提出了中国电弧炉炼钢发展要注意的问题及发展趋势。 关键词:电弧炉,不锈钢,产业现状,发展趋势 China electric arc furnace steelmaking status and development trend Abstract:This paper describes the status of Chinese electric arc furnace steelmaking technologies and expounded China's development and changes in recent years, electric arc furnace steelmaking and problems, based on the proposed China should pay attention to the development of electric arc furnace steelmaking problems and trends. Key Words:EAF,steel,present status,development trends 0 引言 电弧炉(electric arc furnace)利用电极电弧产生的高温熔炼矿石和金属的电炉。气体放电形成电弧时能量很集中,弧区温度在3000℃以上。对于熔炼金属,电弧炉比其他炼钢炉工艺灵活性大,能有效地除去硫、磷等杂质,炉温容易控制,设备占地面积小,适于优质合金钢的熔炼。 通过金属电极或非金属电极产生电弧加热的工业炉叫做电弧炉。电弧炉按电弧形式可分为三相电弧炉、自耗电弧炉、单相电弧炉和电阻电弧炉等类型。电弧炼钢炉的

3电弧炉控制系统方案

#硅锰合湖南)铁合金有限责任公司103五矿<金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

1 / 29 一、开发背景 #10000KV A103<湖南)铁合金集团有限公司矿热炉主要用于熔炼五矿硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电 极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 #矿热炉熔炼过程控制自动103针对五矿<湖南)铁合金集团有限公司水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结#矿热炉优化控制系统,以达到如下目标:103 合生产的实际需要,搭建1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉

40吨电弧炉炉体设计

目录 一、电弧炉简介及其发展趋势 (2) 二、电弧炉炉型算及变压器功率确定 (3) 1、电弧炉设计要求 (3) 2、电弧炉炉型计算 (4) 3、炉子的变压器功率及电极参数确定 (8) 三、电弧炉耐火材料的损毁机理及选择 (11) 1、炉衬损毁机理 (11) 2、炉顶用耐火材料 (12) 3、炉墙用耐火材料 (13) 4、炉底和出钢槽用耐火材料 (14) 附录 (16)

40吨电弧炉炉体设计说明书 一、电弧炉简介及其发展趋势 电弧炉是炼钢电炉的一种,也是目前世界上熔炼优质钢、特殊用途钢种的主要设备。电弧炉炼钢技术已有100年的历史,第二次世界大战后电炉炼钢才有较大发展,在最近的20年,电弧炉炼钢技术发展尤为迅速,电弧炉的应用带来了炼钢技术的革命。尽管全球粗钢年产总量的增长速度很缓慢,但以废钢为主要原料的电弧炉炼钢的产量所占的比重却在逐年上升。2001年,电弧炉炼钢占世界钢产量的40%,成为最重要的炼钢方法之一。与高炉铁水炼钢相比,其竞争优势在于投资费用和运行成本。自60年代中期提出电弧炉超高功率概念以来,电弧炉建造趋于大型化、高功率化,出现现了多种新型式的电弧炉。在发展大型电弧炉的过程中,美国曾用六支电极,由两台变压器供电,电弧炉为椭圆形。 发展大容量电炉和提高电炉自动化水平,采用大功率静止式动态补偿技术,用水冷构件代替耐火材料,炉盖第四孔直接排烟与电炉周围密封罩相连接的烟尘净化系统,炉盖第五孔机械化自动化加料系统,电炉使用还原铁比例逐渐扩大,炉外废钢预热,炉内燃料助燃,强化熔池用氧,开发底气搅拌系统和泡沫渣覆盖下的冶炼工艺,从冷却水和废气中回收热能,采用全连铸,发展纤维石墨电极和采用优质高效碱性镁碳炉衬等。 电弧炉炼钢得到迅速发展的主要原因: (1)废钢日益增多 (2)钢铁工业迅速增长。由于发电设备大型化和技术不断改进,可利煤用部分劣质粉发电,电的供应和价格比较稳定,使电炉炼钢有了比较可靠的基础。此外,电炉用废钢比高炉——转炉炼钢的能耗低。 (3)电炉趋向大型化、超高功率化,冶炼工艺化。 (4)投资少,基建速度快,基金回收速度。 (5)钢液温度、成份容易控制,品种适应性大,可冶炼多种牌号的钢,同时还能间断性生产。 电炉炼钢是世界各国生产特殊钢的主要方法,它具有一系列的优点: (1)电炉炼钢的设备投资少、基建速度快; (2)炼钢的热源来自于电弧,温度高达4000~6000℃,并直接作用于炉料,

电阻炉温度控制系统的设计说明

电炉温度控制系统设计

摘要 热处理是提高金属材料及其制品质量的重要技术手段。近年来随工业的发展, 对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。 此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了基本控制、数据采样、实时显示温度控制器运行状态。控制器采用51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理及控制结果显示等功能,控制的稳定性和精度上均能达到要求。满足了本次设计的技术要求。 关键词:电阻炉,温度测量与控制,单片机

目录 一、绪论 ....................................................................................................... - 1 - 1.1 选题背景........................................................................................ - 1 - 1.2 电阻炉国发展动态........................................................................... - 1 - 1.3 设计主要容 .................................................................................... - 2 - 二、温度测量系统的设计要求........................................................................... - 3 - 2.1 设计任务......................................................................................... - 3 - 2.2 系统的技术参数................................................................................ - 3 - 2.3 操作功能设计................................................................................... - 4 - 三、系统硬件设计........................................................................................... - 5 - 3.1 CPU选型........................................................................................ - 5 - 3.2 温度检测电路设计.............................................................................. - 6 - 3.2.1 温度传感器的选择..................................................................... - 6 - 3.2.1.1热电偶的测温原理 ......................................................... - 7 - 3.2.1.2 热电偶的温度补偿......................................................... - 7 - 3.2.2 炉温数据采集电路的设计.......................................................... - 8 - 3.2.2.1 MAX6675芯片.......................................................... - 8 - 3.2.2.2 MAX6675的测温原理................................................. - 9 - 3.2.2.3 MAX6675 与单片机的连接.......................................... - 10 - 3.3 输入/输出接口设计......................................................................... - 10 - 3.4 保温定时电路设计 .......................................................................... - 13 - 3.4.1 DS1302 与单片机的连接....................................................... - 13 - 3.5 温度控制电路设计............................................................................ - 14 - 系统硬件电路图...................................................................................... - 17 - 四、系统软件设计......................................................................................... - 19 - 4.1 软件总体设计 .................................................................................. - 19 - 4.2 主程序设计 ..................................................................................... - 19 - 4.3 温度检测及处理程序设计................................................................... - 20 - 4.4 按键检测程序设计............................................................................ - 23 - 4.5 显示程序设计 .................................................................................. - 25 - 4.6 输出程序设计 .................................................................................. - 27 - 4.7中值滤波 ......................................................................................... - 28 - 五、结论 ..................................................................................................... - 30 - 参考文献 ..................................................................................................... - 31 -

我国电炉炼钢的发展现状与前景

我国电炉炼钢的发展现状与前景 现代炼钢流程主要是转炉流程和电炉流程。2004年世界粗钢产量达10.548亿t,其中转炉钢66452万t,占63%,电炉钢35652万t,占33.8%。我国钢产量27470万t,其中转炉钢23271万t,占85.72%,电炉钢4167.1万t,仅占15.17%。 笔者在此分析了我国不同时期电炉钢比例逐年下降的原因,讨论了为什么要重视电炉钢的发展,指出了在目前我国废钢资源及电力紧缺的条件下,发展电炉炼钢的方法及技术措施,认为目前应考虑对发展我国现代电炉炼钢的第二轮投资。 国外电炉炼钢的发展情况 自上世纪中叶至今,尽管转炉炼钢技术取得了长足的进步。但世界电炉钢比例不断增长,从1950年的7.3%增长到2004年的33.8%。 电炉钢比例的增长,主要是由于跟高炉转炉长流程相比,电炉炼钢具有固定投资小,消耗铁矿石,焦炭,水等资源少,占地面积小,可比能耗低,对环境污染少,工厂可接近资源产地及市场,启动及停炉灵活等优点,符合全球可持续发展要求。 本世纪前四年,世界上年产钢500万吨以上的主要产钢国家各国粗钢产量稳步增长,电炉钢比例不同国家有增有减,总体上有所降低,从2001年至2003年电炉钢的比例从35%下降至33.1%。2004年虽然粗钢产量增长迅速,但世界电炉钢比例从33.1%上升至33.8%。我国现代电炉炼钢的发展情况 我国现代电炉炼钢始于1993年原冶金部和上海市在上海召开的“当代电炉流程和电炉工程问题研讨会”(以下简称第一次上海会议)。由于各级政府部门引导,支持钢铁企业进行了对现代电炉流程的一轮投资,依靠引进国外现代电炉流程先进技术,在我国建成了一批“三位一体”或“四位一体”的先进电炉流程。 从1993年至今,我国电炉钢生产的发展可分为三个阶段。 在1993年至2000年这一阶段,我国电炉钢产量在1800~2000万t波动,电炉钢比例逐年下降,从23.2%下降至15.7%。这是由于一方面淘汰了大量落后的小电炉,使得我国电炉钢产量下降,另一方面新投产的大电炉产量还是不够高,致使电炉钢产量在一个水平线上波动,另外由于转炉钢产量的迅速增长,电炉钢产量增长比较慢,致使电炉钢比例下降,但这也正好说明“第一次上海会议”的意义及影响,如果没有1993年的“第一次上海会议”,在小电炉大量被淘汰的情况下,2000年我国电炉钢的比例恐怕还会低很多。 从2000年至2003年,在世界电炉钢比例有所下降的同时,我国电炉钢比例却走出了低谷有所回升。从2000年的15.7%上升到2003年的17.6%。电炉钢比例回升说明在这一阶段,虽然全国钢产量迅速增长,但电炉钢增长的速度比钢总量增长的速度更快。 在2001-2003年间,我国钢生产迅速发展,年增长速率达20~22%,远高于世界同期增长速度。电炉钢增长速度更高,达27-28%,电炉钢比例回升了约2个百分点。

电弧炉控制系统设计

2006 年 6 月南京

毕业设计(论文)中文摘要

目录

1 绪论 (1) 1.1 系统设计背景 (1) 1.2 设计要求与设计思路 (2) 2 电弧炉与PTI枪 (2) 2.1 电弧炉炼钢工作原理 (2) 2.2 电弧炉炼钢的发展现状 (3) 2.3 PTI枪系统组成 (3) 3 可编程控制器(PLC)简介 (7) 3.1 可编程序控制器的概述 (7) 3.2 PLC的工作原理 (7) 3.3 PLC发展现状与趋势 (8) 3.4 西门子S7-300PLC (8) 3.5 西门子STEP-7编程软件 (10) 4 碳仓系统总体设计要求 (13) 4.1 设计要求 (13) 4.2 功能要求 (15) 5 硬件设计 (16) 5.1 硬件组态 (16) 5.2 上载硬件实际组态到编程器 (16) 6 软件设计 (19) 6.1 料仓部分的程序设计 (19) 6.2 运行仓部分的程序设计 (21) 6.3 三路碳粉分配器部分的程序设计 (28) 7 程序调试 (35) 结论 (36) 致谢 (37) 参考文献 (38) 附录 A 碳仓控制系统源程序 (39)

1 绪论 据统计,目前全世界粗钢产量的30%由电炉生产,我国电炉钢也约占总钢产量的20%左右。电弧炉电气运行是电炉冶炼生产最基本的保障,它关系到冶炼工艺、

原料、电气、设备等诸多方面的问题,直接影响电炉炼钢生产的各项技术和经济指标,因此对其进行最佳化的研究意义重大,不但可保障冶炼工艺的顺行和充分发挥设备资源的作用,还能提高生产率,节能降耗。 可编程控制器是在继电器控制和计算机控制发展的基础上开发出来的,并逐渐发展成以微处理器为核心,把自动化技术,计算机技术,通讯技术融为一体的新型工业自动控制装置。随着微处理器、计算机、网络和数字通信技术的飞速发展,工业生产自动化控制技术已扩展到了几乎所有的工业领域。应用计算机网络技术来解决工业自动化任务已逐渐成为普通的技术。可编程序控制器是应用面最广、功能强

我国电弧炉炼钢发展现状

我国电弧炉炼钢发展现状 1 中国电弧炉炼钢产量持续增长 2003年我国电炉钢产量占比最高达17.6%,2016年占比下滑到最低点7.3%,产量仅为5884万吨。2003年我国粗钢产量为2.22亿吨,2016年增加到8.08亿吨,主要是由于转炉钢产量的提高。 造成电炉钢产量比例低的原因是电炉炼钢成本方面的竞争力低于转炉炼钢。主要原因是2003-2016年间,①国内废钢资源的供应紧张,废钢使用成本高;②工业电价偏高,造成电炉炼钢铁水兑入比例持续升高,甚至出现了不用废钢的全铁水电炉转炉化冶炼方式,不能充分发挥电弧炉炼钢在资源能源节约、环境友好方面的优势;③由于炉外精炼技术的完善,一些原来由电炉流程生产的轴承钢、齿轮钢以及不锈钢等传统特钢产品,转炉流程占了大部分产量,电炉炼钢除在铸造行业及高合金钢生产领域仍占一定地位外,生产特钢的优势明显下降,严重阻碍了电弧炉炼钢产量及技术在中国的发展。 2017年国家大力淘汰中频炉“地条钢”产能1.2亿吨,落后钢铁产能500 0万吨,废钢量达1.4亿吨,废钢资源以及电力供应情况得到改善。同时,对钢铁行业节能减排及加强环保督察等工作的日益重视,不少电炉生产企业积极复产或部分企业新上电弧炉,为中国电炉炼钢的发展提供了机遇。2017年我国

电炉钢产量约7750万吨,2018年全国电炉钢产量将继续增加,具有明确计划投产的电弧炉产能合计1560万吨左右,再加上2017年新建和复产产能的完全释放、老电弧炉的技改、产能利用率的提升,增量有可能超过3000万吨。 据统计,2018年上半年中国电炉钢产量累计约为5183.2万吨,所占比例为11.9%,预计2018年全年产量有望达到1亿吨。目前,还有56座电炉计划2018-2023年投产,产能约4700万吨。预计2025年中国废钢产生量将达2.8亿吨,巨大的废钢资源量,必然促进以废钢为主要原料的电弧炉炼钢产量的提高和技术的发展,预计2025年电弧炉生产的粗钢产量占比将达到20%-25%。 2 电弧炉所用原燃料结构 2.1 电弧炉所用的金属料 废钢是电弧炉冶炼的最主要原料。废钢资源不足是影响电弧炉炼钢发展的主要原因。废钢来源一般有三个方面,即钢铁企业在生产过程中的自产废钢、工矿企业在生产过程中的加工废钢、社会(生产、生活、国防等)废弃钢铁材料(包括拆旧废钢如:报废汽车、舰船、钢结构桥梁与建筑钢等)。由于技术的进步,前两个原因产生的废钢量下降,社会废钢量不断增加。由于社会废钢重复使用或含有较多量的Cu、Sn、As、Pb等不易去除的有害元素,造成一些有害元素在钢中富集,废钢质量下降。为了解决废钢短缺及质量下降的问题,必须开发废钢替代品。目前,主要的废钢替代品有:铁水(生铁)、直接还原铁(DRI)、脱碳粒铁、碳化铁、复合金属料等。 2.1.1 铁水(生铁)

箱式电阻炉的设计

长春理工大学 热工课程设计说明书题目箱式电阻炉的设计 学院材料科学与工程学院 专业无机非金属材料(建筑材料)班级0706121 姓名向仕君学号18

2009 年7 月5 日 设计任务书 一、题目:箱式电阻炉的设计 二、原始数据: 电路形势:箱式电阻炉 炉膛尺寸:120 ?mm 170 260? 使用温度:1000℃ 表面温度:60℃ 电源电压:220V 三、设计要求: 1、设计认真,积极思考,独立完成,有所创新。 2、设计说明书:一份 思路清晰,论述充分;设计参数选择合理,设计计算步骤完整,结果准确;著名参考文献。 3、设计图纸:2#图纸1—3张 图画布置合理,比例适当,图画清洁;绘图线

条类型正确,位置准确;尺寸标注正确、齐全。 摘要 本说明书重点阐述箱式电阻炉的具体设计过程。设计过程包括高温炉的简介,炉膛尺寸的确定,材料选择,电阻炉尺寸和结构设计,功率计算,供电电路的选择,电热提的尺寸确定及安装,以及热电偶使用,涉及到热量计算,功率计算,电热元件规格计算。 本设计说明书可供实验电阻和工业电阻炉的维修和设计提供理论参考导和指导。

引言 陶瓷工业在社会主义建设,国防科学和人民生活都占重要的地位,它不仅与人类的日常生活存在密切的关系,而且随着科学技术的发展,已经超越了日用,建筑及一般的工业用途的范围,而应用与电子,原子能等尖端材料中。 生产陶瓷中一个重要的过程就是烧结,烧成时在热工设备中进行的,这里的热工设备指的是窑炉及其附属设备。 窑炉从生产方式上分为间歇式和连续式,按电能转化为热能形式分为:电阻炉,感应炉,电弧炉,等离子炉等,在使用热源上又分为火焰式和电热式。目前,电子陶瓷,高温陶瓷及其他特种陶瓷的生产和科研处于火热期。 在实验中,使用较多的是间歇式的电阻炉。

电弧炉的机电一体化设计

电弧炉的机电一体化设计 摘要:科技发展的进步和经济水平的提高加快了人们的生活节奏,人们对生产力的要求也逐渐提高,尤其是电子高新技术的发展,给机械工程工业的生产提供了新方式。电弧炉作为熔炼金属的专业炼钢炉,在现代社会的工业建设中有重要地位,机电一体化设计具有智能化、绿色化和人性化等现代特征和优势,将机电一体化设计与电弧炉的应用相结合,是一项具有现代进步意义的选择。本文首先简单介绍电弧炉的控制系统,随后结合机电一体化的特征阐述两者之间的结合应用。 关键词:电弧炉;机电一体化 机电一体化控制系统融合多种技术,在人类社会进步的过程中发挥着越来越不可缺少的作用,并呈现出与各种工业技术融合发展的趋势,带来显著的经济效益和社会效益,电弧炉一直是世界炼钢工业的主要形式,在自现代自动化和智能化的发展模式下,电弧炉炼钢的优势越来越显著,冶炼周期逐渐缩短,冶炼效率显著提高,冶炼质量相应得到改善,为企业获得更多盈利,在电弧炉炼钢的过程中融入机电一体化设计,用机电一体化的控制系统操作电弧炉,将会是电弧炉应用发展的一大进步。 一、电弧炉的控制系统 1.控制器 电弧炉是指利用电极电弧产生的高温冶炼钢铁金属的电炉,操作简便,占地面积小。在电弧炉液压式电极调节系统中,电弧炉的控制器主要有模拟控制器、PLC控制器和工业计算机控制器三种。模拟控制器是最早应用在电弧炉上的控制器,价格低但控制性能不佳,主要应用在小容量电弧炉上;PLC控制器又叫可编程逻辑控制器,在目前工业领域应用广泛,是一种具有微电子处理机的数字电子处理设备,稳定性较高,但响应较慢,对大型电弧炉的智能控制难以满足。目前国内大部分电弧炉使用的还是PLC控制器,用户可以根据需要自行编辑程序以满足生产需求;工业计算机控制器作为现阶段电弧炉制造生产的发展方向,具有大型运算能力和较高的稳定性。 2.控制策略 电弧炉的控制策略分为恒电流控制、恒功率控制、恒阻抗控制三种。下图为常见的电弧炉自动控制系统示意图,进料口、加热接触和排气泄放设置主要控制送料控制、加热反应和液态金属排放三个控制阶段。 自动控制系统示意图 恒电流控制主要通过对电机升降进行控制实现稳定控制电弧电流,但这种控制方式也存在一定缺陷。在三相电流电弧炉中IA+IB+IC=O,很容易出现误控制的短路状态。恒功率控制也存在不足之处,单向电弧功率=电弧电压×电弧电流,在这种情况下,无论是电弧电压还是电弧电流的升高降低都会引功率变动,而电弧炉的工作特殊性决定了其外部环境和内部环境的影响因素都很多,在不确定因素的影响下极易引起操作失误,由此可见恒功率控制的不稳定性。相较而言,恒阻抗控制的稳定性就高得多,从下表1中电极移动对各参数的影响可以看电极电压上升电流电流下降阻抗上升,电极电压下降时电流升高阻抗下降,电极的升降关系与各参数之间的关系清晰明了。 表1 电极移动对参数的影响

工业硅矿热炉的设计说明

工业硅冶炼能源节约技术的研究 5.1概述 能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。 与此同时,我国也存在严重能源利用效率低的问题。近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。能源利用率仅为美国的26.9%,日本的11.5%[82]。因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。 工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。 我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。设计上不合理体现在我国普遍使用的是6300KVA左右的小炉型(散热

大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。 目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6) 改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。由于上述诸多途径尚处于讨论阶段,形成固定技术并推广者仅有短网改进、管理制度建设上,许多技术细节缺乏,因此真正意义上可以直接使用的工业硅生产中能源节约技术还需要研究与试验。 经过多年的摸索探讨,目前我国工业硅电弧炉的电效率平均在92%以上,各种提高电效率的技术或措施也比较成熟如改进短网结构设计、使用优质导电材质、采用低压补偿技术、改善电参数等方面。但是,我国工业硅电弧炉的热效率普遍比较低,这是导致我国工业硅生产能耗高、能源利用效率低的主要原因,表5-1是我国某厂6300KVA电弧炉的热平衡分析表[21]。 表5-1 我国某厂6300KVA电弧炉的热平衡分析

相关主题
文本预览
相关文档 最新文档