当前位置:文档之家› 高中数学抽象思维在集合学习中的体现案例

高中数学抽象思维在集合学习中的体现案例

高中数学抽象思维在集合学习中的体现案例
高中数学抽象思维在集合学习中的体现案例

集合是高中数学的第一章,在这一章中,我们开始学习集合,用集合符号、集合语言表达数学知识。面对较初中多很多的集合符号,有的学生不能正确理解它们的含义,在应用时出现一些错误。下面是集合间的基本关系中常见的一道题

例 已知集合}012|{},2,1{

2=-+-==a x x x B A ,若A B ?,求实数a 的取值 这道题考查了学生对集合包含关系的理解,以及一元二次方程的计算

在课本中给出了集合的包含关系:一般地,对于两个集合A 、B ,如果集合A 中任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 是集合B 的子集,记作B A ?

对于A B ?这个条件,有的学生理解错误,误认为A B ?等价于(1)φ=B 或}1{=B 或}2{=B ,(2)}1{=B 或}2{=B 或}2,1{=B ,这些都是对集合包含关系这一概念理解不足, 造成(1)的错误,认为集合的包含关系是集合A 中的部分元素属于集合B ,两集合相等不具有包含关系,也是对课本在定义旁边给出的韦恩图的误解;造成(2)的错误,忽视了空集是任何集合的子集,所以我们对于概念的学习,抓住关键词:任何一个,另外对于特殊情形,不可忽视。

还有的学生对于集合符号的理解错误,如某学生给出的答案

A B ?Θ时集合B 有四种可能(1)φ=B ,(2)}1{=B ,(3)}2{=B ,(4)}2,1{=B ,

当φ=B 时,0)1(4)2(2<+--a ,解得2>a ;

当}1{=B 时,0121=-+-a ,解得2=a ;

当}2{=B 时,0144=-+-a ,解得1=a ;

当}2,1{=B 时,?

??=-+-=-+-01440121a a ,无解 综上所述,实数a 的取值范围是}21|{≥=a a a 或

该生认为}1{

=B 与B ∈1是等价的,当}1{=B 时,的确有B ∈1,但}1{=B 表示集合B 中有且只有一个元素1,而B ∈1表示1是集合B 中的元素,而对于集合B 中是否还有其他元素未说明,也就是说,}1{=B 与B ∈1是不等价的,结合本题,求解一元二次方程,还要考虑判别式?,正确解法如下:

法一、

A B ?Θ,∴集合B 有四种可能φ=B 或}1{=B 或}2{=B 或}2,1{=B ,

当φ=B 时,0)1(4)2(2<+--a ,解得2>a ;

当}1{=B 时,???=-+-=--=?01210

)1(44a a ,解得2=a ;

当}4{=B 时,???=-+-=--=?01440

)1(44a a ,无解;

当}4,1{=B 时,???=-+-=-+-01440

121a a ,无解

综上所述,实数a 的取值范围是}2|{≥a a

法二、A B ?时集合B 有四种可能(1)φ=B ,(2)}1{=B ,(3)}2{=B ,(4)}2,1{=B , 当φ=B 时,0)1(4)2(2<+--a ,解得2>a ;

当B ∈1时,0121=-+-a ,解得2=a ,此时集合}1{

}012|{2==+-=x x x B ,满足A B ?2=∴a ; 当B ∈2时,0144=-+-a ,解得1=a ,此时集合}2,0{}02|{2==-=x x x B ,不满足A B ?; 当}2,1{=B 时,???=-+-=-+-01440

121a a ,无解

综上所述,实数a 的取值范围是}2|{≥a a

对于高中的学习,首先要重视对概念的学习,通过数学概念认识数学本质,其次重视数学语言的表达及应用,数学语言是符合语言,我们要通过数学符号表达我们的思想和认识,从而提高数学的抽象思维能力。

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高一数学思维导图

高一数学思维导图 (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同; 2、证明单调性:作差(商); 3、复合函数的单调性最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数、幂函数对数函数三角函数基本初等函数抽象函数复合函数赋值法、典型的函数函数与方程二分法、图象法、二次及三次方程根的分布零点函数的应用建立函数模型使解析式有意义函数表示方法换元法求解析式分段函数注意应用函数的单调性求值域周期为T的奇函数→f (T)=f ()=f (0)=0复合函数的单调性:同增异减一次、二次函数、反比例函数指数函数图象、性质和应用平移变换对称变换翻折变换伸缩变换图象及其变换必修二 立体几何点与线空间点、线、面的位置关系点在直线上点在直线外点与面点在面内点在面外线与线共面直线异面直线相交平行没有公共点只有一个公共点线与面平行相交有公共点没有公共点直线在平面外直线在平面内面与面平行相交平行关系的相互转化垂直关系的相互转化线线平行线面平行面面平行线线垂直线面垂直面面垂直空间的角异面直线所成的角直线与平面所成的角二面角范围:(0,90]范围:[0,90]范围:[0,180]点到面的距离直线与平面的距离平行平面之间的距离相互之间的转化空间的距

离空间几何体柱体棱柱圆柱正棱柱、长方体、正方体台体棱台圆台锥体棱锥圆锥球三棱锥、四面体、正四面体直观图侧面积、表面积三视图体积长对正高平齐宽相等必修二 解析几何倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:=截距式:+=1一般式:Ax+By+C=0注意各种形式的转化和运用范围、两直线的交点距离点到线的距离:d=,平行线间距离:d=圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交D<0,或d>rD=0,或d=rD>0,或d<r截距注意:截距可正、可负,也可为0、必修三 统计、概率、算法统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线概率概率的基本性质互斥事件对立事件古典概型几何概型P(A+B)=P(A)+P(B)P(`A)=1-P(A)概括性、逻辑性、有穷性、不唯一性、普遍性顺序结构条件结构循环结构算法语言算法的特征程序框图基本算法语言算法案例辗转相除法、更相减损术、秦九韶算法、进位制必修四

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

赋值法解答抽象函数的赋值

赋值法解答抽象函数问题的赋值技巧与策略 函数是高中数学的重要内容,也是高考的热点.对于没有明确给出具体表达式的函数,称之为抽象函数.解答抽象函数问题的方法较多,其中用赋值法进行解答就是一种行之有效的方法.赋值主要从以下方面考虑:①令x=…、﹣2、﹣1、0、1、2…等特殊值求抽象函数的函数值;②令x=x 2,y=x 1或y=1 x 1,且x 10、y>0时,恒有f(xy)=f(x)+f(y). (1)求证:当x>0时,f(1 x )=﹣f(x);(2)若x>1时恒有f(x)<0,求证:f(x)必有反函数; 解析:(1)在f(xy)=f(x)+f(y)中,令x=y=1,得f(1)=0,又令y=1x ,得f(x)+f(1x )=f(x ·1 x )= f(1)=0, ∴当x>0时,f(1 x )=﹣f(x); (2)设x 1>0、x 2>0且x 11,∴f(x 2x 1)<0,又在f(xy)=f(x)+f(y)中,令x= x 2,y=1 x 1 , ∴f(x 2·1x 1)=f(x 2)+f(1x 1).由(1)得,f(1x 1)=﹣f(x 1),∴f(x 2 x 1 )=f(x 2)﹣f(x 1) <0,∴f(x 2)0时,f(x)>0.试判

高中数学抽象函数的图像以及抽象函数常见类型及部分题目

函数()f x 的定义域为D ,则其图像为: ()(){},|,x y y f x x D =∈ 1,若把这个图像向左平移a 个单位,得到新图像为: ()(){},|,x y y f x a x D =+∈ 简单说明:新图像上任取点(),x y ,向右平移a 个单位得到(),x a y +,这个点在()f x 图像上,所以()y f x a =+ 向右、上、下平移函数图象情况类似,请自己给出 2,若把()f x 图像按照直线x a =作一次对称,得到新函数为()2y f a x =- 简单说明:新图像上任取点(),x y ,按照直线x a =作一次对称得到点()2,a x y -,这个点在()f x 图像上,所以()2y f a x =- 按照直线y a =作对称类似,请自己给出 需要指出的是,不能按照任意直线作对称得到新函数,因为新的图像不一定是函数图像(实际上那是方程的图像),另外,按照直线y x =作对称得到的是反函数,当然前提是该函数存在反函数。 3,若把()f x 图像按照点(),a b 作对称,得到新函数()22y b f a b =-- 简单说明:新图像上任取点(),x y ,按照点(),a b 作对称,得到点()2,2a x b y --,这个点在()f x 图像上,则()22b y f a x -=-,整理得()22y b f a x =-- 4,若把()f x 图像在水平方向上作伸缩,横坐标都变为原来的a 倍(0a ≠),纵坐标不变,那么得到新函数图像是x y f a ?? = ??? 简单说明:新函数图像上取点(),x y ,变回去,x y a ?? ???, 这点在()f x 图像上,所以x y f a ?? = ??? 至于竖直方向的伸缩,请自己给出 ==============华丽的分割线=================== 下面是函数图像本身的对称性 5,如果一个函数向左平移a 个单位与原图像重合,即a 是一个周期,那么按照第1条, ()y f x a =+这个新函数与原函数()y f x =重合,也就是说:()()f x a f x += 6,如果一个函数有一条对称轴x a =,那么按照第2条到的新函数()2y f a x =-与原函数是同一个,也就是说:()()2f a x f x -=,至于类似()()f a x f b x +=-这样的条件,改写一下是非常显然的

抽象函数的导数问题(教师)

抽象函数的导数问题 所谓抽象函数,即函数解析式未知的函数,这几年很流行抽象函数与导数结合的问题,此类问题一般有两种方法: (1) 根据条件设法确定函数的单调性; (2) 要根据题目给定的代数形式,构造函数,确定单调性,而构造什么样的函数,一方 面要和已知条件含有()f x '的式子特征紧密相关,这要求我们必须非常熟悉两个函数的和、差、积、商的求导公式;另外一方面,由于此类问题往往是选填题,问题的结构往往有一定的暗示,所以务必要结和问题的结构,构造适合的抽象函数 【求导的四则运算】 法则1 [()()]''()'()f x g x f x g x ±=±. 法则2 [()()]''()()'()()f x g x f x g x g x f x =+g . 法则32()'()()()'() [ ]()() f x f x g x f x g x g x g x -'=. 例1、(2006江西卷)对于R 上可导的任意函数()f x ,若满足(1)'()0x f x -≥,则必有( ) A.(0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D .(0)(2)2(1)f f f +> 分析:这个题目的条件(1)'()0x f x -≥,实际上不能构造函数,它其实是告诉我们这个函数的单调性,具体来说: 由(1)'()0x f x -≥得: (1)10x -≥且'()0f x ≥,于是在(1,)+∞上()f x 单调递增; (2)10x -≤且'()0f x ≤,于是(,1)-∞上()f x 单调递减; 综上可知的最小值为(1)f ,(0)(1)f f ≥,(2)(1)f f ≥,得(0)(2)2(1)f f f +≥,选C 【典型构造】 若条件是'()()'()()0f x g x g x f x +≥,可构造()()()F x f x g x =,则()F x 单调递增; 若条件是'()()0f x f x +≥,可构造()()x F x e f x =,则()F x 单调递增; 若条件是'()()0xf x f x +≥,可构造()()F x xf x =,则()F x 单调递增; 若 条 件 是 '()()0 xf x nf x +≥,可构造 () (n F x x f x =,则

高中数学中抽象函数的解法及练习

抽象函数问题有关解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的 灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑配法:在已知 (())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还 能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0 ()lg(1),0 x x f x x x +≥?=?--

抽象函数常见题型解法

如果您需要使用本文档,请点击下载按钮下载! 抽象函数常见题型解法 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类 函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的特殊模型: 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题 七、周期性与对称性问题 八、综合问题 一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[] 11log ,13

高考数学专题复习 抽象函数

2015高考数学复习:抽象函数 高考常考抽象函数模型: 1.正比例函数型:()(0)f x kx k =≠?()()()f x y f x f y ±=± 2.一次函数型:()b kx x f +=?()()()b y f x f y x f -+=+ 3.幂函数型:2 ()f x x = ?()()()f xy f x f y =, ()()()x f x f y f y = 4.指数函数型:()x f x a = ?()()()f x y f x f y +=, () ()()f x f x y f y -= 5.对数函数型:()log a f x x = ?()()()f xy f x f y =+,()()() x f f x f y y =- 6.三角函数型:()tan f x x = ? ()() ()1()()f x f y f x y f x f y ++= - 1、直线型抽象函数 例 1.已知函数()f x 对任意实数,x y ,均有()()()f x y f x f y +=+,且当0x >时,()0f x >, (1)2f -=-,求()f x 在[]1,2-的值域 2、指数函数型抽象函数 例 2.定义在R 上的函数()f x 满足:对任意实数m ,n ,总有()()()f m n f m f n +=?,且当0x >时, 0()1f x <<. (1) 试求(0)f 的值 (2) 判断()f x 的单调性并证明 3、对数函数模型 例3.定义在 R + 上的函数()f x 满足:①(10)1f =;②对任意实数b ,()()b f x bf x =,当1>x 时,()0>x f (1) 求 11(1),(),() 24f f f (2) 求证:对任意正实数,,()()()x y f xy f x f y =+ (3) 求证:()f x 是R +上的增函数

高中数学优质课教案—抽象函数分类解析

高中数学优质课教案 --抽象函数问题分类解析 【教学内容】抽象函数问题分类解析 【教学目标】 1、知识目标: (1)、理解抽象函数并掌握抽象函数的一般解题策略; (2)、通过对抽象函数的研究,进一步加深对函数概念和性质的理解; (3)、渗透特殊值法,化抽象为具体、转化等数学思想方法。 2、能力目标: (1)、重视基础知识的教学,基本技能的训练和能力的培养。 (2)、逐步培养与提高学生的探索能力,研究能力以及正确地分析问题,解决问题的能力。 (3)、通过教师指导,培养学生的抽象概括能力和逻辑思维能力。 3、德育目标:激发学生学习数学的兴趣和积极性,陶冶学生情操,培养学生坚韧不拔的意志、实事求是的科学态度和勇于创新的精神。【教学重点】 抽象函数性质的研究及应用 【教学难点】 抽象函数性质研究中学生思维能力的形成,以及综合应用知识分析问题和解决问题能力的培养与提高。 【教学方法】自主探索,合作交流

【课型】拓展研究课 【教学过程】 一、课题引入:在高考对函数的考察中,经常出现未给出函数解析式,仅给出函数恒等式或函数方程的一类抽象函数推理问题,重点考察考生对函数概念、函数性质的掌握与应用,以及逻辑思维能力和抽象概括能力。由于其具有题型的新颖性、内容的综合性、解法的灵活性、思维的抽象性的特点,因而此类问题已成为高考备考中热点、重点和难点。 二、知识再现: 1、抽象函数关系式相应的函数模型 f(x+y)=f(x)+f(y)-b。y=ax+b f(m-x)=f(m+x) y=a(x-m)2+n f(x+y)=f(x)f(y)(或f(x-y)=f(x)/f(y) )y=a x(a>0且a≠1) f(xy)=f(x)+f(y)(或f(x/y)=f(x)-f(y))y=log a x(a>0且a≠1) f(x+y)+f(x-y)=2f(x)f(y) y=cosx 2、如何解决抽象函数问题? 利用赋值法, 类比猜测法等多种方法从多角度,多层面去分析研究抽象函数问题。 三、抽象函数问题归类与研究。 (一)研究函数性质 例1:定义在R上的函数f(x)满足 f(x+y)=f(x)+f(y)(x,y∈R) 当x<0时,f(x)>0 (1)、判断函数f(x)的奇偶性。(2)、证明f(x)是R上的减函数。

高一数学思维导图

必修一集合与函数 集合映射 概念元素、集合之间的关系 运算:交、并、补数轴、Venn图、函数图象 性质确定性、互异性、无序性 定义表示 解析法 列表法 三要素 图象法 定义域 对应关系 值域 性质 奇偶性 周期性 对称性 单调性 定义域关于原点对称,在x=0处有定义的奇函数→f (0)=0 1、函数在某个区间递增(或减)与单调区间是某个区间的含义不同; 2、证明单调性:作差(商); 3、复合函数的单调性 最值 二次函数、基本不等式、双钩(耐克)函 数、三角函数有界性、数形结合、导数. 幂函数 对数函数 三角函数 基本初等函数 抽象函数 复合函数 赋值法、典型的函数 函数与方程二分法、图象法、二次及三次方程根的分布 零点 函数的应用建立函数模型 使解析式有意义 函数 表示方法 换元法求解析式 分段函数 注意应用函数的单调性求值域 周期为T的奇函数→f (T)=f (T 2 )=f (0)=0 复合函数的单调性:同增异减 一次、二次函数、反比例函数 指数函数 图象、性质 和应用 平移变换 对称变换 翻折变换 伸缩变换 图象及其变换

点与线 空间点、 线、面的 位置关系 点在直线上 点在直线外 点与面 点在面内 点在面外 线与线 共面直线 异面直线 相交 平行 没有公共点 只有一个公共点 线与面 平行 相交 有公共点 没有公共点 直线在平面外 直线在平面内 面与面 平行 相交 平行关系的相互转化 垂直关系的相互转化 线线 平行 线面 平行 面面 平行 线线 垂直 线面 垂直 面面 垂直 空间的角 异面直线所成的角 直线与平面所成的角 二面角 范围:(0?,90?] 范围:[0?,90?] 范围:[0?,180?] 点到面的距离 直线与平面的距离 平行平面之间的距离 相互之间的转化 空间的距离 空间几何体 柱体 棱柱 圆柱 正棱柱、长方体、正方体 台体 棱台 圆台 锥体 棱锥 圆锥 球 三棱锥、四面体、正四面体 直观图 侧面积、表面积 三视图 体积 长对正 高平齐 宽相等

高中数学-抽象函数问题专题

高中数学-抽象函数问题专题目录 一、求表达式方法 (2) 1.换元法: (2) 2.拼凑法: (2) 3.待定系数法: (2) 4.利用函数性质法 (3) 5.赋值法 (3) f x的有关问题 (4) 二、利用函数性质,解() 1.判断函数的奇偶性 (4) 2.求参数的取值范围 (4) 3.解不定式 (4) 三、抽象函数五类题型及解法 (5) 1、线性函数型抽象函数 (5) 2、指数函数型抽象函数 (6) 3、对数函数型抽象函数 (6) 4、三角函数型抽象函数 (7) 5、幂函数型抽象函数 (8) ◆方法总结:抽象函数常见考点解法综述 (9) 1、定义域问题 (9) 2、求值问题 (10) 3、值域问题 (10) 4、解析式问题 (11) 5、单调性问题 (11) 6、奇偶性问题 (12) 7、对称性问题 (12) 8、网络综合问题 (13)

高中数学-抽象函数问题专题 -----含有函数记号“()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式方法 1.换元法: 即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。 例1:已知 ()211 x f x x =++,求()f x . 解:设 1x u x =+,则1u x u =-∴2()2111u u f u u u -=+= --∴2()1x f x x -=- 2.拼凑法: 在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知3311 ()f x x x x +=+,求()f x 解:∵22211111 ()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+ ≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法: 先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

抽象函数求值高中数学高考

二、求值问题 例1. 对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______. 解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手: ,)]1([2)()1(,1,2f n f n f y n x +=+==得令 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0, 得:f(0)=0, ∴f(1)=2 1,.22001)2001(f ,2n )n (f ,21f(n)-1)f(n =∴==+故即 例2. 已知f(x)是定义在R 上的函数,f(1)=1,且对任意x ∈R 都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2002)=_________.1 解:由g(x)=f(x)+1-x,得f(x)=g(x)+x-1. 而f(x+5)≥f(x)+5,所以g(x+5)+(x+5)-1≥g(x)+x-1+5 , 又f(x+1)≤f(x)+1,所以 g(x+1)+(x+1)-1≤g(x)+x-1+1 即 g(x+5)≥g(x), g(x+1)≤g(x). 所以g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1), 故g(x)=g(x+1) 又g(1)=1, 故g(2002)=1. 例3、已知偶函数()f x 对任意,x y 恒有()()()21f x y f x f y xy +=+++成立,求 ()()0,1f f 的值. 解:取0x y ==,得()()()00001f f f +=++,得()01f =-. 取1x y =-=,得()()()111121f f f -=+--+, 又()f x 为偶函数,则()()0211f f =-,故()10f =. 评注:利用抽象函数的条件,通过赋值是解决抽象函数问题的最常用的方法. 例4.(1996年高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时, x x f =)(,则)5.7(f 等于(-0.5) (A )0.5; (B )-0.5; (C )1.5; (D )-1.5.

相关主题
文本预览
相关文档 最新文档