当前位置:文档之家› 34 单相接地与零序过电流保护

34 单相接地与零序过电流保护

34 单相接地与零序过电流保护
34 单相接地与零序过电流保护

10kV变配电站单相接地与零序过电流保护有关问题分析微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。单相接地保护与零序过电流保护是两种完全不同的保护。

1 单相接地保护与零序过电流保护的区别

1.1单相接地保护与零序过电流保护都需要安装零序电流互感器,但二者的作用完全不相同。单相接地保护用于电源中性点不接地的供电系统。对于三相三线制供电系统,由于电源没有中性线(N线),只有三根相线穿过零序电流互感器时,零序电流互感器感应不出三相负荷不平衡电流,即零序电流,只能感应出三相对地不平衡电容电流,正常运行时此电流非常小,但在本供电系统发生单相接地故障后,就增加为全供电系统对地不平衡电容电流,它等于全供电系统一相对地电容电流的三倍。

1.2 零序过电流保护用于电源中性点直接接地,或通过接地变压器接地的供电系统。上述供电系统发生单相接地故障后,电源中性点通过大地和接地故障点形成回路,临时成为三相四线制供电系统,故障电流为非常大的短路电流。所以电源中性点接地的供电系统单相接地故障称为单相对地短路。此时只有三根相线穿过零序电流互感器时,零序电流互感器就可以感应出三相不平衡电流,即零序电流。可以实现零序过电流保护。

2 电源中性点不接地的供电系统单相接地小电流接地选线

2.1 电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发生单相接地故障,然后进行报警或跳闸。需要跳闸时还应将跳闸输出接到所需要跳闸的回路。二次电路接线比较多。

2.2 微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。

3 电源中性点不接地的供电系统单相接地保护的整定

3.1 电源中性点不接地的供电系统发生单相接地故障后,全供电系统接地相对地电压为零,对地电容电流也为零。不接地回路也只有两相有对地电容电流,零序电流互感器就可以感应出对地不平衡电容电流,即零序电流,此电流等于本回路不接地两相对地电容电流的向量和,为一相对地电容电流的3倍。发生单相接地故障后不接地回路单相接地保护不应动作。需要计算出本回路一相对地电容电流,乘以3后再乘以可靠系数,作为本回路单相接地保护的动作电流。

单相接地保护动作的灵敏系数等于发生单相接地故障后全供电系统对地电容电流,减去发生单相接地相对地电容电流后,再除以单相接地保护动作电流。在进行灵敏系数校验是,还需要计算出全供电系统一相对地电容电流。

1

3.2 电源中性点不接地的供电系统单相接地的整定需要计算全供电系统一相对地电容电流,资料收集不全时,对地电容电流计算就比较困难。单相接地保护动作电流误差就比较大,单相接地保护动作的可靠性就会受到影响。

4 电源中性点接地的供电系统零序过电流保护的整定

随着10kV供电系统电网的不断扩大,对地电容电流也随之增加,发生单相接地故障后故障电流比较大,需要立即跳闸,为了提高单相接地故障后保护跳闸的可靠性,将电源中性点串联一个电阻后接地,发生单相接地故障后故障电流就成为对地短路电流。此时零序电流互感器就可以感应出三相不平衡电流,发生单相接地故障后故障电流为对地短路电流。零序过电流保护整定可以按照躲过三相不平衡电流来整定。单相接地保护动作的可靠性就可以提高。

2

中性点直接接地系统零序电流保护

第三章 中性点直接接地系统的零序电流保护 一、零序电流保护及其在系统中的作用 不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下: 可见零序电流的大小与系统运行方式有关。但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。 图3-31( b )为其短路计算的零序等效网络。 在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。零序电压的方向采用线路高于大地的电压为正。这样,A 母线的零序是电压表示为。 11)(oT o oA Z I U ? ?-= (3-48) 该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反

利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。 二、中性点直接接地系统变压器中性点接地原则 中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则: (1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。 (2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行; (3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂; (4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。 (5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地 运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另

零序电流保护的整定计算-精选.

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。 最新文件仅供参考已改成word文本。方便更改

电缆的接地线为什么要穿过零序电流互感器

电缆的接地线为什么要穿过零序电流互感器零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 1、如果单纯用于电缆接地,电缆的接地线是可以不经过电流互感器,而直接接地的。

2、如果该路出线(进线)设有零序保护,则要求取零序电流信号,该信号源就是这个电流互感器,为了准确测量这个零序电流,就要求被测的电流导体通过这个电流互感器,于是就出现了电缆的接地线通过零序电流互感器的情况。

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

低压侧零序电流保护

低压侧中性线零序电流保护使用商榷 低压接地故障保护的设置应能防止人身间接电击以及电气火灾、电气设备损坏、线路损坏等事故。低压侧中性点直接接地的变压器,低压侧单相接地短路应选择下列保护方式,保护装置应带时限动作于跳闸。 一、用高压侧的过电流保护: 高压侧过电流保护灵敏性符合要求时,对低压侧单相接地短路的保护作用。用于校验高压侧过电流保护灵敏性的低压侧短路电流,仅取变压器低压侧母线上的短路电流,也就仅能可靠地保护到变压器低压侧母线。距离变压器再远的低压侧,短路电流小至灵敏性不符合要求时,该处及以远线路处的接地故障就保护不到。高压侧的过电流保护,对低压侧接地短路的保护范围是有限的,并不能保护全低压系统。 二、低压侧中性线上的零序电流保护: 变压器低压侧中性线上所设置的零序电流保护的一次动作电流,应躲过正常运行时,变压器中性线上流过的最大不平衡电流。按国家标准 GB1094-1-5《电力变压器》规定:应不超过变压器额定电流的25%。变压器低压侧低压配电回路一般较多,变压器低压侧中性线上的零序电流保护的一次动作电流整定值大,灵敏度低保护范围小;整定电流值小,灵敏度

高保护范围大。零序保护的一次动作电流整定值大,如仅保护低压母线,则与高压侧的过电流保护重复;整定电流小,保护可深入到个别配电线路不长回路的末端,但也未必能保护到截面远距离回路末端,也不能保证保护全低压系统;不论整定电流大小,选择性很差。低压系统中,只要有一回路的接地故障,变压器零序保护动作,使该变压器全部低压系统停电,扩大了停电范围,各回路全部停电,故障发生在哪一回路,一时难以确定,故障点查找困难,排除故障时间长。从保护分工的角度要求,各保护应对其后的设备、线路起保护作用,保护上下级的整定值、动作时限达到协调配合,才能达到保护可靠、有选择、速动的要求。有一些地区,中性点直接接地的变压器,变压器中性点引出两条母线,一条母线同相母线一同设至变压器低压总断路器,在低压屏底部接地并分设N母线和PE母线;另一条母线在变压器下就近直接接地,这样使单相接地故障电流将通过两条母线回流至变压器中性点,套在变压器中性线上的零序电流互感器中,未流过全部故障电流,零序电流互感器测得的故障电流不准确,保护动作也不可靠。中性点直接接地的变压器中性点不应直接就近接地,应同相母线一同敷设至变压器低压屏底接地。 三、低压侧断路器的三相电流保护: 在变压器低压侧设有各级低压断路器,变压器低压侧的总断路器,一般均选用较先进的带智能控制器的框架式断路器,智能控制器有过载长延时、短路短延时、短路瞬时、接地故障保护功能。低压各配电出线回路还设有分回路断路器,大容量配电回路也会选用带智能控制器的框架式断路

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

接地距离保护与零序电流保护配合才能构成完整的接地保护

接地距离保护须与零序电流保护共同配合才能构成完整的接地保护 一、在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护。三相星形接线的过电流保护虽然也能保护接地短路,但其灵敏度较低,保护时限较长。采用零序保护就可克服此不足,这是因为:正常运行和发生相间短路时,不会出现零序电流和零序电压,因此零序保护的动作电流可以整定得较小,这有利于提高其灵敏度;Y/△接线降压变压器,△侧以后的故障不会在Y侧反映出零序电流,所以零序保护的动作时限可以不必与该种变压器以后的线路保护相配合而取较短的动作时限。1.当电流回路断线时,可能造成保护误动作。这是一般较灵敏的保护的共同弱点,需要在运行中注意防止。就断线机率而言,它比距离保护电压回路断线的机率要小得多。如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作2.当电力系统出现不对称运行时,也要出现零序电流,例如变压器三相参数不同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动.另外,零序保护一般分为三段或四段。零序保护的II 段是与保护安装处相邻线路零序保护的I 段相配合整定的,它不仅能保护本线路的全长,而且可以延伸至相邻线路 二、距离保护是反映短路点至保护安装处距离长度的,动作时限是随短路点距离而变的阶段特性,当短路电流大于精工电流时,保护范围与通过保护的电流大小无关。距离保护测量的是阻抗值。距离保护一段不受系统运行方式变化影响。其余各段受运行方式变化影响也较小,躲开负荷电流的能力较大,因而它对运行方式的适应能力较强。当电流电压保护不能满足要求时,可采用距离保护,通常距离保护都是成套使用的,其中一、二段担任主保护段,三段担任后备保护段。也有四段式的保护或二段式的保护。其实零序保护和距离保护只能从定义上区分,零序保护的灵敏度高一些。假如相间短路零序保护就不会动作,这时距离保护会动作,但是在三相电流不平衡时距离保护就不会动作,零序保护动作,只能说零序保护和距离保护互相配合,使线路保护更完善。也就是说零序保护和距离保护的动作方式不一样,零序保护动作于电流(零序方向保护、和零序功率保护需要与零序电压相配合),距离保护动作与线路的阻抗大小,与电压和电流共同影响阻抗的大小,也就是说电流大但是阻抗只不一定小,距离保护和安装保护的距离有关。零序保护只反映电流的大小。 三、接地距离和相间距离是距离保护的两种分类,前者保护的是接地短路,后者保护的是相间短路。两者的区别在于故障环的选取不同,也就是测量阻抗的计算方法(计算表达式)上不同。 两者的区别主要在于采用的电气量不同,接地距离保护是利用短路电压和电流的比值,即测量阻抗的变化来区分系统的故障与正常运行状态。而零序保护利用的是接地故障时产生的零序电流分量。这是两者在原理上的最主要区别。但是,两者从保护的配合上来看,都是属于阶段式的保护,即都需要各保护区的上下级配合。再一点,从保护的性能来分析。应该说,在不发生单相接地时,零序电流分量是不会出现的,所以零序电流保护具有较高的灵敏性。但在上下级的配合时,限时零序电流速断保护(零序II段)的灵敏性可能不满足要求,这时可采用接地距离保护。这也就是说接地零序保护的灵敏性高于电流保护(可以看到,距离保护利用了短路时的两个电气量,自然比单一的电流保护要灵敏)。所以保护的配备上,一般距离保护作为了主保护,那么电流保护都是作为后备保护的,即在线路发生故障时,首先

系统发生单相接地时零序电流与电压之间的关系分析

系统发生单相接地时零序电流与电压之间的关系分析: 将6KV系统简化为上图:用电系统中所有正常线路不止一条,为了容易表达,我们简化为一条线路,假定第二条线路出现接地故障,零序CT安装位置如图中1、2。 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 在正常情况下一次电压,二次电压(测量、开口三角)关系如图:其中UA为一次,Ua为测量二次,Ub0为开口二次电压,各相的向量方向相同。测量线圈电压变比为UA/Ua=UB/Ub=UC/Uc=6000/√3/100/√3=60,即一二次侧相电压之比60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为100/√3,相之间电压为100V。 开口三角线圈的变比为:UA/Ua0=UB/Ub0=UC/Uc0=6000/√3/100/3=60√3,如果系统6000V,则在每只PT的开口三角形线圈中电压为100/3 我们计算零序UL0向量=Ua向量+Ub向量+Uc向量,如果我们假定其中一相电压,另俩相电压与它相差120和240度。即UL0=Umsinwt+Umsin(wt+120)+Umsin(wt+240)=Um(sinwt+sin(wt+120)+sin(wt+240)=Um(sinwt +sinwtcos120+sin120coswt+sinwtcos240+sin240coswt),计算其中cos240=-1/2,COS120=-1/2 ,SIN120=√3/2,SIN240=-√3/2代入上式中得UL0=Um(sinwt-1/2sinwt+√3/2coswt-1/2sinwt-√3/2coswt)=0 正好等于0,即系统正常时开口三角UL0(向量)为0,三相向量正好对称如图所示 如果C相保险熔断,那么C相的向量就等于0,从而有UL0向量=Ua0向量+Ub0向量即= Umsinwt+Umsin(wt+120)=Um(sinwt+sinwtcos120+sin120coswt)=Um(sinwt-1/2sinwt+√3/2coswt)=

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

变压器零序方向过流保护

零序方向过流保护小结 变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。 一、变压器接地后备保护概述 变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。 对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。 对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。 综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。 二、零序方向过流保护逻辑 零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁, 所示。 图1 零序方向过流保护逻辑框图 零序电压闭锁元件的零序电压取自TV开口三角。 零序过流元件的零序电流可以自产,也可取自中性点零序TA。 零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。其原因在于,中性点零序电流对方向没有选择性。

漏电电流和零序电流区别

漏电流和零序电流两种的区别以下讲解均在三相四线制接线模式下。 一.零序电流检测三种方法 方法一:三相电流之和计算方法: 方法二: 直接用零序互感器穿心N相测量。 加入接线图 方法三: 互感器器穿心三相电流。

二.漏电电流检测二种方法 方法一:用漏电互感器穿芯 A B C N 方法二: A B C N均穿芯互感器 通过A+ B + C +N 矢量计算出漏电流。 加入接线图 三.漏电电流和零序电流区别 零序电流产生条件:三相负载不平衡、接地故障、相间短路电流均会产生零序电流。 漏电流产生条件:接地故障。 根据保护三个特性: 选择性、快速性、可靠性。 零序电流保护,零序电流接地和相间短路情况下保护动作,但是三相负载不平衡情况下也能跳闸,误跳情况。漏电流保护,出现接地故障可靠动作。 综上所述,针对接地故障情况,只有漏电保护才能可靠动作。 四.漏电保护两种检测方法优缺点 方法一:穿芯漏电互感器检测方法, 这种方法是主流设计方案,广泛引用建筑电气防火,市场大部分采用500mA和1000mA 规格,这种设计一般很少设计过载倍数,通过AD数字采集范围窄,测量精度比较高,10mA 电流准确可靠计算出来,符合人身安全标准,适合民用建筑。 优点很明显,但是缺点也很明显,因为检测漏电范围比较窄,漏电流最大1A多。在工业电气应用会明显不适应,工业设备均是大负荷,一般漏电流都是几十安、几百安,甚至上

千安也会出现,小范围漏电互感器出现铁芯饱和情况,穿芯互感器是检测不出来或者互感器坏。工业使用环境有完备保护功能(过流保护等),对供电可靠性和连续性要求较高,用电设备环境复杂,对于mA的漏电流可以不必理会,采用穿芯互感器测量方案,感觉容易误跳。 工业负荷比较大,线缆也比较粗,穿芯互感器要穿过A B C N四根线,制造出大孔径漏电互感器,成本比较高,工程施工难穿心,所以工业环境中很少装设具备电气防火设备。 方法二:矢量漏电计算方,A B C N均穿芯互感器,通过A+B+C+N 矢量计算出漏电流。 三相电流 + 零序互感器,通过四相电流矢量和计算出漏电。三相电流和零序电流互感器均采用5P10互感器,有10倍过载,具备较大过载能力。出现上千安漏电流,铁芯不会饱和,并且计算准确可靠。 这种方式优点,监测大电流漏电,并且安全可靠,每个穿芯只是一项电流,因此孔径要求不会太大。 缺点也是很明显,电流测量范围宽,特别是针对mA级别小电流计算误差也就大。 森尼瑞电气采用“保护和测量”二者合一技术,即保证过载大倍数电流测量准确,又保证额定范围值小电流计算准确,针对10mA小电流计算效果与穿芯互感器模式是一致的。 所以,采用矢量和计算模式电气防火装置,即适合工业应用,也适合建筑应用。

单相接地时零序电流电压分析

下面对系统单相接地时,零序电流与电压之间的关系做简单的分析: 将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2) 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图: UA(向量)与Ua(向量)、Ua0(向量); UB(向量)与Ub(向量)、Ub0(向量); UC(向量)与Uc(向量)、Uc0(向量); 方向分别相同 在测量线圈中变比为:

即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V 在开口三角线圈中变比为: 即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角 二次线圈中电压为V, UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量) = = = =0 用向量图的形式表示如下, 由上图也可以看出系统正常时开口三角UL0(向量)为0 二、如果C相保险熔断,那么UC(向量)=0,有 UL0(向量)= Ua0(向量)+ Ub0(向量) = =

= = = =-Uc0(向量) 用向量图的形式表示如下, 可以看出此时开口三角电压与C相电压大小相等,方向相反。即有: 一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V 同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。电压约为33.3V 如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。电压约为33.3V 三、如果存在一相金属性接地(假设为C相金属性接地)则有: UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UB’(向量)=UBC(向量)=UB(向量)-UC(向量) UA’(向量)=UAC(向量)=UA(向量)-UC(向量)

零序保护整定的计算~

零序电流保护的整定计算 变压器的零序电抗 1、Y/ △联接变压器 当变压器 Y 侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压 器绕组中没有零序电流,相当于零序网络在变压器丫侧断开(如图1所示)。 图1: Y/△联接变压器丫侧接地短路时的零序网络 2、Y0/ △联接变压器 当丫0 侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。 每相零序电压包括两部分:一部分是变压器丫0侧绕组漏抗上的零序电压降10X1 ,另一部 分是变压器丫0侧的零序感应电势 Ilc0X lc0 (Ilc0 为零序励磁电流, X lc0 为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0 ' X Ho Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多 倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这 时变压器的零序电抗等于0.8?1 .0倍正序电抗。即:X0=(0.8?1 .0)(X I +X H )= (0.8?1 .0)X1 o 本网主变零序电抗一般取 0.8 X1

图3: YO/△联接变压器YO 侧接地短路时的零序网络简化 零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电 流可按下式近似地计算: Ibp.js =Kfzq x fwc x ID(3)max 式中Kfzq ――考虑短路过程非周期分量影响的系数,当保护动作时间在 0.1S 以下时 取为2;当保护动作时间在0.3S ?0.1S 时取为1 .5 ;动作时间再长即大于0.3S 时取为1; fwc ――电 流互感器的10%^差系数,取为0.1 ; ID(3)max ——外部三相短路时的最大短路电流。 ID 图 2: YO/ Xi

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

34 单相接地与零序过电流保护

10kV变配电站单相接地与零序过电流保护有关问题分析微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。单相接地保护与零序过电流保护是两种完全不同的保护。 1 单相接地保护与零序过电流保护的区别 1.1单相接地保护与零序过电流保护都需要安装零序电流互感器,但二者的作用完全不相同。单相接地保护用于电源中性点不接地的供电系统。对于三相三线制供电系统,由于电源没有中性线(N线),只有三根相线穿过零序电流互感器时,零序电流互感器感应不出三相负荷不平衡电流,即零序电流,只能感应出三相对地不平衡电容电流,正常运行时此电流非常小,但在本供电系统发生单相接地故障后,就增加为全供电系统对地不平衡电容电流,它等于全供电系统一相对地电容电流的三倍。 1.2 零序过电流保护用于电源中性点直接接地,或通过接地变压器接地的供电系统。上述供电系统发生单相接地故障后,电源中性点通过大地和接地故障点形成回路,临时成为三相四线制供电系统,故障电流为非常大的短路电流。所以电源中性点接地的供电系统单相接地故障称为单相对地短路。此时只有三根相线穿过零序电流互感器时,零序电流互感器就可以感应出三相不平衡电流,即零序电流。可以实现零序过电流保护。 2 电源中性点不接地的供电系统单相接地小电流接地选线 2.1 电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发生单相接地故障,然后进行报警或跳闸。需要跳闸时还应将跳闸输出接到所需要跳闸的回路。二次电路接线比较多。 2.2 微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。 3 电源中性点不接地的供电系统单相接地保护的整定 3.1 电源中性点不接地的供电系统发生单相接地故障后,全供电系统接地相对地电压为零,对地电容电流也为零。不接地回路也只有两相有对地电容电流,零序电流互感器就可以感应出对地不平衡电容电流,即零序电流,此电流等于本回路不接地两相对地电容电流的向量和,为一相对地电容电流的3倍。发生单相接地故障后不接地回路单相接地保护不应动作。需要计算出本回路一相对地电容电流,乘以3后再乘以可靠系数,作为本回路单相接地保护的动作电流。 单相接地保护动作的灵敏系数等于发生单相接地故障后全供电系统对地电容电流,减去发生单相接地相对地电容电流后,再除以单相接地保护动作电流。在进行灵敏系数校验是,还需要计算出全供电系统一相对地电容电流。 1

10kv保护整定计算

金州公司窑尾电气室10kv 保护整定 1. 原料立磨主电机(带水电阻)整定 接线方式:A 、B 、C 三相式 S=3800kW In=266A Nct=400/5 保护型号:DM-100M 万力达 1.1保护功能配置 速断保护(定值分启动,启动后) 堵转保护(电机启动后投入) 负序定时限电流保护 负序反时限电流保护 零序电压闭锁零序电流保护 过负荷保护(跳闸\告警可选,启动后投入) 过热保护 低电压保护 过电压保护 工艺联跳(四路) PT 断线监视 1.2 电流速断保护整定 1.2.1 高值动作电流:按躲过电机启动时流经本保护装置的最大电流整定: Idz'.bh=Krel ×Kk* In 式中: Krel----可靠系数,取1.2~1.5 Kk 取值3 所以 Idz'.bh=Krel ×Kk* In/80=1.2×3.5×266/80=13.97A 延时时间:t=0 s 作用于跳闸 1.2.2 低值动作电流 Idz'.bh=Krel ×Kk* In/Nct=1.2×2*266/80=7.98A 延时时间:t=0 s 作用于跳闸 1.3负序电流定时限负序保护 lm i N i N k K K I Iop I K K 9.0577.0≤ ≤ Iop=2.4A 延时时间:T=1s 作用于跳闸 1.4 负序电流反时限负序保护(暂不考虑)

1.5 电机启动时间 T=12s 1.6低电压保护 U * op = Krel st.min *U Un=(0.5~0.6)Un 取0.6Un 故 U * op =60V 延时时间:t=0.5 s 作用于跳闸 1.7零序电压闭锁零序电流保护 I0=10A/Noct=0.17A 延时时间:t=0.5 s 作用于跳闸 1.8 过电压保护 Uop =k*Un=115V 作用于跳闸 延时时间:t=0.5 s 1.9 负序电压 U2op=0.12In=12V 1.10 过负荷保护电流电流 Idz'.bh=Krel × In/Nct=1.1×266/80=3.63A 取3.63A 延时时间:t=15 s 作用于跳闸 二、差动保护MMPR-320Hb 电机二次额定电流Ie=264/80=3.3A 1、 差动速断电流 此定值是为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算: t s k dz I K I tan ?=, k K :可靠系数,取1.5 t s I tan 为电流启动倍数取2In 则: =?=?l t s k j dz n I K I tan 1.5*2*264/80=9.9A 作用于跳闸 2、 比率差动电流 考虑差动灵敏度及匝间短路,按以下公式整定 dz I =0.5 In/Nct =1.65A 作用于跳闸 3、 比率制动系数:一般整定为0.5。 4、 差流越限 Icl=0.3Idz =0.3*1.65=0.495A 取0.5A 2 DM-100T 变压器保护功能配置 三段复合电压闭锁电流保护 反时限过电流保护 过负荷保护(跳闸或告警可选择)

10kv保护整定计算

金州公司窑尾电气室10kv 保护整定 1. 原料立磨主电机(带水电阻)整定 接线方式:A 、B 、C 三相式 S=3800kW In=266A Nct=400/5 保护型号:DM-100M 珠海万力达 1.1保护功能配置 速断保护(定值分启动内,启动后) 堵转保护(电机启动后投入) 负序定时限电流保护 负序反时限电流保护 零序电压闭锁零序电流保护 过负荷保护(跳闸\告警可选,启动后投入) 过热保护 低电压保护 过电压保护 工艺联跳(四路) PT 断线监视 1.2 电流速断保护整定 1.2.1 高值动作电流:按躲过电机启动时流经本保护装置的最大电流整定: Idz'.bh=Krel ×Kk* In 式中: Krel----可靠系数,取1.2~1.5 Kk 取值3 所以 Idz'.bh=Krel ×Kk* In/80=1.2×3.5×266/80=13.97A 延时时间:t=0 s 作用于跳闸 1.2.2 低值动作电流 Idz'.bh=Krel ×Kk* In/Nct=1.2×2*266/80=7.98A 延时时间:t=0 s 作用于跳闸 1.3负序电流定时限负序保护 lm i N i N k K K I Iop I K K 9.0577.0≤≤ Iop=2.4A 延时时间:T=1s 作用于跳闸

1.4 负序电流反时限负序保护(暂不考虑) 1.5 电机启动时间 T=12s 1.6低电压保护 U * op = Krel st.min *U Un=(0.5~0.6)Un 取0.6Un 故 U * op =60V 延时时间:t=0.5 s 作用于跳闸 1.7零序电压闭锁零序电流保护 I0=10A/Noct=0.17A 延时时间:t=0.5 s 作用于跳闸 1.8 过电压保护 Uop =k*Un=115V 作用于跳闸 延时时间:t=0.5 s 1.9 负序电压 U2op=0.12In=12V 1.10 过负荷保护电流电流 Idz'.bh=Krel × In/Nct=1.1×266/80=3.63A 取3.63A 延时时间:t=15 s 作用于跳闸 二、差动保护MMPR-320Hb 电机二次额定电流Ie=264/80=3.3A 1、 差动速断电流 此定值是为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算: t s k dz I K I tan ?=, k K :可靠系数,取1.5 t s I tan 为电流启动倍数取2In 则: =?=?l t s k j dz n I K I tan 1.5*2*264/80=9.9A 作用于跳闸 2、 比率差动电流 考虑差动灵敏度及匝间短路,按以下公式整定 dz I =0.5 In/Nct =1.65A 作用于跳闸 3、 比率制动系数:一般整定为0.5。 4、 差流越限 Icl=0.3Idz =0.3*1.65=0.495A 取0.5A 2 DM-100T 变压器保护功能配置 三段复合电压闭锁电流保护

相关主题
文本预览
相关文档 最新文档