当前位置:文档之家› 大肠杆菌和大肠菌群有什么区别

大肠杆菌和大肠菌群有什么区别

大肠杆菌和大肠菌群有什么区别
大肠杆菌和大肠菌群有什么区别

大肠杆菌和大肠菌群有什么区别

(1)大肠埃希氏菌(E. coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症,它是一种普通的原核生物,是人类和大多数温血动物肠道中的正常茵群。但也有某些血清型的大肠杆菌可引起不同症状的腹泻,根据不同的生物学特性将致病性大肠杆菌分为5类:致病性大肠杆菌(EPEC)、肠产毒性大肠杆菌(ETEC)、肠侵袭性大肠杆菌(EIEC)大肠杆菌(Escherichia coli,E.coli)革兰氏阴性短杆菌,大小0.5×1~3微米。周身鞭毛,能运动,无芽孢。能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素B和K,以及有杀菌作用的大肠杆菌素。正常栖居条件下不致病。但若进入胆囊、膀胱等处可引起炎症。在肠道中大量繁殖,几占粪便干重的1/3。兼性厌氧菌。在环境卫生不良的情况下,常随粪便散布在周围环境中。若在水和食品中检出此菌,可认为是被粪便污染的指标,从而可能有肠道病原菌的存在。因此,大肠菌群数(或大肠菌值)常作为饮水和食物(或药物)的卫生学标准。大肠杆菌的抗原成分复杂,可分为菌体抗原(O)、鞭毛抗原(H)和表面抗原(K),后者有抗机体吞噬和抗补体的能力。根据菌体抗原的不同,可将大肠杆菌分为150多型,其中有16个血清型为致病性大肠杆菌,常引起流行性婴儿腹泄和成人肋膜炎。大肠杆菌是研究微生物遗传的重要材料,如局限性转导就是1954年在大肠杆菌K12菌株中发现的。莱德伯格(Lederberg)采用两株大肠杆菌的营养缺陷型进行实验,奠定了研究细菌接合方法学上的基础,以及基因工程的研究。

大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,主要寄生在大肠内。它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等。人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热。感染可能是致命性的,尤其是对孩子及老人。

大肠细菌(E. coli)为埃希氏菌属(Escherichia)代表菌。一般多不致病,为人和动物肠道中的常居菌,在一定条件下可引起肠道外感染。某些血清型菌株的致病性强,引起腹泻,统称病致病大肠杆菌。

、肠出血性大肠杆菌(E.I"IEC)、肠黏附性大肠杆菌(EAEC)。

(2)大肠菌群并非细菌学分类命名,而是卫生细菌领域的用语,它不代表某一个或某一属细菌,而指的是具有某些特性的一组与粪便污染有关的细菌,这些细菌在生化及血清学方面并非完全一致,其定义为:需氧及兼性厌氧、在37℃能分解乳糖产酸产气的革兰氏阴性无芽胞杆菌。一般认为该菌群细菌可包括大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。

大肠菌群分布较广,在温血动物粪便和自然界广泛存在。调查研究表明,大肠菌群细菌多存在于温血动物粪便、人类经常活动的场所以及有粪便污染的地方,人、畜粪便对外界环境的污染是大肠菌群在自然界存在的主要原因。粪便中多以典型大肠杆菌为主,而外界环境中则以大肠菌群其他型别较多。

大肠菌群是作为粪便污染指标菌提出来的,主要是以该菌群的检出情况来表示食品中有否粪便污染。大肠菌群数的高低,表明了粪便污染的程度,也反映了对人体健康危害性的大小。粪便是人类肠道排泄物,其中有健康人粪便,也有肠道患者或带菌者的粪便,所以粪便内除一般正常细菌外,同时也会有一些肠道致病菌存在(如沙门氏菌、志贺氏菌等),因而食品中有粪便污染,则可以推测该食品中存在着肠道致病菌污

染的可能性,潜伏着食物中毒和流行病的威胁,必须看作对人体健康具有潜在的危险性。简单地说,大肠杆菌只是一种菌类,而大肠菌群是一类细菌。

大肠杆菌菌株区别

JM109,DH5a,BL21这些感受态有何区别 1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7 噬菌体RNA聚合酶位于λ 噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcr AΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 M110或SCS110 大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GATC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC序列的第一个胞嘧啶C-5位置上引入甲基。常用的菌株都会产生dam,dcm,从而受到甲基化的影响. 部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响; (2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的DNA 就能被上述酶切割。 E.coli JM110

大肠杆菌的培养

大肠杆菌种子液的制备 牛肉膏蛋白胨培养基的配方: 液体培养基 牛肉膏 3.0g 蛋白胨 10.0g 氯化钠 5.0g 水 1000ml pH 固体培养基在液体培养基的基础上再加入%-%的琼脂1 试管斜面与平板的制备 (1)称量按培养基配方比例依次准确称取蛋白胨、牛肉膏、氯化钠、琼脂、水放入烧杯中。 (2)熔化在上述烧杯中先加入少于所需要量的水,用玻璃棒搅匀,然后,在石棉网上加热使其溶解,药品完全溶解后, 补充水到所需的总体积。将称量好的%琼脂放入已溶的药 品中,再加热熔化,最后补充所损失的水分。 (3)调PH 在未调PH前,先用精密PH试纸测量培养基的原始PH,如果偏酸,用滴管向培养基中逐滴加入1mol/L NaOH, 边加边搅拌,并随时用PH试纸测基PH直到PH达到。反之 用1mol/L HCl进行调节。 (4)分装将培养基分装入三个试管中和三角烧瓶中。其试管装量不超过管高的1/5,三角烧瓶的量不超过1/2加塞培 养基分装完毕后,在试管口和三角烧瓶口上塞上棉塞。

(5)包扎加塞后,将全部试管用麻绳捆好,再在棉塞外包一层牛皮纸,其外再用一道麻绳扎好。用记号笔注明培养基名 称、配制日期。 (6)灭菌将上述培养基以,121℃,15min高压蒸气灭菌。 (7)倒平板,取三个已消毒的培养皿,在无菌操作台上用三角烧瓶中的培养基倒制三个平板培养基,冷却。 (8)搁置斜面将灭菌的试管培养基冷却至50℃左右,将试管口端搁在玻璃棒上,搁置的斜面长度以不超过试管总长的 一半为宜。 2 接种大肠杆菌斜面种子 (1) 取实验室储备的大肠杆菌BL21种子,在酒精灯附近, 用接种环在已制备好的斜面上接种上大肠杆菌。 (2) 将接种好的斜面放入37℃的恒温培养箱子中培养24h。 3 制备平板种子 (1) 在无菌条件下,取一支保存的大肠杆菌的斜面,用无菌 生理盐水将菌种冲洗下来,再用无菌生理盐水将其梯度 稀释为1倍,10倍,100倍和1000倍,用移液枪分别吸 取各梯度的溶液涂布平板(每个梯度涂布三个平板,每次 吸取溶液100ul),然后在37℃培养箱中过夜。 (12)次日,挑取生长状态好,特征明显的单个菌落,接种于新鲜灭菌的牛肉膏蛋白胨液体培养基中37℃,170r/min 恒温振荡培养18h作种子培养液。

常用大肠杆菌感受态JM109,DH5a,BL21等的区别

【引用】常用大肠杆菌感受态JM109,DH5a,BL21等的区别 生命科学2011-03-31 14:48:42 阅读80 评论0 字号:大中小订阅 本文引用自xxrrzq《常用大肠杆菌感受态JM109,DH5a,BL21等的区别》 1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pL ysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pL ysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7:M110或SCS110 大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GATC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC序列的第一个胞嘧啶 C-5位置上引入甲基。常用的菌株都会产生dam,dcm,从而受到甲基化的影响. 部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。 而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响;

常用大肠杆菌感受态JM109,DH5a,BL21等的区别-用途-特征

常用大肠杆菌感受态JM109,DH5a,BL21等的区别 1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pU C系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gy rA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ 噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pLy sS菌株 该菌株含有质粒pLy sS,因此具有氯霉素抗性。PLy sS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰 目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLy sS ,C amr 4:JM109菌株 该菌株在使用pU C系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的La cZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gy r A96,thi-1,hsdR17,supE44,re lA1,Δ(lac-proA B)/F’[traD36,proAB+,lacIq,lacZΔM15] 5:TO P10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcr AΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xy l-5,mtl-1,le uB6,thi-1 7:M110或SCS110 大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GA TC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC 序列的第一个胞嘧啶C-5位置上引入甲基。常用的菌株都会产生dam,dcm,从而受到甲基化的影响. 部分限制性内切酶对甲基化的DNA不能切割,如F baI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。 而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响; (2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的DNA就能被上述酶切割。 8:E.coli JM110 要排除dam,dcm甲基化的影响,需要用特定的dam-,dcm-的菌株,如JM110 如果由JM110或SCS110等甲基化缺失的菌株产生的质粒,则不会被甲基化. 各种感受态细胞的区别用途特征 Xl1-Blue菌株

大肠杆菌菌株,酵母菌菌株,农杆菌菌株特点及使用

北京华越洋生物提供QQ:1733351176 大肠杆菌菌株,酵母菌菌株,农杆菌菌株-北京现货 菌种名称编号类别抗性规格 RosettaBlue(DE3)pLac I 12-300 大肠杆 菌 1 mL RosettaBlue(DE3)pLys S 12-321 大肠杆 菌 1 mL SF21 12-318 昆虫细 胞 无 1 mL SF9 12-319 昆虫细 胞 1 mL SG1117 12-251 大肠杆 菌 1 mL SMD 11681 12-270 酵母 1 mL SMD1163 12-272 酵母 1 mL SMD1168 12-114 酵母 1 mL SMD1168H 12-208 酵母 1 mL SMD168H 12-271 酵母 1 mL Stbl2 12-252 大肠杆 菌 nalidixic acid 1 mL Stbl3 12-253 大肠杆 菌 Str 1 mL Stbl4 12-254 大肠杆 菌 Tet 1 mL SURE 12-255 大肠杆 菌 Kan;Tet 1 mL T1 12-327 大肠杆 菌 1 mL TB1 12-256 大肠杆 菌 无抗性 1 mL TG1 12-44 大肠杆 菌 无抗性 1 mL TH1 12-257 大肠杆 菌 无抗性 1 mL TKB1 12-310 大肠杆 菌 Tet 1 mL

北京华越洋生物提供QQ:1733351176 Top10 12-81 大肠杆 菌 Str 1 mL Top10F 12-188 大肠杆 菌 1 mL Top10F’ 12-381 大肠杆 菌 Str,Tet 1 mL Tuner 12-306 大肠杆 菌 无抗性 1 mL Tuner(DE3) 12-258 大肠杆 菌 无抗性 1 mL Tuner(DE3))plysS 12-219 大肠杆 菌 Cam 1 mL Tuner(DE3)pLacI 12-307 大肠杆 菌 Cam 1 mL Turbo 12-259 大肠杆 菌 无抗性 1 mL WB600 12-276 枯草宿 主菌 1 mL X33 12-273 农杆菌 1 mL XL blue 12-260 大肠杆 菌 无抗性 1 mL XL-10 gold 12-261 大肠杆 菌 Tet,Cam 1 mL XL1 Blue 12-308 大肠杆 菌 Tet,Nalidi xic Acid 1 mL XL2 Blue 12-309 大肠杆 菌 Tet,Cam, Nalidixic Acid 1 mL Y1089 12-262 大肠杆 菌 1 mL Y1090 12-263 大肠杆 菌 1 mL Y187 12-325 酵母 1 mL Y2HGold 12-326 酵母 菌种名称编号类别抗性规格 1A75 12-274 枯草宿 主菌 1 mL

重组人IL-2大肠杆菌工程菌质粒稳定性的研究

重组人IL-2大肠杆菌工程菌质粒稳定性的研究 摘要 基因工程菌中质粒稳定性对于基因工程菌的发酵有着重要影响,但基因工程菌在传代中经常出现质粒不稳定遗传的现象。本试验通过在工程菌的培养过程中添加抗生素这一选择压力和诱导表达目的蛋白的方式来提高基因工程菌的稳定性,并通过双酶切电泳分析及高效率的诱导表达外源蛋白来进行检测,得出工程菌在LB(-)和LB(+)平板上都能生长且形态相似;电泳图平行、酶切片段的位置大致一致;诱导表达的外源基因的质粒稳定。提高质粒稳定性有利于外源蛋白表达,以满足大规模生产发酵。 关键词:基因工程菌;质粒;稳定性 -I-

Study on the stability of plasmid of recombinant human IL-2 E.coli bacteria Abstract Escherichia coli. plasmid stability for the genetic engineering of bacteria fermentation has important implications genetically engineered bacteria in the mid-recurring genetic instability of the plasmid. This experiment in engineering from the training course to add the option of antibiotic pressure and protein expression induced by way of reference high genetically engineered bacteria stability and digested by electrophoresis and high efficiency induced expression of foreign proteins to detect, the virus can grow in the panel of LB(-) and LB(+), and the morphology is similar; The electrophoregram is parallel, and the position of the fragment is consistenct roughly; Inducible expression of foreign genes is stabile. We improve the stabilization of the foreign gene in order to meet the large-scale fermentation. Key words: Genetic engineering ; plasmid ; stability -II-

质粒转化大肠杆菌

质粒DNA的转化操作步骤 该实验主要有两个用途: 1.重组质粒的鉴定。当质粒的重组或其它载体重组后,通常会发生质粒的重组失败,包括质粒的自身环化。因而要求进行筛选,把重组成功的质粒找出来。在目前常用的质粒和其它载体中含有相应的抗生素抗性基因,一旦重组成功,质粒环化(包括自身环化),抗生素抗性基因表达,被转化的大肠杆菌便具备抗相应抗生素的能力,可以含该抗生素的培养基中生长传代,不然,重组失败,大肠杆菌便不能抵抗该抗生素而死亡。 2.为扩增质粒和其它载体作准备。由于大肠杆菌繁殖快,在适宜的条件下繁殖一代仅需要20~30分钟,而且常用质粒可以在大肠杆菌中达到几百个拷贝,因此,通过对转化成功的大肠杆菌培养,可以在短时内极大地扩增目的质粒。(作为分子生物学用大肠杆菌,是经过实验室改造过的工程菌。) 【原理】 转化是将外源DNA分子导入到受体细胞,使之获得新的遗传特性的一种方法。转化所用的受体细胞一般是限制-修饰系统缺陷变异株,即不含限制性内切酶和甲基化酶(R-, M-)。将对数生长期的细菌(受体细胞)经理化方法处理后,细胞膜、的通透性发生暂时性改变,成为能允许外源DNA分子进入的感受态细胞。进入受体细胞的DNA分子通过复制和表达实现信息的转移,使受体细胞具有了新的遗传性状。将经过转化的细胞在筛选培养基上培养,即可筛选出转化子(带有异源DNA分子的细胞)。 本实验采用CaCl2法制备感受态细胞。其原理是细胞处于0~4℃,CaCl2低渗溶液中,大肠杆菌细胞膨胀成球状。转化混合物中的DNA形成抗DNA酶的羟基-钙磷酸复合物粘附于细胞表面,经42℃90秒热激处理,促进细胞吸收DNA得合物。将细菌放置在非选择性培养基中(无抗LB培养液)于37℃振动培养一段时间,可使细菌复苏,表达质粒编码的抗生素抗性基因,在转化过程中获得的新的表型,提高转化效率。如氨苄青霉素耐药(Ampr)得到表达,然后将此细菌培养物涂在含Amp的选择性培养基上,倒置培养过夜,即可获得细菌菌落。 本实验是将[ 某]重组质粒转化DH5α扩增菌,转化后在含Amp的培养基上进行筛选,生长的菌落即为含重组质粒的工程菌。含[ 某]重组质粒的DH5α菌用于质粒DNA的扩增,获得的质粒将作为限制性内切酶的酶切底物DNA。 【实验步骤】 自-70℃冰箱中取出受感态大肠杆菌,插入湿冰中溶解约15分钟,轻轻混匀。吸取50ul移入1.5ml管,并立刻将细菌放回-70℃冰箱。 细菌50 ul 质粒1 ul 轻轻混匀,静置冰上30分钟。 于42℃水浴中热休克细菌90秒,迅速移入湿冰中,静置3分钟,加入700ul无抗LB 培养液,放入37℃恒温箱摇床,220rpm摇晃培养45min。取30-200ul涂于含氨卞青霉素的LB琼脂平板皿上,待干燥后,倒置,存放于37℃的培养箱中过夜。 次日,检查各培养皿中是否出现菌落。

大肠杆菌营养缺陷型菌株的诱变与筛选 山大微生物大实验

山东大学 实验名称:大肠杆菌营养缺陷型菌株 的诱变和筛选 作者:姚健(201000140136) 同组者:刘新强 指导老师:林建群(教授) 实验日期:2013年5月22日-6月1日

微生物大实验报告 大肠杆菌营养缺陷型菌株的诱变和筛选 山东大学生命基地班姚健 201000140136 摘要:营养缺陷型菌株或称异养型(auxotroph)菌株是许多微生物生理生化以及遗传研究的重要菌株材料。此类菌株不仅在生物研究方面有着很重要的作用,而且在生物工程和生物技术上都有很重要的作用。营养缺陷型菌株的筛选也成为了微生物科学工作者必备的基本实验技能之一。实验采用物理诱变非电离辐射紫外线(15W)为诱变剂,来对大肠杆菌诱发突变,并用抗青霉素法淘汰野生型(富集营养缺陷型),采用点植对照法检出营养缺陷型,划线复证后得到两株营养缺陷型菌,进行生长谱法鉴定,两个平板都长满了菌落,即没有预期的营养缺陷型菌株出现。 Abstract:Auxotrophic bacterias are very important materials in the microbial biochemical and genetical research.Auxotrophic bacterias are important to not only bioresearch but also biotechnology.The screening of auxotrophic bacterias has become one of scientists’ primary experimental skills.We use the ultravioley light as the mutagen to induce the mutation of the E.coli,then weed out the wild type by Penicillin resistance method to gather auxotrophic bacterias,next we check out the auxotrophic bacterias by spot planting.We get two auxotrophic bacterias by marking out,finally we test the type of auxotroph by auxanography.Each bacteria grew well everywhere in the plate indicating that t here’s no auxotrophic bacteria. 关键词:大肠杆菌;营养缺陷型菌株;紫外线诱变;划线复证;生长谱测定;筛选 Key words:Escherichia;auxotrophic bacteria;ultravioley mutation;marking out;auxanography;screening 1引言 筛选营养缺陷型菌株一般具有四个环节:诱变处理、营养缺陷性的浓缩、检出、鉴定缺陷型。本实验选用紫外线为诱变剂来诱发突变,并用青霉素法淘汰野生型,逐个测定法检出缺陷型,最后经生长谱法鉴定细菌的营养缺陷型。 1.1 营养缺陷型 营养缺陷型是指野生型菌株由于某些物理因素或化学因素处理,使编码合成代谢途径中某些酶的基因突变,丧失了合成某些代谢产物(如氨基酸、维生素)的能力,必须在基本培养基中补充该种营养成分,才能正常生长的一类突变株[1]。这类菌株可以通过降低或消除末端产物浓度,在代谢控制中解除反馈抑制或阻遏,而使代谢途径中间产物或分支合成途径中末端产物积累。在氨基酸、核苷酸生产中已广泛使用营养缺陷型菌株;也可用于遗传学分析、微生物代谢途径的研究及细胞和分子水平基因重组研究中作为供体和受体细胞的遗传标记。因此,营养缺陷型在工业上有重要的应用价值。营养缺陷型是由野生型突变产生,营养缺陷型经回复突变恢复野生表型得到原养型。为了获得营养缺陷型菌株,需从诱变处理后的菌液中认真筛选,以便检出突变体,常用的方法有:影印接种法、夹层培养法和青霉素浓缩法等。 1.2 紫外线诱变 诱变育种是人为地采用物理、化学的因素,诱导有机体产生遗传变异,并经过人工选择、鉴定、培育新品种的方法。诱变育种的目标是改变或增加一个满意品种的某一特性,而在其他方面保持不变。诱变育种具有以下特点:1)提高突变率,扩大变异谱;2)适于进行个别性状的改良;3)育种程序简单,年限短;4)变异的方向和性质不定。 紫外线是一种短波光,波长介于100-400nm之间。它是一种非电离辐射诱变剂,照射物体时可使原

大肠菌群和大肠杆菌的区别

大肠菌群和大肠杆菌的区别 名称定义检测方法检测意义 大肠菌群 是指具有某些特性的一组与粪便 污染有关的细菌,即:需氧及兼性厌 氧、在37℃能分解乳糖产酸产气的革 兰氏阴性无芽胞杆菌。 大肠菌群包含大肠杆菌、柠檬酸 杆菌、产气克雷白氏菌和阴沟肠杆菌 等。 MPN计数法 参见GB4789.3-2010 《中 华人民共和国国家标准食 品微生物学检验大肠菌群 计数》。 食品标准中一般只规定大肠菌群的含量限制, 而对大肠杆菌没有限制。 大肠菌群分布较广,在动物粪便和自然界广泛 存在。粪便中多以典型大肠杆菌为主,而外界环境 中则以大肠菌群其他型别较多。 大肠菌群和大肠杆菌是评价卫生质量的重要 指标,作为食品中的粪便污染指标。 食品中检出大肠菌群,表明该食品有粪便污 染,既可能有肠道致病菌存在,因而也就有可能通 过污染的食品引起肠道传染病的流行。大肠菌群数 的高低,表明了粪便污染的程度,也反映了对人体 健康危害性的大小。 大肠杆菌 (大肠埃希氏菌) 也称大肠埃希氏菌,分类于肠杆 菌科,归属于埃希氏菌属,属于细菌。 大肠杆菌指革兰氏阴性无芽孢杆菌、 乳糖发酵产酸产气、IMViC试验(靛基 质、MR、V-P、柠檬酸盐试验)为+ + - -或- + - -的细菌。它分布在自然界, 平板计数法 参见GB4789.38-2012《食 品安全国家标准食品微生 物学检验大肠埃希氏菌计 数》。 2

大多数是不致病的,主要附生在人或动物的肠道里,为正常菌群,少数的大肠杆菌具有毒性,可引起疾病。 备注: 生产加工中两者没有单独的控制方法,需按照食品加工标准卫生操作规范,从控制人员、器具、环境的清洁卫生着手,做好清洁消毒工作,确保生产加工过程不受到大肠菌落的污染。 2

各种大肠杆菌菌株特点

各种大肠杆菌菌株特点 1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ 噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’ 5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7:M110或SCS110 大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GATC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC序列的第一个胞嘧啶 C-5位置上引入甲基。常用的菌株都会产生dam,dcm,从而受到甲基化的影响. 部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。 而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响; (2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

常见大肠杆菌菌株的基因型

常见大肠杆菌菌株的基因型 1:DH5a菌株 常用于质粒克隆的菌株。使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk ),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB ,lacIq,lacZΔM15] 5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7:Top10F'菌株 带lacIq,需加IPTG诱导表达克隆于lac启动子后的外源基因,用于蓝白斑筛选时,需加入IPTG和X-Gal。 基因型:F'{lacIq,Tn10(TetR)}mcrA△(mrr-hsdRMS-mcrBC), ψ80 ,lacZ△M15, △lacX74, deoR, recA1, araD139, △(ara-leu), 7679, gal, λ- rpsL(strR)endA1, nupG

大肠杆菌的特点与前景研究

大肠杆菌的特点与前景研究 摘要:肠埃希氏菌(E. coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症,它是一种普通的原核生物。大肠杆菌属于细菌。关键词:大肠杆菌病原性应用前景 大肠杆菌是人和动物肠道中最著名的一种细菌,主要寄生于大肠内,约占肠道菌中的1%。是一种两端钝圆、能运动、无芽孢的革兰氏阴性短杆菌。大肠杆菌能合成维生素B和K,正常栖居条件下不致病;若进入胆囊、膀胱等处可引起炎症。在水和食品中检出,可认为是被粪便污染的指标。大肠菌群数常作为饮水、食物或药物的卫生学标准。 大肠杆菌O157:H7血清型属肠出血性大肠杆菌,自1982年在美国首先发现以来,包括中国等许多国家都有报道,且日见增加。日本近年来因食物污染该菌导致的数起大暴发,格外引人注目。在美国和加拿大通常分离的肠道致病菌中,目前它已排在第二或第三位。大肠杆菌O 157:H7引起肠出血性腹泻,约2%~7%的病人会发展成溶血性尿毒综合征,儿童与老人最容易出现后一种情况。致病性大肠杆菌通过污染饮水、食品、娱乐水体引起疾病暴发流行,病情严重者,可

危及生命。 大肠杆菌(Escherichia coli,E.coli)革兰氏阴性短杆菌,大小0.5×1~3微米。周身鞭毛,能运动,无芽孢。能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素B和K,以及有杀菌作用的大肠杆菌素。正常栖居条件下不致病。但若进入胆囊、膀胱等处可引起炎症。在肠道中大量繁殖,几占粪便干重的1/3。在环境卫生不良的情况下,常随粪便散布在周围环境中。若在水和食品中检出此菌,可认为是被粪便污染的指标,从而可能有肠道病原菌的存在。因此,大肠菌群数(或大肠菌值)常作为饮水和食物(或药物)的卫生学标准。(国家规定,每升饮用水中大肠杆菌数不应超过3个)大肠杆菌的抗原成分复杂,可分为菌体抗原(O)、鞭毛抗原(H)和表面抗原(K),后者有抗机体吞噬和抗补体的能力。根据菌体抗原的不同,可将大肠杆菌分为150多型,其中有16个血清型为致病性大肠杆菌,常引起流行性婴儿腹泄和成人肋膜炎。大肠杆菌是研究微生物遗传的重要材料,如局限性转导就是1954年在大肠杆菌K12菌株中发现的。莱德伯格(Lederberg)采用两株大肠杆菌的营养缺陷型进行实验,奠定了研究细菌接合方法学上的基础,以及基因工程的研究。 大肠杆菌(E. coli)为埃希氏菌属(Escherichia)代表菌。一般多

常用大肠杆菌感受态JM109,DH5a,BL21等的区别

1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3:BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7:M110或SCS110 大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GATC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC序列的第一个胞嘧啶C-5位置上引入甲基。常用的菌株都会产生dam,dcm,从而受到甲基化的影响. 部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。 而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响; (2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的

相关主题
文本预览
相关文档 最新文档